
Overview of
The Pro64 Code Generator

PART II



10/31/00 \Gao\Pro64-CG 2

Outline

• Code generator flow diagram
• WHIRL/CGIR and TARG-INFO

• Hyperblock formation and predication (HBF)
• Predicate Query System (PQS)

• Loop preparation (CGPREP) and software pipelining
• Global and local instruction scheduling (IGLS)

• Global and local register allocation (GRA, LRA)



10/31/00 \Gao\Pro64-CG 3

Flowchart of Code Generator
WHIRL

Process Inner Loops: unrolling, 
EBO

Loop prep, software pipelining

IGLS: pre-pass
GRA, LRA, EBO
IGLS: post-pass
Control Flow Opt

Code Emission

WHIRL-to-TOP Lowering

CGIR: Quad Op List

Control Flow Opt I
EBO

Hyperblock Formation
Critical-Path Reduction

Control Flow Opt II
EBO

EBO:
Extended
basic block
optimization
peephole,
etc.

PQS:
Predicate
Query 
System



10/31/00 \Gao\Pro64-CG 4

WHIRL

• Abstract syntax tree based
• Symbol table links, map annotations
• Base representation is simple and efficient
• Used through several phases with lowering
• Designed for multiple target architectures



10/31/00 \Gao\Pro64-CG 5

Code Generation Intermediate
Representation (CGIR)

• TOPs (Target Operations) are “quads”
• Operands/results are TNs
• Basic block nodes in control flow graph
• Load/store architecture
• Supports predication
• Flags on TOPs (copy ops, integer add, load, etc.)
• Flags on operands (TNs)



10/31/00 \Gao\Pro64-CG 6

From WHIRL to CGIR
An Example

T1 = sp + &a;
T2 = ld     T1

T3 = sp + &i;
T4 = ld     T3

T5 = sxt  T4

T6 = T5  << 2
T7 = T6

T8 = T2 
 +  T7

T9 = ld  T8

T10 = sp + &aa
:= st T10 T9

int    *a;
int     i;
int     aa;
aa  =  a[i];

(a) Source

ST aa

LD

+

 a

CVTL32 4

 *

i

(b) WHIRL (c) CGIR



10/31/00 \Gao\Pro64-CG 7

• Information passed
– alias information
– loop information
– symbol table and maps

From WHIRL to CGIR
Cont’d



10/31/00 \Gao\Pro64-CG 8

Objective:
• Parameterized description of a target

machine and system architecture
• Separates architecture details from the

compiler’s algorithms
• Minimizes compiler changes when targeting

a new architecture

The Target Information Table
(TARG_INFO)



10/31/00 \Gao\Pro64-CG 9

The Target Information Table
(TARG_INFO)

• Based on an extension of Cydra tables, with
major improvements

• Architecture models have already targeted:
– Whole MIPS family
– IA-64
– IA-32
– SGI graphics processors (earlier version)

Cont’d



10/31/00 \Gao\Pro64-CG 10

Flowchart of Code Generator
WHIRL

Process Inner Loops: unrolling, 
EBO

Loop prep, software pipelining

IGLS: pre-pass
GRA, LRA, EBO
IGLS: post-pass
Control Flow Opt

Code Emission

WHIRL-to-TOP Lowering

CGIR: Quad Op List

Control Flow Opt I
EBO

Hyperblock Formation
Critical-Path Reduction

Control Flow Opt II
EBO

EBO:
Extended
basic block
optimization
peephole,
etc.

PQS:
Predicate
Query 
System



10/31/00 \Gao\Pro64-CG 11

Hyperblock Formation and
Predicated Execution

• Hyperblock single-entry multiple-exit
control-flow region:
– loop body, hammock region, etc.

• Hyperblock formation algorithm
– Based on Scott Mahlke’s method [Mahlke96]

– But,  less aggressive tail duplication



10/31/00 \Gao\Pro64-CG 12

Hyperblock Formation Algorithm
• Hammock regions
• Innermost loops
• General regions (path based)
• Paths sorted by priorities (freq., size, length, etc.)
• Inclusion of a path is guided by its impact on

resources, scheduling height, and priority level

• Internal branches are removed via predication
• Predicate reuse

Region
Identification

Block
Selection

Tail 
Duplication

If 
Conversion

Objective: Keep the scheduling height close to that of the highest priority path.



10/31/00 \Gao\Pro64-CG 13

Hyperblock Formation - An Example

aa = a[i];
bb = b[i];
switch (aa)  {
case 1:
    if (aa < tabsiz)
       aa = tab[aa];
case 2:
    if (bb < tabsiz)
       bb = tab[bb];
default:
    ans = aa + bb;

1

4,5

2
6,7

8

(a) Source

1

4 2

5

6

7

8

1

24

5

6

7

8

6’

8’

7’

(b) CFG (c) Hyperblock formation 
     with aggressive tail 
     duplication

H1 H2



10/31/00 \Gao\Pro64-CG 14

Hyperblock Formation - An Example
Cont’d

1

4 2

5

6

7

8

(a) CFG

1

24

5

6

7

8

6’

8’

7’

(b) Hyperblock formation 
     with aggressive tail 
     duplication

H1 H2

1

4 2

5

6

7

8

H1

H2

(c) Pro64 hyperblock
      formation



10/31/00 \Gao\Pro64-CG 15

Features of the Pro64 Hyperblock
Formation (HBF) Algorithm

• Form “good” vs. “maximal” hyperblocks
• Avoid unnecessary duplication
• No reverse if-conversion
• Hyperblocks are not a barrier to global code

motion later in IGLS



10/31/00 \Gao\Pro64-CG 16

Predicate Query System (PQS)

• Purpose: gather information and provide
interfaces allowing other phases to make queries
regarding the relationships among predicate
values

• PQS functions (examples)
     BOOL PQSCG_is_disjoint (PQS_TN tn1, PQS_TN tn2)

           BOOL PQSCG_is_subset (PQS_TN_SET& tns1, PQS_TN_SET& tns2)



10/31/00 \Gao\Pro64-CG 17

Flowchart of Code Generator
WHIRL

Process Inner Loops: unrolling, 
EBO

Loop prep, software pipelining

IGLS: pre-pass
GRA, LRA, EBO
IGLS: post-pass
Control Flow Opt

Code Emission

WHIRL-to-TOP Lowering

CGIR: Quad Op List

Control Flow Opt I
EBO

Hyperblock Formation
Critical-Path Reduction

Control Flow Opt II
EBO

EBO:
Extended
basic block
optimization
peephole,
etc.

PQS:
Predicate
Query 
System



10/31/00 \Gao\Pro64-CG 18

Loop Preparation and Optimization
for Software Pipelining

• Loop canonicalization for SWP
• Read/Write removal (register aware)
• Loop unrolling  (resource aware)
• Recurrence removal or extension
• Prefetch
• Forced if-conversion



10/31/00 \Gao\Pro64-CG 19

Pro64 Software Pipelining
Method Overview

• Test for SWP-amenable loops
• Extensive loop preparation and optimization

before application [DeTo93]

• Use lifetime sensitive SWP algorithm [Huff93]

• Register allocation after scheduling based on
Cydra 5  [RLTS92, DeTo93]

• Handle both while and do loops
• Smooth switching to normal scheduling if not

successful.



10/31/00 \Gao\Pro64-CG 20

Register 
allocate

Pro64 Lifetime-Sensitive Modulo
Scheduling for Software Pipelining
Features
• Try to place an op ASAP

or ALAP to minimize
register pressure

• Slack scheduling
• Limited backtracking
• Operation-driven

scheduling framework

Choose a good op to place into
the current partial schedule
within its Estart/Lstart range

Compute Estart/Lstart for
all unplaced ops

Succeed
no

yes

Eject conflicting Ops done



10/31/00 \Gao\Pro64-CG 21

Flowchart of Code Generator
WHIRL

Process Inner Loops: unrolling, 
EBO

Loop prep, software pipelining

IGLS: pre-pass
GRA, LRA, EBO
IGLS: post-pass
Control Flow Opt

Code Emission

WHIRL-to-TOP Lowering

CGIR: Quad Op List

Control Flow Opt I
EBO

Hyperblock Formation
Critical-Path Reduction

Control Flow Opt II
EBO

EBO:
Extended
basic block
optimization
peephole,
etc.

PQS:
Predicate
Query 
System



10/31/00 \Gao\Pro64-CG 22

Integrated Global Local
Scheduling (IGLS) Method

• The basic IGLS framework integrates
global code motion (GCM) with local
scheduling [MaJD98]

• IGLS extended to hyperblock scheduling
• Performs profitable code motion between

hyperblock regions and normal regions



10/31/00 \Gao\Pro64-CG 23

IGLS Phase Flow Diagram

Hyperblock Scheduling
(HBS)

Global Code Motion
(GCM)

Local Code Scheduling
(LCS)

Block Priority Selection

Motion Selection

Target Selection



10/31/00 \Gao\Pro64-CG 24

Advantages of the Extended IGLS
Method - The Example Revisited

1

4 2

5

6

7

8

H1

H2

(a) Pro64 hyperblock

• Advantages:
– No rigid

boundaries
between
hyperblocks and
non-hyperblocks

– GCM moves
code into and out
of a hyperblock
according to
profitability

1

24

5

6

7

8 8’

(b) Profitable 
      duplication

H2

H1

H3



10/31/00 \Gao\Pro64-CG 25

Software Pipelining
vs

Normal Scheduling

a SWP-amenable
 loop candidate ?

Inner loop processing
software pipelining

Code Emission

IGLS

GRA/LRA

IGLS

No
Yes

Failure/not profitable

Success



10/31/00 \Gao\Pro64-CG 26

Flowchart of Code Generator
WHIRL

Process Inner Loops: unrolling, 
EBO

Loop prep, software pipelining

IGLS: pre-pass
GRA, LRA, EBO
IGLS: post-pass
Control Flow Opt

Code Emission

WHIRL-to-TOP Lowering

CGIR: Quad Op List

Control Flow Opt I
EBO

Hyperblock Formation
Critical-Path Reduction

Control Flow Opt II
EBO

EBO:
Extended
basic block
optimization
peephole,
etc.

PQS:
Predicate
Query 
System



10/31/00 \Gao\Pro64-CG 27

Global and Local
Register Allocation

(GRA/LRA)

• LRA-RQ provides an
estimate of local register
requirements

• Allocates global variables
using a priority-based
register allocator
[ChowHennessy90,Chow83,
Briggs92]

• Incorporates IA-64 specific
extensions, e.g. register
stack usage

LRA Register Request
LRA-RQ

Priority Based Register 
Allocation 

with 
IA-64 Extensions

LRA

To postpass IGLS

From prepass IGLS

GRA



10/31/00 \Gao\Pro64-CG 28

Local Register Allocation
(LRA)

• Assign_registers
using reverse linear
scan

• Reordering: depth-
first ordering on
the DDG

Assign_Registers

succeed

Fix_LRA

Instruction 
reordering Spill global

spill local

failed

first
time



10/31/00 \Gao\Pro64-CG 29

Future Research Topics
for Pro64 Code Generator

• Hyperblock formation

• Predicate query system

• Enhanced speculation support


