The SGI Pro64

Compiler Infrastructure
- A Tutorial

Guang R. Gao U ofDelaware) J. Dehnert (sc

J. N. Amaral U of Alberta) R. Towle (san




Acknowledgement

The SGI Compiler Development Teams
— The MIPSpro/Pro64 Development Team

University of Delaware
— CAPSL Compiler Team

These individuals contributed directly to this tutorial

A. Douillet wde F. Chow (Equator)
S. Chan (Intel) W. Ho (Routefiee)
Z. Hu (Udel) K. Lesniak (SGI)
S. Liu (HP) R. Lo (Routefree)

S. Mantripragada (SGI) C. Murthy (SGI)
M. Murphy (SGI) G. Pirocanac (SGI)
D. Stephenson (SGI) D. Whitney (SGI)
H. Yang (Udel)

/Gao/Pro64-Intro




What is Pro64?

A suite of optimizing compiler tools for Linux/
Intel IA-64 systems

C, C++ and Fortran90/95 compilers

Conforming to the IA-64 Linux ABI and API
standards

Open to all researchers/developers in the
community

Compatible with HP Native User Environment

/Gao/Pro64-Intro




Who Might Want to Use Pro64?

* Researchers : test new compiler
analysis and optimization algorithms

* Developers : retarget to another
architecture/system

» Educators : a compiler teaching
platform

/Gao/Pro64-Intro




Outline

Background and Motivation

Part I: An overview of the SGI Pro64 compiler
infrastructure

Part II: The Pro64 code generator design

Part I1I: Using Pro64 in compiler research &
development

SGI Pro64 support

Summary

/Gao/Pro64-Intro




PART I:
Overview of the
Pro64 Compiler




Outline

Logical compilation model and component
flow

WHIRL Intermediate Representation
Inter-Procedural Analysis (IPA)

Loop Nest Optimizer (LNO) and
Parallelization

Global optimization (WOPT)
Feedback

Design for debugability and testability

/Gao/Pro64-Intro




Logical Compilation Model

driver
(sgicc/sgif90/sgiCC)

front end + IPA linker
(gfec/gfecc/mfef90) (1d)

(e G @) aww

) Data Path Fork and Exec

/Gao/Pro64-Intro




Components of Pro64

Front end

{

Interprocedural Analysis and Optimization

{

Loop Nest Optimization and Parallelization

{

Global Optimization

/Gao/Pro64-Intro




Data Flow Relationship
Between Modules

Very high WHIRL !
== High WHIRL
=5 Mid WHIRL

== Low WHIRL




Front Ends

* C front end based on gcc
e C++ front end based on g++

* Fortran90/95 front end from MIPSpro

/Gao/Pro64-Intro




Intermediate Representation

IR 1s called WHIRL
Tree structured, with references to symbol table
Maps used for local or sparse annotation
Common interface between components
Multiple languages, multiple targets
Same IR, 5 levels of representation
Continuous lowering during compilation

Optimization strategy tied to level

/Gao/Pro64-Intro




IPA Main Stage
Analysis

— alias analysis
— array section
— code layout

Optimization (fully integrated)
— 1nlining
— cloning
— dead function and variable elimination
— constant propagation

/Gao/Pro64-Intro




IPA Design Features

* User transparent
— No makefile changes
— Handles DSOs, unanalyzed objects

* Provide info (e.g. alias analysis,
procedure properties) smoothly to:
— loop nest optimizer
— main optimizer

— code generator

/Gao/Pro64-Intro




Loop Nest Optimizer/Parallelizer

All languages (including OpenMP)

Loop level dependence analysis
Uniprocessor loop level transformations
Automatic parallelization

/Gao/Pro64-Intro




Loop Level Transtformations

» Based on unified cost model
» Heuristics integrated with software pipelining
* Loop vector dependency info passed to CG

— Loop Fission

. — Loop Peeling
Loop Fusion N
— Loop Tiling
Loop e . Vector Data Prefetching

Loop Interchange

/Gao/Pro64-Intro




Parallelization

* Automatic
Array privatization
Doacross parallelization
Array section analysis

* Directive based
OpenMP

Integrated with automatic methods

/Gao/Pro64-Intro




Global Optimization Phase

SSA is unifying technology

Use only SSA as program representation

All traditional global optimizations implemented
Every optimization preserves SSA form

Can reapply each optimization as needed

/Gao/Pro64-Intro




Pro64 Extensions to SSA

Representing aliases and indirect memory
operations (Chow et al, CC 96)

Integrated partial redundancy elimination
(Chow et al, PLDI 97; Kennedy et al, CC 98, TOPLAS 99)

Support for speculative code motion

Register promotion via load and store
placement (Lo et al, PLDI 98)

/Gao/Pro64-Intro




Feedback

Used throughout the compiler
Instrumentation can be added at any stage

Explicit instrumentation data incorporated where
inserted

Instrumentation data maintained and checked for
consistency through program transformations.

/Gao/Pro64-Intro




Design for Debugability (DFD)
and Testability (DFT)

 DFD and DFT built-in from start
* (Can build with extra validity checks
* Simple option specification used to:

— Substitute components known to be good

— Enable/disable full components or specific
optimizations

— Invoke alternative heuristics

— Trace individual phases

/Gao/Pro64-Intro




Where to Obtain Pro64
Compiler and its Support

e SGI Source download

http://0ss.sg1.com/projects/Pro64/

* University of Delaware Pro64 Support
Group

http://www.capsl.udel.edu/~pro64
pro64(@capsl.udel.edu

/Gao/Pro64-Intro




