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What is Pro64?

A suite of optimizing compiler tools for Linux/
Intel IA-64 systems

C, C++ and Fortran90/95 compilers

Conforming to the IA-64 Linux ABI and API
standards

Open to all researchers/developers in the
community

Compatible with HP Native User Environment
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Who Might Want to Use Pro64?

* Researchers : test new compiler
analysis and optimization algorithms

* Developers : retarget to another
architecture/system

» Educators : a compiler teaching
platform
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Outline

Background and Motivation

Part I: An overview of the SGI Pro64 compiler
infrastructure

Part II: The Pro64 code generator design

Part I1I: Using Pro64 in compiler research &
development

SGI Pro64 support

Summary
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PART I:
Overview of the
Pro64 Compiler




Outline

Logical compilation model and component
flow

WHIRL Intermediate Representation
Inter-Procedural Analysis (IPA)

Loop Nest Optimizer (LNO) and
Parallelization

Global optimization (WOPT)
Feedback

Design for debugability and testability
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Logical Compilation Model

driver
(sgicc/sgif90/sgiCC)

front end + IPA linker
(gfec/gfecc/mfef90) (1d)
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Components of Pro64

Front end

{

Interprocedural Analysis and Optimization

{

Loop Nest Optimization and Parallelization

{

Global Optimization
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Data Flow Relationship
Between Modules

Very high WHIRL !
== High WHIRL
=5 Mid WHIRL

== Low WHIRL




Front Ends

* C front end based on gcc
e C++ front end based on g++

* Fortran90/95 front end from MIPSpro
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Intermediate Representation

IR 1s called WHIRL
Tree structured, with references to symbol table
Maps used for local or sparse annotation
Common interface between components
Multiple languages, multiple targets
Same IR, 5 levels of representation
Continuous lowering during compilation

Optimization strategy tied to level
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IPA Main Stage
Analysis

— alias analysis
— array section
— code layout

Optimization (fully integrated)
— 1nlining
— cloning
— dead function and variable elimination
— constant propagation
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IPA Design Features

* User transparent
— No makefile changes
— Handles DSOs, unanalyzed objects

* Provide info (e.g. alias analysis,
procedure properties) smoothly to:
— loop nest optimizer
— main optimizer

— code generator
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Loop Nest Optimizer/Parallelizer

All languages (including OpenMP)

Loop level dependence analysis
Uniprocessor loop level transformations
Automatic parallelization
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Loop Level Transtformations

» Based on unified cost model
» Heuristics integrated with software pipelining
* Loop vector dependency info passed to CG

— Loop Fission

. — Loop Peeling
Loop Fusion N
— Loop Tiling
Loop e . Vector Data Prefetching

Loop Interchange
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Parallelization

* Automatic
Array privatization
Doacross parallelization
Array section analysis

* Directive based
OpenMP

Integrated with automatic methods
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Global Optimization Phase

SSA is unifying technology

Use only SSA as program representation

All traditional global optimizations implemented
Every optimization preserves SSA form

Can reapply each optimization as needed
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Pro64 Extensions to SSA

Representing aliases and indirect memory
operations (Chow et al, CC 96)

Integrated partial redundancy elimination
(Chow et al, PLDI 97; Kennedy et al, CC 98, TOPLAS 99)

Support for speculative code motion

Register promotion via load and store
placement (Lo et al, PLDI 98)
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Feedback

Used throughout the compiler
Instrumentation can be added at any stage

Explicit instrumentation data incorporated where
inserted

Instrumentation data maintained and checked for
consistency through program transformations.
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Design for Debugability (DFD)
and Testability (DFT)

 DFD and DFT built-in from start
* (Can build with extra validity checks
* Simple option specification used to:

— Substitute components known to be good

— Enable/disable full components or specific
optimizations

— Invoke alternative heuristics

— Trace individual phases
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Where to Obtain Pro64
Compiler and its Support

e SGI Source download

http://0ss.sg1.com/projects/Pro64/

* University of Delaware Pro64 Support
Group

http://www.capsl.udel.edu/~pro64
pro64(@capsl.udel.edu
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