Open Research Compiler (ORC) for
Iltanium™ Processor Family

Presenters:

Roy Ju (MRL, Intel Labs)
Sun Chan (MRL, Intel Labs)
Chengyong Wu (ICT, CAS)

Ruiqgi Lian (ICT, CAS)
Tony Tuo (MRL, Intel Labs)

Micro-34 Tutorial
December 1, 2001

1 ORC Tutoria

@

Agenda

e Qverview of ORC

* New Infrastructure Features
7 Region-based compilation
2 Rich support for profiling
* New IPF* Optimizations
72 Predication and analysis
2 Control and data speculation

2 Global instruction scheduling
72 Parameterized machine model

* Research Case Study

72 Resource management during scheduling

e Demo of ORC
* Reease and Future Plans

* |PF for Itanium Processor Family in this presentation

2

ORC Tutoria

Overview of ORC

3 ORC Tutoria

7,
Objectives of ORC

* To provide aleading open source |PF (1A-64)
compiler infrastructure to the compiler and
architecture research community

72 To encourage compiler and architecture research

2 To minimize the resource investments for university
groups

2 Performance better than existing | PF open source
compilers

2 Fair comparison on a common infrastructure

4 ORC Tutoria

G
Requirements for ORC

* Robustness
2 solid research compiler infrastructure
* Timing of availability
72 to enableresearch in early | PF systems
* Flexibility
2 modularity and clean interface to facilitate prototyping novel
Ideas
* Performance

2 leading performance among | PF open source compilers

2 sufficiently high to make research results from this compiler
trustworthy

5 ORC Tutoria

— G
What’s in ORC?

* C/C++ and Fortran compilers targeting | PF
* After evaluation, chose to base on the Pro64 open source
compiler from SGl
7 Retargeted from the MI1PSpro product compiler
2 Mostly meet our requirements
2 open64. sour cef or ge. net
* Magjor components:
2 Front-ends: C/C++ FE and F90 FE
2 Interprocedural analysis and optimizations
2 Loop-nest optimizations
2 Scalar global optimizations
2 Code generation

®* OntheLinux platform

6 ORC Tutoria

7,
BE Components Inherited from Pro64

* Inter-procedural analysis and optimizations (1PA)
2 mod/ref summary, aliasing analysis, array section analysis, call
tree, inlining, dead function elimination, ...
* Loop-nest optimizations (LNO)
2 Locality opt., parallelization, loop distribution, unimodular
transformations, array privatization, OpenMP, ...

* Scalar global optimizations (WOPT)

2 SSA-based partial redundancy elimination, induction variable
recognition, strength reduction, Id/st-PRE, copy propagation, ...

* A Pro64 tutorial by Gao, Amaral, Dehnert at PACT 2000

2 http://ww. cs. ual berta. ca/ ~amaral / Pro64/i nd
ex. ht m

A list of publications from MI1PSpro posted by SGI.

7 ORC Tutoria

G
Intermediate Representations (IR)

* WHIRL.:
2 AST-based IR
2 To communicate anong IPA, LNO, WOPT, and CG
2 Well documented and released by SGI
* Symbol table:
72 Document also released by SGI
* CGIR:
7 Register-based IR used in CG

8 ORC Tutoria

G

Flow of IR

C Java Fa0
C++||Bcode || F77

Ll b rrontenss

VHO Very High
standalone inliner WHIRL Lower aggregates

Un-nest calls

IPA Lower COMMAs, RCOMMAs

PREOPT High WHIRL Lower ARRAY's

LNO \ Lower Complex Numbers
Lower high level control flow
Lower 1O
Lower bit-fields
Spawn"mi-:-stecj procedures for

WOPT] parallel regions

Mid WHIRL

RVI1 Lower intrinsics to calls
Generate simulation code for quads
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants and addresses
Expose Sagp fmlr -Er;gred ;
xpose static lin r neste
RU'E Low WHIRL prﬂcedures
CG Very low WHIRL
\1' Code Generation
cG CGIR

9 ORC Tutoria

— G
What’s new 1n ORC?

* A largely redesigned CG
* Research infrastructure features:

72 Region-based compilation

2 Rich profiling support

72 Parameterized machine descriptions
* |PF optimizations:

2 If-conversion and predicate analysis

2 Control and data speculation with recovery code
generation

2 Global instruction scheduling with resource management
* More beyond thefirst release

10 ORC Tutorid

Major Phase Ordering in CG

(flexible profiling points)

11 ORC Tutoria

7,
Perspective Research Usage of ORC

* Performance-driven optimizations in all components

* Co-design of compilers and architecture for new
hardware features

* Thread-level parallelism

* Retarget to emerging languages (e.g. CLI, Java, ...)
* Power management

* Type safety under optimizations

* Optimizations for memory hierarchy

* Program analysis

* Co-design of static and dynamic compilation

12 ORC Tutorid

G
The ORC Project

* |nitiated by Intel Microprocessor Research Labs (MRL)

* Joint efforts among
72 Programming Systems Lab, MRL

72 Ingtitute of Computing Technology, Chinese Academy of
Sciences

72 Intel China Research Center, MRL
* Development efforts started in Q4 2000
* Development team: 10 — 15 people
* First release scheduled for Jan 2002

13 ORC Tutorid

G

* Overview of ORC

* New Infrastructure Features
* New |PF Optimizations

* Research Case Study

* Demo of ORC

* Release and Future Plans

14 ORC Tutorid

Region-based Compilation

15 ORC Tutoria

G
Region-based Compilation

* Motivations.
72 To form a scope for optimizations
2 To control compilation time and space
* What'saregion?
7 Nodes: basic blocks
72 Edges: control flow transfer
2 Acyclic
* | oops impose region boundary
* Exception: irreducible regions
2 (Currently) single-entry-multiple-exit
72 Regions under hierarchical relations

* Regions could be nested within regions

16 ORC Tutorid

7,
Features of Region-based Compilation

* Region structure can be constructed and deleted at different
optimization phases
2 Incremental update also supported
* Optimization-guiding attributes at each region, e.g.
72 No further optimizations, e.g. swp'ed regions
2 No optimization across region boundary

72 These attributes need to be preserved if region structureis
rebuilt

* Region formation algorithm decoupled from the region
structure

2 Can construct and support different types of regions
* Basic blocks, superblock/hyperblock, treegion, etc. are special
cases of SEME regions

17 ORC Tutorid

G
Region-based Compilation

e Utility and support:
2 |terators to traverse regions
2 Each region marked with its attributes
72 Regional CFG
2 Incremental update due to CFG changes
2 Validation of regions

* Region formation takes into account:
2 Size

2 Shape and topology

2 Exit probability

2 Tail duplication and duplication ratio

18 ORC Tutorid

7,
Region-based Compilation

* Current ORC implementation
72 Region structure constructed right before if-conversion
72 Preserved till after global instruction scheduling
72 Phases working under regions
* The maority of CG phases

* |f-conversion, predicate analysis, |oop optimizations,
Instruction scheduling, speculation w/ recovery code
gen, EBO, CFLOW, etc.

* Noticeable exception: register alocation (GRA)
2 Different from the incomplete region work in Pro64

19 ORC Tutorid

7,
Outline of Region Formation

* Forminterval regions

Form MEME regions

72 Find a seed with the highest frequency

2 Extend to form a hot path and then an MEME region

Form SEME regions from each MEME region

SEME Region Formation

1. For node x whose exit probability > threshold, add x to candidate exits

2. For every candidate exit, traverse backward to form a candidate set mv

Try the candidate exit y with the largest size of m’

If m" isaready SEME, done

5. If m' has side entries, select nodes to cut and compute the duplication
ratio

6. If theratio iswithin the budget, tail duplicate to trimm’ and done

7. If theratio is beyond the budget, remove y from the candidate exits and
go back to step 3

> W

20 ORC Tutorid

G

Example of Region Hierarchy

<
e
27
(=7 p
I.. ..l
) b |
| fan
T
A

21 ORC Tutoria

G

Example of Region Hierarchy (cont.)

1

(3.
3] &

Region Tree

(hierarchical relation)

CH >

22

ﬁg"\
pV4

Regional CFG of Region 3

ORC Tutoria

7,
Usage of Region-based Compilation

* Current usage
2 Forming profitable optimization scopes

* For global instruction scheduling and if-
conversion

2 Controlling compilation time and space

* Perspective research usage
72 Regions as optimization boundary

2 Optimization-guiding attributes to propagate info from an
opt. phase to alater one

2 E.g. to support the multi-threading regions partitioned by
compilers

2 Comparing optimizations under different shapes of regions

23 ORC Tutorid

Rich Support for Profiling

24 ORC Tutoria

— G
Profiling Support in Pro64

* Pro64 user model:
2 Edge profiling for execution frequency
2 Instrumentation and feedback annotation at same point of
compilation phase
2 Congistent optimization levels to ensure the same inputs at both
Instrumentation and annotation

2 Later phases maintain feedback correctness through propagation
and verification

2 Instrumentation right after FE

Usage:
-fb_create directory-path
-fb_opt directory-path

25 ORC Tutorid

T

Profiling Support in ORC

* Edge profiling, value profiling, and beyond
* Variousinstrumentation pointsin CG

* Same user moddl as Pro64

* Co-exist with the Pro64’ s profiling model

* Optimizations after feedback point update and verify
feedback correctness

* QOr start anew instrumentation/annotation point to
avold update

26 ORC Tutorid

G

ORC Profiling In CG

Usage, backward compatible with Pro64:
* -fb create dir-path { -fb phasen} {-fb type m}
* -fb opt dir-path { -fb phasen} {-fb typem}

2 where n is instrumentation point.
* Pro64 model
® beginning of cg
* after if-conversionin cg

27 ORC Tutorid

T

Value Profiling

* Profiling the values of instruction operands

* |mportant tool for limit study or to collect program
statistics

* Based on Calder, Feller, Eustace, “Vaue Profiling”,
Micro-30

* Top valuetablesin feedback file

* Current usage

2 Profiling target values of loads at the beginning of
CG

2 Profiling values for selective loads at a later phase

28 ORC Tutorid

T

Extend to Other Profiling

* Feedback format
2 Flexible to extend
2 Simple to maintain backward compatibility
7 Same format for every phase
* Feedback at different phases go to different feedback
files— ssmple scheme to deal with various profiles
* Perspective research usage

2 Extend to memory profiling, data profiling, return
value profiling, ...

2 Collect program statistics

29 ORC Tutorid

Feedback format

fb_typeinfo

|loop(#, s2) ‘ ‘ call (#,52)
loopl fb i nfo‘ ‘ loopn fb_info
edge 1fb info | ... ledgen fb_info

Pu_names

30

fb_header

pu_headers

pu fb tables

string table...

ORC Tutoria

G

* Overview of ORC

* New Infrastructure Features
* New | PF Optimizations

* Research Case Study

* Demo of ORC

* Release and Future Plans

31 ORC Tutorid

If-conversion and Predicate Analysis

32 ORC Tutoria

7,
Architecture Support of Predication

* Predicateregisters
72 64 predicate registers(prl6-pr63 rotating registers)
7 Predicate register transfers:
®*movpr=../mov...=pr/movprrot=/... ...
* Conditional execution

2 Qualifying predicate: to decide if the guarded instructions
modify architectural state

* Compare instructions
2 Normal compare
2 Unconditional compare
2 Parallel compare: and, or, and/orcm, or/andcm

33 ORC Tutorid

7,
Compilation Support of Predication

* |f-conversion

2 Converts control flow (branches eliminated) to predicated
Instructions

72 Generates parallel compare instructions
2 Invoked after region formation and before loop optimization
72 Replaces the hyperblock formation in Pro64

* Predicate analysis
2 Analyze relations among predicates and control flow
2 Relations stored in Predicate Relation Database (PRDB)
2 Interface provided to query PRDB

2 PRDB can be deleted and recomputed as wish without
affecting correctness

34 ORC Tutorid

—dr L7y
If-conversion

* Simple and effective framework

2 Stepl: select candidates
* Checking adjacent nodes to match one of three types

l l l

A
l AN AN i -

serial if-then If-then-else . A
VAN

* |terative detection within aregion
2 Step2: convert selected candidates

to predicated code

35 ORC Tutorid

— G
Generation of Parallel Compare

* Part of the if-conversion phase
2 Stepl: profitability checking
* Current heuristics to detect ssimple patterns
2 Step2: inserting parallel compare instructions

PY if (b && c>d && e>f)
Example o
else 1.a>b
s2, /
/ 2:.c>d
p.q=1 e
cmp. gt. and. orcm p,q=ab 3eof
cmp.gt.and.orcmp,g=c,d &
cmp.gt.and.orcm p,g = ef
(p) sl - .
(Q) 2 4:s1 5:82

36 ORC Tutorid

—dr Ly
Features of If-conversion

* Effective and extensible cost model
2 Taking into account
* critical path length
® resource usage
* pbranch mis-prediction rate (approx.) and penalty
* number of instructions

2 Separate legality and profitability checking
* Easy to tune and extend the cost model
* Utilize parallel compare instructions
* Clean interface

2 Feasible to change the phase ordering or replace with
a new implementation

37 ORC Tutorid

T

Features of Predicate Analysis

* Analyze predicate relations among both control flow and
explicit predicates
* Query interface to PRDB: digoint, subset/superset,
complementary, sum, difference, probability, ...
2 Currently used during the construction of dependence DAG

* PRDB can be incrementally updated or deleted/re-computed
at any phase

* Relations tracked using the well-known predicate partition
graph but the analysis not assuming SSA form

* No coupling between the if-conversion and predicate analysis
2 Can replace just one of them if wish

38 ORC Tutorid

i

Predicate Partition Graph

* Partition generated by normal compare type

ap
¥\

pl p2

(qp) pl, p2 = cmp.unc <condition>

* Partitions generated by parallel compares

g
qp/ Poid 1= K
K ' Puse E
f\x p
Puse dummy ¢
P dummy
(Qp) p,.. =cmp.and <condition>
(gp) p, .. =cmp.or <condition>

39

ORC Tutoria

G

Additional Uses of PRDB

* Predicate-aware dataflow analysis (e.g. in register alocation)

* Examplein calculating live sets
72 Query PRDB to get Sum or Diff of predicatesto refine data-flow solutions

BB1:

PA=......... .] B / \

|| LiveOut(BB1) : { A(p0)} =>{A(p)} ||
_ P-X=?

BBz l -<::::$:::::::::::>_

x) =A... D PRDB
BB3: l || LiveOut(BB2) : {A(p0)} =>{ } ||

WWA=......... —(—_—_—_—I—:—t—? _________________ >

NLL] L N

|| LiveOut(BB3) : { A(p0)} =>{A(y)} ||

40 ORC Tutorid

Global Instruction Scheduling

41 ORC Tutoria

/7 .
Hardware Features for Instruction
Scheduling

* \Wide execution resources.
7 Itanium: 2 I-units, 2 M-units, 2 F-units and 3 B-units

* |nstruction mixes specified by templates

< 128 bits >
Instruction 2 Instruction 1 Instruction 0 template
41 bits 41 bits 41 bits S bits

2 Itanium: 2 bundles/6 instructions per cycle

2 Each generation of |PF hasits own dispersal rules and micro-
architectural features

* Largeregister files:
2 128 GRs, 128 FRs, 64 PRs, and 8 BRs

42 ORC Tutorid

T

Key Features of Instruction Scheduling

* Based on: D. Berstein, M. Rodeh, “Global Instruction
Scheduling for Superscalar Machines,” PLDI 91

* Features:
2 performs on the scope of SEME regions

2 cost function based on frequency-weighted path lengths
computed from a region-based dependence DAG

2 DAG construction makes use of PRDB
2 drives anumber of | PF-specific optimizations, e.g. speculation
2 integrated with full resource management

®* Global and local scheduling share the same implementation
with difference in their scopes

43 ORC Tutorid

@

Framework of Global Scheduling

* Buildagloba DAG for an entire SEME region
7 Nested regions folded with summary info

* Select target BBs to schedule based on their
topological ordering and execution frequencies

* For each target BB, identify all source BBs and then
candidate instructions

* For each cycle, select ready instructions in their
priority to schedule

2 A forward, cycle scheduling

* Check the avallability of machine resources to each
selected instruction

44 ORC Tutoria

i

Process of Instruction Scheduling

.. cmpd.gt p14,p15=0,r11
* Critical edge o o
Spl Ittl ng (p13) br.cond .Lt_ 0 4

0.87

* Choosetarget basic
bl OCk Id8 r10=[r19] 5rhp4.eq pll,p0=1r14
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

72 Find source basic 2 [r9]=r0
blocks br Lt 05 0.01 0.99

Find candidates

br.Lt 05

Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

72 Code motion e

cmpd4.le p0,p9=r22,r21

72 Data specul ation (p9) br.cond .BB5_foo

el

(p10) br.cond .Lt_0 58

N N N N N

45 ORC Tutorid

i

Process of Instruction Scheduling

.. cmpd.gt p14,p15=0,r11
* Critical edge o o
Spl Ittl ng (p13) br.cond .Lt_ 0 4

0.87

* Choosetarget basic
bl OCk Id8 r10=[r19] 5rhp4.eq pl11,p0=1,r14
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

72 Find source basic 2 [r9]=r0
bl OCkS br Lt 05 0.9

Find candidates 001 -

br Lt 0.5
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates
7 Code motion Y-

cmpd4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p10) br.cond .Lt_0 58

N N N N N

46 ORC Tutoria

i

Process of Instruction Scheduling

.. c-r.r;p4.gt p14,p15=0,r11
* Critical edge Fro oo
Spl Ittl ng (p13) br.cond .Lt_0 4

0.87

* Choosetarget basic 0
bl OCk Id8 r10=[r19] 5rhp4.eq pl11,p0=1,r14
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

72 Find source basic &2 [r9]=r0
bl OCkS br Lt 05 0.01 099

br.Lt 05

Find candidates

Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code mation Y-

cmpd4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p10) br.cond .Lt_0 58

N N N N N

47 ORC Tutoria

i

Process of Instruction Scheduling

.. c-r.r;p4.gt p14,p15=0,r11
* Critical edge o o
Spl Ittl ng (p13) br.cond .Lt_0 4

0.87

* Choosetarget basic
bl OCk Id8 r10=[r19] 5rhp4.eq pll,p0=1,r14
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

72 Find source basic o2 [r9]=r0
bl OCkS br Lt 05 0.01 099

br .Lt 05

Find candidates

Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code mation y—

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p10) br.cond .Lt_0 58

N N N N N

48 ORC Tutorid

G

Process of Instruction Scheduling

» Critical edge e
Spl |ttl ng (p13) br.cond .Lt_0_4

0.87

* Choosetarget basic

block
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

2 Find source basic o2 [r9]=r0
bl OCkS br Lt 05 0.01 0.9

Find candidates

br .Lt 05

Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code mation y—

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p10) br.cond .Lt_0 58

N N N N N

49 ORC Tutoria

i

Process of Instruction Scheduling

.. c-r.r;p4.gt p14,p15=0,r11
* Critical edge (i abrirat
Spl Ittl ng (p13) br.cond .Lt_ 0 4
* Choose target basic

cmp4.eq p11,p0=1,r14

block
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

2 Find source basic o2 [r9]=r0
bl OCkS br Lt 05 0.01 0.99

Find candidates

br .Lt 05

Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code mation y—

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p10) br.cond .Lt_0 58

N N N N N

50 ORC Tutorid

i

Process of Instruction Scheduling

* (Critical edge
splitting

cmp4.gt p14,p15=0,r11
(p14) sub r15=0,r31
(p15) mov r15=r31
(p13) br.cond .Lt_0_4

* Choose target basic / \

block

72 Find source basic
blocks

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

72 Code motion

2 Data speculation

N N N N N

shladd r9=r9,1,r10
st2 [r9]=r0
br Lt 05

51

cmp4.eq p11,p0=1,r14
(p11) br.cond .Lt_0_6

0.01

0.99

br .Lt 05

(p10) br.cond .Lt_0 58

1d4 r21=[r33]
cmp4.le p0,p9=r22,r21
(p9) br.cond .BB5_foo

ORC Tutoria

i

Process of Instruction Scheduling

.. c-r.r;p4.gt p14,p15=0,r11
* Critical edge Frg oo
Spl Ittl ng (p13) br.cond .Lt_ 0 4

* Choose target basic / \
block

' 1 = br.cond . \
A F| nd source basc shladd r9=r9,1,r10 (p11) br.cond .Lt 0 6

s2[r9]=r0

bl OCkS br Lt 05 0.01 0.99

Find candidates

br .Lt 05

Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code mation y—

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p10) br.cond .Lt_0 58

N N N N N

52 ORC Tutoria

G

Process of Instruction Scheduling

° C” t| Cal edge (p14) sub r15=0,r31

(p15) mov r15=r31

Spl Itti Nng (P13) br.cond .Lt_0_4

0.87

* Choosetarget basic
bl OCk ;t;k.srlo Lt rb 1
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

2 Find source basic o2 [r9]=r0
bl OCkS br Lt 05 0.01 0.99

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code motion AT

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

cmp4.gt p14,p15=0,r11 Id8.5r10=[r19] _|

br .Lt 05

(p10) br.cond .Lt_0 58

N N N N N

53 ORC Tutorid

i

Process of Instruction Scheduling

C t al ed cmpd.gt p14,p15=011 Id8.sr10=[r19] cmpé4.eq p11,p0=1,r 14
" Lntical edge AHEES
Spl Itti Nng (P13) br.cond .Lt_0_4

0.87

* Choosetarget basic
bl OCk ;t;k.srlo Lt rb 1
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

2 Find source basic o2 [r9]=r0
bl OCkS br Lt 05 0.01 0.99

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code motion \da r21=(:33]

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

br .Lt 05

(p10) br.cond .Lt_0 58

N N N N N

54 ORC Tutorid

i

Process of Instruction Scheduling

C t al ed cmpd.gt p14,p15=0r11 Id8.sr10=[r19] cmpé4.eq p11,p0=1,r 14
" Lntical edge pasinz
Spl Itti Nng (P13) br.cond .Lt_0_4

0.87

* Choosetarget basic
bl OCk ;t;k.srlo Lt rb 1
shladd r9=r9,1,r10 (p11) br.cond .Lt_0_6

2 Find source basic o2 [r9]=r0
bl OCkS br Lt 05 0.01 0.9

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code motion \da r21=(:33]

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

br .Lt 05

(p10) br.cond .Lt_0 58

N N N N N

55 ORC Tutorid

i

Process of Instruction Scheduling

* Critical edge

spli

* Choose target basic / \

tting

block

A

N N N N N

Find source basic
blocks

Find candidates
Select best one
Control speculation
Code motion

Motion of code with
digoint predicates

2 Code motion
2 Data speculation

cmi4.i i14,i15=0,r11 1d8.s r10=|r19| cmp4.eq p11,p0=1,r14

(p13) br.cond .Lt_0_4

chk.sr10.Lt rb 1

st2 [r9]=r0
br Lt 05

56

(p11) br.cond .Lt_0_6

0.01 0.99

br .Lt 05

(p10) br.cond .Lt_0 58

1d4 r21=[r33]
cmp4.le p0,p9=r22,r21
(p9) br.cond .BB5_foo

ORC Tutoria

i

Process of Instruction Scheduling

.. c-r.r;p4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4. 11,p0=1,r14

° Cn“cal edge (p14) ubr15=0r31 (pl5) mov ri5=r31 %

111 (p13)br.cond Lt 0.4
splitting

0.87

® Choosetarget basic

| OCk chk.sr10.Lt rb 1

2 Find source basic 2 [r9]=r0
bl OCkS br Lt 05 0.01 0.99

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

2 Code motion AT

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p11) br.cond .Lt_0_6

br .Lt 05

(p10) br.cond .Lt_0_58

N N N N N

57 ORC Tutorid

i

Process of Instruction Scheduling

* Critica edge I U I0rSL (o1 mour ISt Seddrarto
splitting (RIS
. 0.87
* Choose target basic

| OCk chk.sr10.Lt rb 1

2 Find source basic 42 [19]=r0
bl OCkS br Lt 05 0.01 0.99

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

72 Code motion ez

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

(p11) br.cond .Lt_0_6

br .Lt 05

(p10) br.cond .Lt_0_58

N N N N N

58 ORC Tutorid

i

Process of Instruction Scheduling

cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14

° 111 14 subr15=0r3L (pl5)movrl5=r3l shladd r9=r9,1,r10
C”“Cal edge b (p13) br.cond .Lt_0_4

splitting
* Choosetarget basic
block

72 Find source basic
blocks br.Lt 05 001 0.99

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

72 Code motion

chk.sr10.Lt_rb_1

(p11) br.cond .Lt_0_6

br .Lt 05

(p10) br.cond .Lt_0_58

N N N N N

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

59 ORC Tutorid

i

Process of Instruction Scheduling

cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14

° 111 14 subr15=0r3L (pl5)movrl5=r3l shladd r9=r9,1,r10
C”“Cal edge b (p13) br.cond .Lt_0_4

splitting
* Choosetarget basic

| OCk chk.sr10.Lt rb 1

2 Find source basic 42 [19]=r0
bl OCkS br Lt 05 0.01 0.99

Find candidates
Select best one
Control speculation
Code motion
Motion of code with
digoint predicates

72 Code motion

(p11) br.cond .Lt_0_6

br .Lt 05

(p10) br.cond .Lt_0_58

N N N N N

cmp4.le p0,p9=r22,r21

2 Data speculation (p9) br.cond .BB5_foo

60 ORC Tutorid

G

Process of Instruction Scheduling (Cont.)

) i cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14
Choose target bas C bl OCk (p15) mov r15=r31 shladd r9=r9,1,r10

(p14) sub r15=0,r31
ld4.ar21=[r33] (p13) br.cond .Lt_0 4

7 Find source basic blocks
. . 0.87
2 Find candidates / \
2 Sdect bes_t one - f?l((.)iglo.u_rb_l $2[r9)=r0 (512 br cond Lt 0.6
72 Code motion /
0.01 0.99
2 Compensation code

br Lt 05

(p10) br.cond .Lt_0_58

T

chk.ar2l .Lt_rb_2
cmp4.le p0,p9=r22,r21
(p9) br.cond .BB5_foo

generation

61 ORC Tutoria

G

Process of Instruction Scheduling (Cont.)

o i cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14
ChOO% target baSI C bl OCk (p15) mov r15=r31 shladd r9=r9,1,r10

(p14) sub r15=0,r31
ld4.ar21=[r33] (p13) br.cond .Lt_0 4

7 Find source basic blocks
. . 0.87
2 Find candidates / \
2 Sdect bes_t one - f?l((.)iglo.u_rb_l $2[r9)=r0 (512 br cond Lt 0.6
72 Code motion /
0.01 0.99
2 Compensation code

br Lt 05

(p10) br.cond .Lt_0_58

T

chk.ar2l Lt rb_2
cmp4.le p0,p9=r22,r21
(p9) br.cond .BB5_foo

generation

62 ORC Tutoria

G

Process of Instruction Scheduling (Cont.)

Choose target basic block

N N N N N

Find source basic blocks
Find candidates

cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14
(p14) sub r15=0,r31 (p15) mov r15=r31 shladd r9=r9,1,r10
ld4.ar21=[r33] (p13) br.cond .Lt_0 4

Select best one
Code motion

Compensation code
generation

... chk.sr10.Lt rb 1 st2[r9]=r0

0.87 \

(p11) br.cond .Lt_0_6

M 0.99

br Lt 05

(p10) br.cond .Lt_0_58

T

chk.ar21l Lt rb 2

(p9) br.cond .BB5_foo

63 ORC Tutoria

G

Process of Instruction Scheduling (Cont.)

Choose target basic block

A

NN N YN

Find source basic blocks
Find candidates

ld4.ar21=[r33] (p13) br.cond .Lt_0 4

cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14
(p14) sub r15=0,r31 (p15) mov r15=r31 shladd r9=r9,1,r10

Select best one

... chk.sr10.Lt rb 1

Code motion

Compensation code
generation

\

(p11) br.cond .Lt_0 6

M 0.99

br Lt 05

~. 7

'(|'o'10) br.cond .Lt_0_58

chk.ar21l Lt rb 2
(p9) br.cond .BB5_foo

64

ORC Tutoria

G

Process of Instruction Scheduling (Cont.)

® Choosetarget basic block
Find source basic blocks
Find candidates

(p14) sub r15=0,r31
ld4.ar21=[r33]

cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14

(p15) mov r15=r31 shladd r9=r9,1,r10
(p13) br.cond .Lt_0 4

0.87

\

Select best one
Code motion

Compensation code
generation

N N N N N

... chk.sr10.Lt rb 1 st2[r9]=r0
br .Lt 05

65

(p11) br.cond .Lt_0_6

M 0.99

br Lt 05

~. 7

(p10) br.cond .Lt_0_58

T

chk.ar2l Lt rb_2

(p9) br.cond .BB5_foo

ORC Tutoria

G

Process of Instruction Scheduling (Cont.)

) i cmp4.gt p14,p15=0,r11 1d8.sr10=[r19] cmp4.eq p11,p0=1,r14
ChOO% target baSI C bl OCk (p15) mov r15=r31 shladd r9=r9,1,r10

(p14) sub r15=0,r31
ld4.ar21=[r33] (p13) br.cond .Lt_0 4

7 Find source basic blocks
. . 0.87
7 Find candidates / \
72 Select best one . chksrio Lt rb -
. cmpc4.lespr0%§9lz_rt52,r_211 Ztrz.f_r'?_] O_rSO (p11) br.cond Lt 0.6
72 Code motion /
. 0.01 0.99
2 Compensation code

br Lt 05

1
1
(p10) br.cond .Lt_0_58‘
/

chk.ar2l .Lt_rb_2

generation

(p9) br.cond .BB5_foo

66 ORC Tutoria

T

Perspective Research Usage

* Experiment with different scheduling heuristics

* Drive additional IPF optimizations
72 E.Q. post-increment, multiway branch synthesis, ...

* Be conscious about register pressure
* Replace it with your own scheduler

e Make it astandalone instruction schedul er

2 Connect it with other compilation systems, e.g. a
binary trandlation system.

67 ORC Tutorid

Control and Data Speculation

An introduction: Ju, Nomura, Mahadevan, and Wu, “A Unified
Compiler Framework for Control and Data Speculation,” PACT 2000.

68 ORC Tutoria

@

Architectural Support for
Control Speculation

* NaT bitson registers

* Speculative and non-speculative versions of
trapping instructions
* Speculative instructions to defer exceptions

® Check instructions, Bcihk.s

B1: Rec:

cnp p=(cond) lative chaind | d- 8 X=[Y] | d x=[Vy]
(p)br B2 Speculative chain add z=x. w add Zox. w
\ cnp p=(cond) br Next
(p)br B2
B2:
1d x = [y] S~
add z=x,w B2:
chk.s x, Rec
v / Next :
v /

69 ORC Tutorid

G

Architectural Support for

Data Speculation
* Advanced (data speculative) load |d.a

* Advanced Load Address Table (ALAT)
* Storeinvalidatesaiasing entriesin ALAT
* Check instruction, chk.a

st [al] = b ld.a x = [aZ2] Rec:
ld x = [aZ] —» add z =X, w ld x = [a2]
add z = x, w st [al] =D add z = x, w
chk.a x, Rec br Next
Next :

70 ORC Tutorid

@

Compilation Issues for Control
Speculation - Interferences and Live-in Values

* Avoiding interferences for the destination
registers of speculated instructions

* Recovering from a deferred exception

2 Upward-exposed values used in the
specul ative chain not to be overwritten

Bl: B1: Re;:ij "
_ a x = [y
cnp p = (cond) ld.s x = [V] ~
(p) br B2 add z = x, w add z = x,w
br B2
B2: (p)
ld x = [y]

add z = x, w B2:
add y =y + 4 chk.s x, Rec

v/ Nex?:ddy=y+4
v/

71 ORC Tutorid

@

Compilation Issues for Control

Speculation — Id across check
* Dependent load (to 1d.s) scheduled across a check
2 Theload must be put under speculative mode

2 Deferred exception propagated and not to be signaled
before the first check

ld.s x = [vVy] ld.s x = [vVy] ld.s x = [vVy]
chk.s x, Rec ld.s z = [X] ld z = [X]
ld z = [X] [chk.s x, Rec| chk.s x, Rec

chk.s z, Rec?

correct W ong

12 ORC Tutorid

—c—— .
Compilation Issues for Data

Speculation - Predication

* Excluding predicated code from a data speculative
chain when the qualifying predicate is defined on the

chain
ld.a x = [al] ld.a x = [al] Rec:
cmp p=x<y chnp p=x<y ld x = [al]
st [a2] = w (p)add z = b, c cnp p =x <Yy
chk.a x, Rec st [a2] = w (p)add z = b, c
(p)add z = b, c chk.a x, Rec

Wong — z nmay not be recoverable

73 ORC Tutoria

@

Cascaded Speculation

* A value defined by a speculative load directly or
indirectly feeds into another speculative load
scheduled before the first check

* Combinations in cascaded speculation
2 Control-specul ation-led
2 Data-speculation-led

74 ORC Tutorid

i

Cascaded Speculation

Control-Speculation-Led
* Different strategies to generate recovery code

* Codesizevs. recovery overhead vs. ease of
Implementation

Rec1: Recl: Rec2: // only
= = ld x = [a]
ld.s x = [a] ld x = [a] ld x = [a] =
ld.s y = [X] ldy = [x]
ld.s y = [X] br cl .
br c2 r c2
E:(lp)chk.s X, Recl] - (Wo 15 chk. s
(q)chk.s y, Rec2 Idy = [x] Rec2: NaT prop. to y)
c2: br c2 Idy = [X]
br c2
Strategy 1 Strategy 2 Strategy 3

75 ORC Tutorid

— G
Cascaded Speculation

Data-Speculation-Led
* |f thefirst load is mis-speculated, no NaT to
propagate the fault

* Thefirst recovery block to invalidate the second chk
to ensure the second recovery block executed

Id.a x = [a] Recl: Recl:
ld x = [a] ld x = [a]
ld.sa y = [X] o o
(p)chk.a x, Recl Invalay
cl: br cl1
chk.a y, Rec2 Rec2:
ég) Y Rec?2: ldy = [X]
ldy = [x]
br c2
correct wr ong

76 ORC Tutorid

@

Scheduling Speculative

Instructions
* Speculation is part of DAG-based list scheduling
phase
* Marking speculative dependence edges for
Identified candidates during DA G construction
2 Control and data speculative edges

* Instruction isready when all of its non-speculative
predecessors scheduled

* Scheduler decides the loads to be speculated
2 Insert chk instruction

2 Add DAG edges from chk to the successors of
specul ated |oad to ensure recoverability

7 ORC Tutorid

T

Recovery Code Generation

* Recovery code generation decoupled from scheduling phase
7 Reduce the complexity of the scheduler
* To generate recovery code

2 Starting from the speculative load, follow flow and output
dependences to re-identify speculated instructions

2 Duplicate the speculated instructions to arecovery block under
the non-speculative mode

* Once arecovery block is generated, avoid changes on the
speculative chain

* Allow GRA to properly color registersin recovery blocks

78 ORC Tutorid

Parameterized Machine Model

79 ORC Tutoria

G
Machine Model

* Motivations:

2 To centralize the architectural and micro-architectura
detalls in awdll-interfaced module

2 Tofacilitate the study of hardware/compiler co-design by
changing machine parameters

2 To ease the porting of ORC to future generations of |PF
* Two aspects:

2 Parameterized machine descriptions

2 Micro-scheduler to model resource constraints

80 ORC Tutorid

7,
Machine Descriptions

* Read in the (micro-)architecture parameters from KAPI (Knobsfile
API) published by Intel

2 E.g. machine width, FU class, latencies, templates, bypass ...
72 Inv26-itanium-41-external .knb

* Keep additional hardware specifications in a separate file
2 E.g. Pro64 opcode, registers, # of issue dlots, ...
72 Invl1l-itanium-extra.knb

* Automatically generate the machine description tablesin Pro64
2 E.g.targ isa[c|hlexported], targ_proc..., topcode...

* Avoid multiple changes of the same info duplicated into different
tables

* The machine descriptions can be consumed by various optimization
phases

81 ORC Tutorid

7,
Micro-Scheduler

* Manage resource constraints
72 E.g. templates, dispersal rules, FU’s, machine width, ...
* Model instruction dispersal rules
* Interact with the high-level instruction scheduler
72 Yet to be integrated with SWP
* Reorder instructions within acycle

* Useafinite state automata (FSA) to model the resource
constraints
2 Each state represents occupied FU’s

2 State transition triggered by incoming scheduling
candidate

82 ORC Tutorid

Modules in Machine Model

Micro-leve
scheduler

<— Func. invocation
% — Datapath

ORC Tutoria

7,
Functional-unit Based FSA

* Generate FSA prior to compilation
* Model resource constraints
* FSA states based on occupied FU’ sfor space
efficiency
* Each state contains alist of legal template
assignments
2 Sorted in apriority order, e.g. for code size
* Statetransition triggered
2 Incoming scheduling candidate
72 Reordering to obtain the needed FU’ s

84 ORC Tutorid

7,
Functional-unit Based FSA

* Template assignment not selected except for
2 Intra-cycle (O-cycle) dependence
2 Finalizing template assignment with 1-cycle delay
* Ableto utilize compressed templates
* For Itanium, 2 bundles per cycle
72 ORC FSA has 235 states
72 Each state has at most 38 valid template assignments.
2 75% If the states have < 10 assignments

* Changing the machine parameters, e.g. machine width,
will generate a new FSA automatically

85 ORC Tutorid

Functional-unit Based FSA (Example)

_TegaTA -~

num_of TAs

TAs

M-« | N < T IR

86 ORC Tutoria

7,
Integrated Instruction Scheduling

* |nstruction scheduling integrated with full resource
management through micro-scheduler

* Repeatedly pick the best candidate based on scheduling
cost function

* Micro-scheduler to make state transition in FSA to check
the availability of resources

* Micro-scheduler may permute FU assignments to meet the
dispersal rules

* |f the resource constraints met, the scheduler can choose to
commit the candidate

* If resourcesfully utilized or no ready candidate available,
the scheduler advance to schedule the next cycle

* Template assignment finalized with 1-cycle delayed

87 ORC Tutorid

Integrated Scheduling - Example

Valid FUsfor instructions
1,151, MO, M1

l,: 10

1.2 10,11

ls: MO,M1,10,11

FSA dstate: {}

Intra-cycle dependence (ICD): N or Y
Tentative template assignment (TTA)

88 ORC Tutoria

Micro-level Scheduler

MOtol,;; SS{MOQ}; ICD: N; TTA=

10tolg; S={MO,I0}; ICD: Y; TTA=MI_|

Permute FU’s;I0tol,, I1tol;;
S={MO,I0,I1}; ICD: Y; TTA=MII

M1tol; SS{MOM1,0,l1};
ICD: Y; TTA=MII M_MI

No M unit for I,

MOto |l S={MO}; ICD: N; TTA=

M1ltol, SS{MOM1}; ICD: N; TTA=

Permute FU’sfor cyc 1,
cyc1S={MO0,I0}; ICD: Y; TTA=

ORC Tutoria

G

* Overview of ORC

* New Infrastructure Features
* New |PF Optimizations

* Research Case Study

* Demo of ORC

* Release and Future Plans

90 ORC Tutorid

Instruction Scheduling and Resource
Management

Integrated vs. Decoupled

91 ORC Tutoria

G
Research Case Study

* \Want to demonstrate the advantages of scheduling integrated
with resource management

* To contrast with decoupled approaches

2 Traditional scheduler followed by a separate bundling phase
* Minimize the effort to implement the decoupled approaches
* Build an independent bundling phase using micro-scheduler

2 Select template assignments for scheduled intructions

2 Honor the cycle breaks placed by the traditional scheduler
2 Trivia effort

2 More powerful than the handle hazard() in Pro64

92 ORC Tutorid

—Gr—
Scheduling/Bundling Approaches

* Level O: scheduler w/o any resource management +
separate bundling

* Level 1. scheduler w/ machine width constraint + separate
bundling

* | eve 2: scheduler w/ constraints on width and FU’s +
separate bundling

* |Level 3: integrated scheduling and resource management
2 Template assignment, dispersal rules, ...

* Perform experiments to collect various dataon all SPEC
CPUZ2000* integer programs

* Other names and brands may be claimed as the
property of others

93 ORC Tutorid

Speedup of Execution Time

@ Spdup 0/1
1.25 m Spdup 0/2
1.2 M 0O Spdup 0/3

* Source: CAS

94 ORC Tutorid

7,
Some Observations

* Little performance change at levels 0-2

e |PC wdl below machine width
2 The width constraint at level 1 not critical

* FU utilization aso low
72 The FU constraints at level 2 not critical either

* |evel 3 showsan impressive average 11% improvement
2 |PC improved by 13%
2 NORP ratio, bundles per cycle, instruction count all increase
72 Gain parallelism at the cost of code size
2 Still an overall performance win!

* Performance measurement disclaimer

95 ORC Tutorid

—dr Ly
Performance Disclaimer

Performance tests and ratings are neasured using
specific conputer systens and/or conponents and
refl ect the approxi mate performance of Intel
products as neasured by those tests. Any
difference in system hardware or software
design or configuration nay affect actual
perfornmance. Buyers shoul d consult other
sources of information to evaluate the
perfornance of systens or conponents they are
consi dering purchasing. For nore information on
perfornance tests and on the performance of
| ntel products, reference
www. i ntel.com procs/perf/limts. htmor call
(U.S.) 1-800-628-8686 or 1-916-356-3104.

96 ORC Tutorid

Compilation Time

1.2 @ comp. time:1/0
1.15 m comp. time: 2/0
0O comp. time: 3/0
1.1
1.05
1 H - Sl IEE REE pE N BEE N = N
oNegEIl NS NEE EES NS EES RSN EES IS QS g EEE g gs
NI §EE EEE gEE gEN gEES S RES gEE EEE gES gEE g ge
0.85 |
Y @ R I SO Q S ¥
SR & & < o (}%‘ & X Ao(\q’ \@Q § Q}'qu
Q & &
* Source: CAS

97 ORC Tutorial

7,
More Observations

* Compilation time includes the time for global and local
scheduling and bundling

2 Bundling timeistypically well below 10%
* Within 5% differencesfor al levels

* |mportant to manage all resource constraints during
scheduling

* Qur integrated scheduling approach provides

2 Good performance improvements over decoupled
approaches

2 Time and space efficiency
* Possibly apply to other architectures:
2 VLIW, DSP, superscalar w/ complex dispersal rules, ...

98 ORC Tutorid

7
essons Learned

* Trivia effort to implement and plug-in alternatives for
research study

2 Modularized design, clean interface, ...

* Robust compiler infrastructure to run sizeable benchmarks,
such as CPU2K and other applications

* Focus effort on studying the key research problem and
collecting experimental results for in-depth analysis

2 Minimize the effort on the rest infrastructure 1ssues

* Thisstudy “On-the-fly Resource Management during
| nstruction Scheduling for the EPIC Architecture” is
submitted to PLDI 2002.

99 ORC Tutorid

G

* Overview of ORC

* New Infrastructure Features
* New |PF Optimizations

* Research Case Study

* Demo of ORC

* Release and Future Plans

100 ORC Tutorid

G

* Overview of ORC

* New Infrastructure Features
* New |PF Optimizations

* Research Case Study

* Demo of ORC

* Release and Future Plans

101 ORC Tutorid

i

Release and Future Plan

Agenda

* FHirst release report

* Second release and beyond

* Licensing, distribution and support

® User groups

* Contributing organizations and individuals

102 ORC Tutorid

First Release Report

103

T

State of ORC

* -O0 and —g go through Pro64 path

* Supported optimization levels
2 -02 (global scalar opt, if-conversion, global
scheduling, smple array dep. analysis, GRA, SWP,
unrolling, ...)
2 -03 (al —-O2 optimizations, loop nest opt.,
aggressive array dep. analysis, more global scalar opt)
2 Various profiling at code generation time:
* Edge profiling
* Value profiling
* Memory operation profiling and distribution

104 ORC Tutorid

@

Performance

* Pro64 standing:

2 About 5% - 10% better than GCC (2.96) at O2 and
03

72 About 10% - 15% slower than Intel I|PF Compiler
(5.0 and 6.0 Beta) at O2 and O3

2 Seen extreme cases both ways
* ORC standing:
7 Focus s on correctness and infrastructure for this
time
2 Performance is better than Pro64 at O2 and O3
* Performance measurement disclaimer

105 ORC Tutorid

@

Testing Status

* Wadll tested at -O2 and —O3 level for general
purpose applications.
2 Tests/suits passed:
e Stanford, Olden, Jpeg, Mesa, ADPCM, CPU2000int...

* Adequately tested at —ipa (with -O2 and —O3)
2 Pro64 has 4 failures with CPU2000int
72 ORC In par with Pro64 correctness-wise
2 WIll fix in second release

106 ORC Tutorid

G

Testing Status (cont’d)

* Scientific programs.
2 Adequately tested, but not enough

* CPU2000fp has 4 known problems at O2 and O3 aswe
speak, plan to fix ASAP

* Linpack, Livermore loops passed
* Perfect club not tried
2 Not major focus for our limited resource

107 ORC Tutorid

G

Usage Model

* |nvoking ORC:
7 Orcc hello.c—o hello{ -O2|-03}
2 orct+ hello.cpp—ohdlo{ -0O2|-0O3}
2 orf90 hello.f90 -0 hello{ -O2 | -O3}
2 orf90 hello.f -ohello{ -O2|-03}

* Skipping ORC:
2 Add option:
* -ORC:=0ff
* Revertsthe compiler to be the same as Pro64

108 ORC Tutorid

Second Release and Beyond

109

T

Planned Features

Key concentration for second release

* Performance — general purpose apps only

72 02/ O3 comparable to best Itanium compiler
* To ensure solid infrastructure framework

2 Sufficient peak performance to make research results
trustworthy

* |nfrastructure for research remains the key
72 No benchmark tricks

2 No micro-architectural tuning that cannot be
trandated cleanly into other uArch

110 ORC Tutorid

T

Optimizations

* Memory optimizations
2 E.Q. data prefetching, various profiling extensions, ...
* Better utilization of | PF features

2 E.Q. post-increment, predicate aware in various
phases, ...

* |nter-procedural analysis
2 E.Q. aggressive alias analysis, ...
* Scheduling/speculation

2 E.g. tune down aggressiveness, partial ready code
motion, ...

111 ORC Tutorid

@

Infrastructure Features

* Multithread support

2 Multithread centric region formation

2 Code motion barriers without disabling optimization
* Annotations of binaries

2 co-design of architecture and compiler
* |nterface to simulators

2 Architectural studies

2 Plan to work with Liberty and/or other ssmulators

112 ORC Tutorid

@

Fix Existing Issues

* Existing Pro64 issues

2 IPA not fully functional

2 Register pressure too high for |PF

2 Compiler binary not native built

2 Other tuning issues

* SWP, inlining,...

2 Fix extreme cases compared with other compilers
* Existing ORC issues

2 Monitor compile time in scheduler

72 Instrumented binary overhead not minimized

113 ORC Tutorid

G

Release Timeline

e Jan 2002

2 First source/binary release
* Middle of 2002

2 Compiler stable with | PA

2 Some benchmark performance comparable to best
|tanium compilers

* End of 2002
2 Performance goal achieved
7 Infrastructure features

All dates specified are preliminary, for planning purposes only, and are subject to change without
notice

114 ORC Tutorid

G

Issues Not Planned to Address

* Integration with 3.0 gcc

* FP performance

* Compiler bootstrap itself

* Linux build using ORC

* FOO0 frontend or library problems

115 ORC Tutoria

T

Inviting Research based on ORC

* Performance-driven optimizations

* Thread level parallelism

* Co-design of architecture and compiler

* Retarget to type-safe language (CLI, Java, ...)

* Type-safety through aggressive optimizations

* Component level optimizations (.Net, .so, ...)

* Higher typed optimizations (user defined types,
operators, ...)

116 ORC Tutorid

@

Inviting Research based on ORC

* Optimization for memory hierarchy

* Co-design of static and dynamic compilation

®* Program analysis
2 Context sengitive and flow sensitive alias analysis
2 Type hierarchy

...
* |nlining/outlining/partial inlining
* Power management

117 ORC Tutorid

G

Source and Binary Structure

® Source tree structure
2 Same as Pro64 source organization

/\
C cg
opt, Ino, com,... / \

orc

118 ORC Tutoria

1ab4,. ..

G

Backend Binary Components

119 ORC Tutoria

T

ORC Testing Infrastructure

* Testing model
2 Developer written tests for specific optimization
* White box tests for his specific component
72 Developer written tests for integration

* White box tests for his component working well with
other optimizations and components

2 Various open source test suites for black box testing

2 Open source include ssmple Perl script to run tests at
various levels defined by the development team.

120 ORC Tutorid

@

ORC Testing Infrastructure

2 Simple Perl script to run checkin and/or nightly
extensive testing
2 Can specify default options and required options
* Required option to ensure specific opt turned on
* Default option can be overridden to enable testing by
permuting options
2 Can specify running of entire test suites at specified
options

121 ORC Tutorid

@

Development Aids

* Debugging
2 gdb, xxgdb
2 Traces:
* Before and after optimization IR dump
* Detail traces of optimization/analysis info and decisions
2 Log:
* | og of what optimizations performed at what phase
2 Various IR and symbol table dumping tools
2 Elaborate interface to davinci graph by ORC:
* Display inside gdb of cfg, regions, BB, ...
e Similar display in files through command-line options

122 ORC Tutorid

G

Development Aids

* Debugging (cont’d)
2 Triagetools
* How to debug file from Pro64 0.13 release:
“howto-debug-compiler”
* Maor components built as“.so”s
2 Easy to pinpoint component for regressions
* All optimizations can be turned on/off

2 Easy to pinpoint which opt. that triggers the problem
® Turn off optimization in reverse phase order

123 ORC Tutorid

@

Development Aids

* Debugging (cont’d)
2 Triagetools

* Automatic tool by ORC

2 Can pinpoint file, function, BB, expression, region or
Instruction level where bug is manifested.

2 Can pinpoint which component, optimization where bug
IS manifested

Usage:

triage.pl —set test phase speculation —f gzip.mk
Iset: input test set

phase: optimization phase to narrow down

124 ORC Tutorid

T

Development Aids

* Expose bugs at compile time philosophy
72 Heavy use of assertions

2 Optional devwarns for potential problems and
temporary workarounds that might have forgotten

2 Heavy use of verification tools and verifiers of all
sorts

* Styles and coding convention document in first
release:

2 Stay close to Pro64 coding style and explanation

2 Include “how to” for memory management, asserts,
compile time accounting,...

125 ORC Tutorid

@

Development Aids

* Pearformance analysis and regression tracking

2 PFMON available from

eftp://ftp.hpl.hp.com pub/I|i nux-
| a64/ pf non- 0. 06. tar. gz

* Hardware counters
* PC sampling
2 Cycle counting tools by ORC
e Static estimation of cpu execution time
2 Instrumentation/profile tools
* Dynamic runtime cycle count estimation
* Memory distribution analyzer

126 ORC Tutorid

— PFMON Data
100% - B (est)Executbn
90% 1 ONST ACCESS CYCLE
80% -
70% - m Scoreboard stlIEQEPENDENCY SCOREBOARD CYCLE)
60% - O EestRSE
50% -
0 mAccessest Memory,exclDTLB
40% A
30% A OEst)Sbrksbor whammo
20% ¢ O @est)ostofD TLB access
10%
o% A mPIPELINE BACKEND FLUSH CYCLE
1 2 @ Frontp pe lne flishes

1200,000,000,000

1.000,000.,000,000 -
800 000,000 000 -
600,000,000 000 -
400 000,000,000 -

200,000 000,000 -

O _|
1 2 Source: Intel

127 ORC Tutorid

i

Development Aids

* Simulators

2 NUE

* |PF functional ssmulator from website:
http://ww. software. hp. cont i1 a4l i nux

2 Liberty
Davi d August, Princeton
* Open for interface to other ssimulators
2 Cache ssimulator?
2 Simple Scalar?
2 Others (any takers?)

128 ORC Tutoria

Licensing, distribution and support

129

G

Licensing, Distribution and Suppport

* The compiler will be distributed in the web-site
http: //sour cefor ge.net/projects/ipf-orc

* Latest information and update are placed there also
* Distribution includes:

2 Binary

2 Source Code

2 Test and triage infrastructure including scripts

2 Documents and various tools

130 ORC Tutorid

- -m

ORC Tutoria

Licensing

* BSD license url
http://www.opensource.org/licenses/bsd-license.html

132 ORC Tutoria

G

Distribution

* Download:

http: //prdownl oads.sour cefor ge.net/ipf-or c/or c-
1.0.0.tgz

2 Compiler binary are |A32 images (cross built)
2 Will run slow on an Itanium machine

133 ORC Tutoria

o

Distribution and Installation

* Toinstal on an Itanium machine (Redhat 7.1):
%osu
Jingtall.sh

* Toinstal under nue;
%osu

#nue
#./install.sh

134 ORC Tutoria

G

Distribution and Installation

* TodoonanlA32 machine
2 crossbuild, easiest isto use nue
2 Be careful about library compatibility issues
®* nueisnot 7.1 and up compatible
72 Don’t pick up 1A32 includes, librariesand .so’s
® Cross compile on an |A32 machine under nue

72 1A32 side:

* orcc — filec—-ofile.o
2 Produce object file

* ftp IA64

2 Transfer object files to itanium machine
72 1A64 side:

* orcc file.o —0 exec
2 Produce binary with right libraries

* /exec

135 ORC Tutorid

G

Support

* For issues with installation, compiler usage, use mail
aias:
| pf-or c-support@ists.sour ceforge.net

* Pleasesignonto
|pf-orc-support@lists.sourceforge

136 ORC Tutoria

i

Support

* Bugs can be reported via Sourceforge in the website
2 Select support requests under tracker
2 Choose submit new

* Will fix ORC specific problems
* Cannot promiseto fix Pro64™ problems

137 ORC Tutorid

T

Reporting Problems

* You can help resolving problems quickly
2 Glve precise characterization of problem/symptom
2 Give detailed description of
® Compile and optimization options
* Command to execute application if runtime error

2 Include
* fully preprocessed (cpp) source to reproduce problem
® Other input files such as data files needed to run

2 Reduce your test case to as small as possible

2 Usetriage tool and/or follow how-to-find-problems to
narrow down possible culprit

138 ORC Tutorid

G

Accepting Contributions

* Contribute to the source code
2 No clear policy on how to accept changes yet
2 Welcome suggestions
2 Wil look at how Open64 user group operates
2 WIll post policy on websites when decided

139 ORC Tutorid

User Groups

140

User Groups

ORC user group
| pf-orc-support@lists.sourceforge

Pro64™ user group
open64-devel-support@lists.sourceforge

141 ORC Tutoria

G

Open64 User Forum

Steering Committee:
Guang R. Gao
Jose Nelson Amaral

Date/Time: tonight, 8:00p.m. —10:00 p.m.
Place: Marriott Hotel

142 ORC Tutoria

Contributing Organizations and
Individuals

143 ORC Tutoria

G

This project is ajoint development effort between

Microprocessor Research Labs,
|ntel Research Labs
&&
| nstitute of Computing Technology,
Chinese Academy of Sciences

144 ORC Tutorid

Contributing individuals

ICT

* Xigian Dong * ChenFu*

* GeGan °* RenLi*

°* Ruiqgi Lian ® ZhanglinLiu*
* LixiaLiu * Chengyong Wu
°* YangLiu * LizheWang *

* Feal Long * Shukang Zhou *
* Fang Lu * Kexin Zhang

®* Yunzhao Lu * Zhaoging Zhang

® Shuxin Yang

* No longer at ICT

145 ORC Tutoria

Contributing individuals

Intel

Sun Chan DongY uen Chen
BuiQi Cheng ZhaoHui Du
Jesse Fang Teo Huang

Tin-Fook Ngal
Roy Ju

Y ouFeng Wu
Tony Tuo

_ Dagen Wong *

QingY u Zhao

* No longer at Intel

146 ORC Tutoria

i

Murthy Chandrasekhar
Fred Chow

Robert Cox

Peter Dahl

Alban Douillet

Ken Lesniak

JnLin

Mike Murphy

Ross Towle

Thanks to
Pro64 developers

147

Lilian Leung
Raymond Lo
ShinMing Liu
Wilson Ho

Zhao Peng
HongBo Rong
David Stephenson
Peng Tu

ORC Tutoria

