Policy Management for OGSA Applications as Grid Services
(Work in Progress)

L avanya Ramakrishnan
MCNC-RDI Research and Development Institute
3021 Cornwallis Road, PO. Box 13910, Research Triangle Park, NC 27709-2889
lavanya@cnidr.org

Abstract

We present here two Grid services - PolicyManagerSer-
vice and AuthorizationService. These two OGSA security
services aid application grid services to manage policy and
enforce policy decisions in a service domain. A simple pol-
icy decision point using XACML is used to make a policy
decision that is returned to the enforcement point. Using
the OGSA notification mechanism the policy is synchronized
across the two services. The paper discusses the architec-
ture and the early implementation using the Globus toolkit
3.0 and Sun’s XACML implementation.

1. Introduction

GridIR is a system based on the Open Grid Service Ar-
chitecture (OGSA) [1] framework, enabling complex infor-
mation retrieval on the grid. The GridIR system consists
of the following services: Collection Management Services
- to control collection, harvesting of data; Indexing and
Searching Services - to build indices from document col-
lections; and Query Processing Services - for distributed
searching and results merging. The GridIR services have
various security requirements. They need to manage cre-
dentials of the services and the users of the system. This
could be complicated as there maybe persistent queries that
the service may be responsible to use the user’s delegated
credential for long after the user has disconnected from the
service. In addition access to the data and the operations
supported by the service will need to be restricted based on
some policy. At the same time it is desired that the security
mechanisms be independent of the application logic.

Thus we see that grid services require a security infras-
tructure to support its activities. The OGSA Security Ar-
chitecture [2] talks about how some of the security func-
tionality could be composed as grid services. This paper
addresses some of the authorization requirements of grid

applications such as GridIR composed as OGSA services
and looks at a possible architecture to mange policy and
trust in such an environment. This work is a preliminary
design and results from a prototype implementation based
on the current version of the OGSA architecture and OGSI
[3] specifications as implemented in the Globus toolkit 3.0.
This work serves as an - 1) lllustration of a use-case and
early implementation results of OGSA services. 2) Real-
ization of some of the security support required by OGSA
services 3) Basis for discussion on standarization of inter-
faces and data representation for policy management.

We introduce in this paper ! two OGSA grid services that
applications could use to manage policy and trust issues and
enforce authorization checks. The PolicyManagerService is
responsible for policy representation and managing policy
data during the lifetime of the services. The Authorization-
Service aids the application service enforce the policy when
clients use their services. The material presented in this pa-
per is part of a larger architecture for providing a security
infrastructure for OGSA grid services such as GridIR.

2. Architecture

We present here a scalable, flexible security infrastruc-
ture used by grid services for policy management in the
OGSA architecture. In Figure 1, we illustrate how the
PolicyManagerService and AuthorizationService would in-
teract with each other to setup an environment for policy
management for the service. In this architecture we see that
an AuthorizationService could be created at the application
service creation time or could use an existing service. The
AuthorizationService also subscribes to notifications from
the PolicyManagerService on changes to policy of this ser-
vice instance.

1The material is based upon work supported by NASA under award
No(s) NAG 2-1467. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Aeronautics and Space Ad-
ministration.

OGSA Service
Factory

1. Create the OGSA
Service

souejsul
ERINEREN
a1eald T'T

3. Register

AuthorizationSer
vice Factory

20IM
asuonezuoyny

Ay aeald T'C

OGSA Service Instance

PolicyManager GUI Client

AuthorizationService

sabueyd

£aijod 01

aquosgns
T€

0. Initialize policy for the OGSA service
instance

PolicyManagerService

Figure 1. PolicyManagerService and AuthorizationService interaction during service creation time

In Figure 2 ,we illustrate how the AuthorizationService
can be used by the OGSA service to make policy decisions
on its behalf. The AuthorizationService would get the pol-
icy files from the PolicyManagerService, if required and use
the internal XACML based Policy Decision Point (PDP) to
make the decision. It is anticipated that the Authorization-
Service would have a cache of the policy files that it would
update only when it recieves notifications of changes to the
policy associated with the service. Thus it is anticipated
that most decisions would be served from the local cache
avoiding a call to the PolicyManagerService each time.

2.1. Separation of duty

The functionality between the policy management and
the policy decision point has been separated in two sep-
arate services - PolicyManagementService and Authoriza-
tionService. The PolicyManagementService is responsible
for creating, managing and updating the policy information
of the services. The AuthorizationService acts as a simple
Policy Decision Point that uses the policy information from
one or more PolicyManagementService to decide whether a
client should be allowed to access the requested resource.

The policy associated with a service instance is added
to the policy repository through the PolicyManagerService
API. The policy can be updated dynamically through the
PolicyManagerService interface. A service instance may
create its own personal AuthorizationService during the
post-creation process. It also registers with an Authoriza-

tionService giving it the GSH of the PolicyManagerService
that holds the policy files for the service instance.

While enforcing the various rings of security on a grid
service, it is likely that the access rules over the layers
may need to be synchronized. For instance in our proto-
type implementation, the Globus toolkit 3.0 [4] enforces
the service-level authorization through gridmap files. The
GridIR application needed the ability to express and enforce
policy at a much finer level of granularity, we implemented
the the PolicyManagerService to generate both the gridmap
file and the XACML files required by the AuthorizationSer-
vice. The service instance obtains the gridmap file from the
PolicyManagerService and configures the instance-gridmap
parameter during the post-creation process of the service in-
stance.

2.2. Dynamic Policy

Trust relationships continually change during the life-
time of the service instance. Hence it is required to have
the ability to dynamically update policy information. The
policy information can be updated at any point through the
PolicyManagerService interface. The AuthorizationService
can subscribe to the PolicyManagerService for updates on
changes in the policy. This allows the policy to be updated
dynamically throughout the system.

OGSA Service Client

ELIVVEN
eol|ed T

OGSA Service Instance

2.2.a Initialize the PDP with the
policy files. Pass the method call
context as an XACML request
2.2.b An XACML response for
checkAuthorization

PolicyManagerService

2.1 Get
policy files

AuthorizationService

2. Check Authorization

Figure 2. PolicyManagerService and AuthorizationService interaction during service call time

2.3. Scalability

The separation of functionality between the policy man-
agement and decision point makes the architecture scal-
able. Multiple AuthorizationServices and PolicyMan-
agerServices can be deployed and connected in a hierarchi-
cal model to ensure scalability of these functionalities

2.4. Pluggability

The architecture illustrated allows for pluggability of
various components. It lets the user use various implemen-
tations of the AuthorizationService and PolicyManagerSer-
vice as may be required by applications. This allows us to
enforce application specific security while still keeping the
security mechanisms independent of the application logic.

2.5. Usability

XACML is used as a policy language to express the com-
plex rules to be expressed. It is often tedious and cumber-
some to write these policy files directly in XML format.
Thus to reduce the burden on the end-user we provide a
graphical user interface that can be used to enter the policy
rules for the service. The graphical user interface module
parses the GWSDL of the service and generates a list of en-
tities on which policy may be specified. In the prototype
implementation it parses the GWSDL and shows the ser-
vice name with its associated portTypes and corresponding

methods. The user thus can choose to specify the policy at
one or more of service, portType and method levels.

The user interface then acts as a client to the PolicyMan-
agerService that processes the information to generate the
corresponding gridmap and XACML policy files. These
policy files are associated with the Grid Service Handle
(GSH) of the service. This helps to uniquely identify the
policies associated with a service. An AuthorizationService
uses the GSH of a service to fetch the policy files from the
PolicyManagerService.

2.6. Flexibility

This paper illustrates how the PolicyManagerService and
AuthorizationService can be used to secure the services.
We see that the same infrastructure can be used to enforce
policy decisions at various levels. In the prototype imple-
mentation access to the operations offered by the services
is restricted based on policy-decision made by the Autho-
rizationService. The PolicyManagerService and Authoriza-
tionService could be used to restrict access to service-data
of the service. Thus the flexibility of where and when to
make policy decisions is left to the application while not
burdening the application with the actual security logic.

2.7. Trust between entities

We see here that the PolicyManagementService and Au-
thorizationService are OGSA security services. It is ex-

tremely important that the access to these services is also
restricted based on some policy. The security services could
enforce policy in a similar manner to other OGSA services
as illustrated in Figures 1 and 2 or may use some other
internal libraries to do the same. By separating the security
services from the application logic, exposure of the func-
tionality to a large-scale of end-users has been limited.

The OGSA application service, the AuthorizationSer-
vice and PolicyManagerService form a triangle of trust. The
PolicyManagerService would restrict access to the methods
to create and change policy to the service-owners and only
trusted AuthorizationServices would be allowed to get the
policy from the PolicyManagerService. The PolicyMan-
agerService would also need to enforce that a particular
AuthorizationService can see only the policies of the ser-
vices that it is responsible for. It is also anticipated that for
highly sensitive applications and/or in production environ-
ments the AuthorizationService and PolicyManagerService
would be run on highly secure machines probably at the
level of a Kerberos server.

3. Discussions
3.1. Scenarios

The OGSA architecture allows the use of OGSA services
in various contexts and combinations. Here we present
some discussions on the possible use-cases of the Poli-
cyManagerService and AuthorizationService may be used
with the application grid services.

3.1.1 Personal Policy Manager and Authorization Ser-
vice

An application with a larger number of users or a special-
ized policy mechanism may choose to have associated with
it an instance of, each of, PolicyManagerService and Au-
thorizationService. This can be considered as a personal
mode where the security services would have the same life-
time as the application service instance. There is therefore
a 1:1 relation between the application service and security
services.

3.1.2 Group Policy Manager and Authorization Ser-
vice

In most cases we anticipate that a group of application ser-
vices would use one PolicyManagerService and Authoriza-
tionService. It is likely the services would be grouped by
a specific feature such as the level of security they would
like to enforce. Thus the ServiceGroup idea from the OGSI
specification could be used to associate the PolicyMan-
agerService and AuthorizationService with a ServiceGroup.

3.1.3 Multiple Policy Manager and Authorization Ser-
vices

It is also likely that there may be multiple PolicyMan-
agerServices and AuthorizationServices in a service domain
that enforce various kinds of policy rules. And in a lot of
cases there may be services that may want to use a set of
different policy conditions for enforcing authorization de-
cisions. For example: an OGSA service may allow access
to a certain resource based on some role-based-access con-
trol and in addition may want to check the number of re-
sources the user is currently using before granting access.
Such policies and authorization decisions would be typi-
cally available from different services. Thus there may be
multiple Authorization and Policy Manager services that
may be connected together before a final decision is com-
puted and enforced.

3.2. ServiceData and Notifications

We use the service data and notification mechanisms
available with OGSI to implement synchronization between
the PolicyManagerService and AuthorizationService. The
PolicyManagerService maintains service data that is used
to reflect any changes made to the policy to all its sub-
scribers. When an application service registers itself with
the AuthorizationService, the service subscribes to notifi-
cations on policy updates of this service. The first time a
checkAuthorization call is made, the AuthorizationService
would fetch the policy files from the PolicyManagerService
and maintain it locally. Thereafter for all policy checks the
local copy of the policy will be used. When there is a policy
update, the PolicyManagerService notifies the Authoriza-
tionService of the change. The AuthorizationService then
invalidates its local copy. Thus on the next call to checkAu-
thorization a fresh copy of the policy will be obtained. The
performance of the system is thus improved since the Au-
thorizationService does not need to get the policy files from
the PolicyManager each time.

3.3. PolicyRepresentation

The policy used by the security services is constructed
using the XACML syntax (Figure ??). The same policy
syntax can be used to specify policy for various elements of
the system that need to have restricted access. We use the
Grid Service Handle (GSH) of the service instance as the
Resourceld in the policy. This helps us uniquely identify
the service instances across the entire service domain. The
notion of sameness of service instances as mentioned in the
OGSI specifications holds here. If an implementation of a
service instance is distributed or replicated across many ma-
chines for scalability, all of them may be identified by the
same GSH. In this case, it would be desired that the policy

<?ml version="1.0" encoding="UTF8"'?>

<Policy Policyld="Policy" RuleCombiningAlgld="urn:0asis:names:tc:xacml:1.0:rule-combining-algorithm
first-applicable">

<Target>

<Subjects><AnySubject/></Subjects>

<Resources><Resource><ResourceMatch Matchl d="urn:oasis:names:tc:xacml: 1.0:function:string-equal ">
<AttributeValue DataType="http://www.w3.0rg/2001/X ML Schemagistring">GSH of the service</AttributeValue>
<ResourceAttributeDesignator DataType="http://www.w3.0rg/2001/X ML Schematstring" Attributeld="urn:oa
sisnames:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch></Resource></Resources>

<Actions><AnyAction/></Actions>

<[Target>

<Rule Ruleld="AccessRuleForOperationName" Effect="Permit">
<Target><Subjects><AnySubject/></Subjects>

<Resources><AnyResource/></Resources>

<Actions><Action>

<ActionMatch Matchld="urn:oasis:names:tc:xacml: 1.0:function:string-equal">

<AttributeValue DataType="http://mww.w3.0rg/2001/X ML Schemastring">Oper ationName</AttributeVa ue>
<ActionAttributeDesignator DataType="http://www.w3.0rg/200/X ML Schematistring" Attributel d="MethodNa
me'/>

</ActionMatch>

</Action></Actions>

<[Target>

<Condition Functionld="urn:oasis:names:tc:xacml:1.0:function:or">
<Apply Functionld="urn:oasis:names:tc:xacml: 1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.0rg/2001/X ML Schemagstring">Distinguished Name of trusted client</AttributeValue>

<Apply Functionld="urn:0asis:names:tc:xacml: 1.0:function:string-one-and-only">
<EnvironmentAttributeDesignator DataType="http://www.w3.0rg/200/X ML Schematstring" Attributeld="DN"
><IApply></Apply>

</Condition>

<Rule>
<RuleRuleld="FinaRule" Effect="Deny"/>
</Policy>

Figure 3. Sample Policy

associated with these instances are the same, maintaining
the uniqueness property. Thus we see that the uniqueness
of the GSH for policy representation would hold in this sit-
uation.

After the intial header section identifying the service, we
see that access rules for each of the elements to be restricted
can be specified. The OperationName in case of method ac-
cess or ServiceDatald incase of service data can be specified
in the Action section. With each action a set of identities is
associated that is the set of authorized users allowed to per-
form that action.

4. Implementation

The prototype implementation of the PolicyManagerSer-
vice and AuthorizationService is implemented using the
Globus toolkit 3.0. We use SUN’s open-source XACML
implementation to implement the Policy Decision Point.

4.1. Interfaces

The current interfaces of the PolicyManagerService and
AutharizationService are shown in the tables. We anticipate
that in the future one or more of these interfaces are likely to
get standardized. They are also likely to change depending
on the needs of the applications.

4.2. Policy Representation

We use XML Access Control Markup Language
(XACML) for representing the policy associated with the
services. XACML is an XML based policy language or
schema designed to be able to specify policies to use to
control access to applications. The access-control policy
language of XACML lets users specify the rules about who
can do what and when.

The policy entered at service and portType levels gets
translated to equivalent method level in this early imple-
mentation. The policy is represented as a list of Distin-
guished Names from X.509 certificates that are allowed to
access the method. It is expected that in later versions other
features of XACML like the ability to specify time con-
straints on the policy will also be used. The GSH of the
service is used as a unique identifier to associate a service-
instance to a policy.

4.3. Policy Decision Point

XACML also provides a request/response language. The
request schema is used by applications to present an XML
request for access. The corresponding response for the
request is also defined as part of the XACML language.
At the Policy Decision Point ie the AuthorizationService
the request for checking authorization is translated into
the XACML request format and passed onto an embed-
ded XACML Decision Point alongwith the associated pol-
icy files. The result of the response in XACML language
is translated as a boolean representing whether the request
access should be granted or denied.

5. Future Directions

We would like to extend the policy representation and
management interface to be able to specify other constraints
like time conditions.

Performance measurements of the calls to the Policy-
ManagerService and the AuthorizationService will be re-
quired to identify how the system could be improved.

We would like to experiment with various combinations
of running the AuthorizationService and the PolicyMan-
agerService to understand additional issues that may arise
while linking multiple instances of these services.

6. Conclusions

This paper shows how the PolicyManagerService and
AuthorizationService could be used to manage and enforce
policy decisions for OGSA services. Separation of duty
between the policy management and decision points helps

Table 1. PolicyManagerService interface

Operation Name

Input Message

Output Message

generatePolicy

serviceld - xsd:string, Representation of service WSDL in a
custom data structure, Representation of entered ACL in cus-
tom data structure

Success - xsd:boolean

updatePolicy

serviceld - xsd:string, Representation of service WSDL in a
custom data structure, Representation of entered ACL in cus-

Success - xsd:boolean

tom data structure

getGridmap serviceld xsd:String

gridmapFilePath xsd:string

getACL serviceld xsd:String

policyFilePath[] xsd:string

Table 2. AuthorizationService interface

Operation Name Input Message

Output Message

register policyManagerHandle - xsd:string

checkAuthorization

eration being accessed

Representation of context containing client’s Id, service and op-

authorizedValue - xsd:boolean

build a flexible and scalable architecture. With the help
of notification of service-data the policy updates are trans-
ferred throughout the system.

The policy can be enforced at various points in the
OGSA application services - at portType, the method or
service-data level, etc. Using the XACML policy schema
the policy is represented to say who (DN from an X.509
certificates) can access what (operation or action).

7. Acknowledgements

The author would like to thank Sousan Karimi, Kevin
Gamiel, Jeremiah Morris and Travis Walsh for discussions
on the security requirements and testing out early versions
of the services.

References

[1] 1. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Service Architecture for
Distributed Systems Integration. Open Grid Services Archi-
tecture WG, Global Grid Forum, 2.9(Draft), June 2002.

[2] N.Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist,
V. Welch, |. Foster, and S. Tuecke. The Security Architecture
for Open Grid Services. Open Grid Services Security Archi-
tecture WG, Global Grid Forum, 2.9(Draft Version 1), July
2002.

[3] S. Tueke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kessdlman, T. Maquire, T. Sandholm, D. Snelling, and
P. Vanderbilt. Open Grid Services Infrastructure(OGSI) Ver-
sion 1.0. Global Grid Forum GFD-R-P.15(Proposed Recom-
mendation).

[4] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cza
jkowski, J. Gawor, C. Kesselman, and S. Meder. Security for
Grid Services. Twelfth International Symposium on High Per-
formance Distributed Computing (HPDC-12), |EEE Press,
June 2003.

