Efficiency Analysis

(L a () s (O
N N

«Q
&~
2 .04 A

by Richard Frost

Draft date January 14, 2001

This text is under development by Richard Frost at San Diego State Uni-
versity. Questions and comments should be addressed to:

Richard Frost
Mathematical Sciences
San Diego State University
5500 Campanile Drive

San Diego, CA 92182
frostr@sdsu.edu

COPYRIGHT 2001 Richard Frost; San Diego, California, USA referred to herein as ”the
author”. License is not granted for commercial resale, in whole or in part, without prior
written permission from the authors.

The information contained in these documents is provided “AS IS” without express or
implied warranty of any kind. The authors and their firms, institutes or employers dis-
claim all warranties with regard to these documents, including all implied warranties of
merchantability and fitness; in no event shall the authors and their firms, institutes or
employers be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use or per-
formance of information contained herein.

ii

Preface

Representation of and operations on basic data structures. Arrays, linked
lists, stacks, queues, orthogonal lists, trees; recursion; graphs; hash tables;
dynamic storage management and garbage collection.

Columni Column2
X A
y ¢

iii

Contents

Preface

1 Definitions

2 Using the Definitions in the Left Direction
3 Examples

4 Analyzing Efficiencies

Acknowledgements

Bibliography

iii

13

14

Chapter 1

Definitions

there exists g(n), no > 0, ¢ > 0 such that
T(n) < cg(n) for all n > ny

there ezxists g(n), ng > 0, ¢ > 0 such that
T(n) > cg(n) for all n > ng

T(n) = O(g(n)) and T(n) = Q(g(n))

there exists g(n), ng > 0, ¢ > 0 such that
T(n) < cg(n) for all n > ng

there exists g(n), ng >0, ¢ > 0 such that
T(n) > cg(n) for all n > ny

Chapter 2

Using the Definitions in the
Left Direction

1. Suppose you have some T'(n), for example T'(n) = 3n? — n which you
know is less than or equal to 3n? for all n > 0 [GAJ86]. Using the definition
of O() in the < direction, we have g(n) = n?, ¢ = 3, and ny = 0 so that

T(n) = O(n?).

2. Suppose you have another T'(n), for example T'(n) = 5n-logn + 42 which
you know is less than or equal to 5n-logn for all n > 0. Using the definition
of ©() in the <« direction, we have g(n) = n-logn, ¢ = 5, and ng = 0 so that
T(n) = Q(n-logn).

nd

3. Suppose you have a third T'(n) which you know is in both O(n) a
) = 6(n).

Q(n). Using the definition of ©() in the < direction, we have T'(n

Chapter 3

Examples

1. Show that
T(n) = 8n?—3n+5 is in Qn?)

Proof [Knu81]:
We are given g(n) = n? but we need to find a ¢ and ng. Notice that

8n2—3n+5 > 7-n? for all n > 1.
This means that if we let

c=7and ng=0

we have
T(n) = Q(n?)
2. Show that
T(n) = 8n*—3n+5is in O(n?)
Proof:

Again we are given g(n) = n? but we need to find a c and ng. Experimenting
a little (try plotting) it turns out that

8n? —3n+5 < 9n? for all n > 1.
This means that if we let

c=9and ng=0

5

we have

3. Show that
T(n) = 8n®—3n+5 is in O(n?)

From our work above:

4. Show that
T(n) = a-3" +bn3+t with a >0 is in O(3")

Proof:
We are given g(n) = 3" but as usual we need to find a ¢ and ny. We have
to worry about whether or not b and ¢ are positive or negative. Notice that

bnd < |b]-n® < |b|-3"

and
t <l|t| < [t-3"

so that
a3 +bnd+t < a3"+|b]-3" +|t[-3" = (a+|b| + |t|)-3" for all n >0
This means that if we let
c = (a+1[b|+t]) and ng =0

we have
T(n) = O(3")

5. Show that
T(n) = a3" +bn®+t with a > 0 is in Q3")

6

Proof:

We are given g(n) = 3" and we need to find a ¢ and ng for this case. We
again have to worry about whether or not b and ¢ are positive or negative.
Let’s try to find c. We require:

a3"+bnP+t > ¢3" >0

n? t
= a—l—b-3—n—|—— > ¢ > 0forn>0

Consider this last expression in two extreme cases: when b and ¢ are both
negative and when b and ¢ are both positive. For n = 1 in the first case
(both negative) this formula reduces to:

a— [b] — [t

This value might be positive or negative.
For n =1 in the second case (both positive) this formula will produce:

a+ |b| + |t
This value is positive.

Since the terms involving b and ¢ will grow very small as n grows large, we
have:

3
) t

a— bl —|t] < a—l—b-3—n—|—3—n < a+ b+ [t]| for all n >0
We are looking for a ¢ > 0 that is less than or equal to the expression (in
the middle) for all n above some ng to be determined. Notice that

3
. n t
nli)ngoa—l—b-?)—n—i-?)—n = a

If b and ¢ are both positive, then the expression in the limit is greater than
a for all finite n. If b and ¢ are both negative, then the limit approaches a
from the left on the number line. More importantly, there must be an ng
such that the expression in the limit exceeds any positive fraction of a. So
let’s choose ¢ to be some positive fraction of a, say a/2, and choose our ny
to be the first value of n such that the expression is greater or equal to c:

=c >0

)
+
SH

|
+
|

Nje

p Lt
= a+ '3—n‘|‘—

an 2 = ¢ >0 for all n>ng

e
|

=>a3"+bnd+t > 23" = 3" > 0 for all n > ng

So finally,

Chapter 4

Analyzing Efficiencies

1. Suppose you work as the IT manager at an accounting firm. Suppose
that the nightly accounting runs are composed of processing n client data
files. You've been evaluating the run times of accounting runs on your old
hardware and some new hardware. You’ve found:

Old machine : T(n) = 5n

New machine : T(n) = 2n

It’s great that the new machine takes less time to finish the processing
than the old machine. However, this just means that the night operators
are left with nothing to do for part of their shift. Instead, you’d like to
either save money by cutting back on the operator labor hours or (better)
do more processing in the same amount of time and increase the corporate
profits [Tér88]. Let’s look at the latter scenario.

What we’d like to do is: given that n data files took 5-n time to process on
the old machine, how many m files can we process in the same amount of
time on the new machine? We need:

Right away we get

The new machine can handle 2.5 the workload of the old machine.

2. Suppose you are evaluating a data processing task on two machines. The
task is known to be ©(n?). You want to know how much work load (in
terms of n) you can put on machine 2 so that it takes the same amount of
time as machine 1. You’ve found:

machine #1 : T(14000) = 3 hours

machine #2: T(14000) = 2 hours

Since the task is ©(n?), we know that T'(n) ~ c-n? for some constant c. We
want to find the appropriate load m for machine 2 in terms of the n used
for machine 1:

c1-14000° 3
c2-140002 2
a _ 3
Co N 2
cl-n2 = Cz-m2
= c—l-n2 = m?
C2

3. Suppose you are evaluating a data processing task on two machines. The
task is O(n3) on machine 1, but because of new hardware features is O(n?)
on machine 2. You want to know how much work load (in terms of n) you
can put on machine 2 so that it takes the same amount of time as machine
1. You’ve found:

machine #1 : T(10000) = 6 hours

machine #2: T(10000) = 1 hour

10

We want to find the appropriate load m for machine 2 in terms of the n used
for machine 1. Since the T'(n) functions are different on the two machines,
we have to compute the constants separately:

¢1-10000° = 6
= ¢ = 610712

2100002 = 1

= ¢ = 1078
cl-n?’ = C2'm2
C1

= —n® = m?
C2

= m = Vn?610-"

In the case of n = 10000, m = 10000-v/6 ~ 24500.
For the case of n = 100, m = V/6-10% = 775.

11

12

Acknowledgements

Special thanks to ...

13

14

Bibliography

[GAJ86] G-Animal’s Journal, 41(7), July 1986. The entire issue is devoted
to gnats and gnus (this entry is a cross-referenced ARTICLE (jour-
nal)).

[Knu81] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The
Art of Computer Programming. Addison-Wesley, Reading, Mas-
sachusetts, second edition, 10 January 1981. This is a full BOOK
entry.

[Tér88] Tom Térrific. An O(nlogn/loglogn) sorting algorithm. Wishful
Research Result 7, Fanstord University, Computer Science Depart-
ment, Fanstord, California, October 1988. This is a full TECHRE-
PORT entry.

15

Index

compute, 11

ortho, iii
orthogonal, iii

profits, 9
Proof, 5-7

recursion, iii

16

