PART 11

Overview of
The Pro64 Code Generator

Outline

Code generator flow diagram

WHIRL/CGIR and TARG-INFO

Hyperblock formation and predication (HBF)
Predicate Query System (PQS)

Loop preparation (CGPREP) and software pipelining
Global and local instruction scheduling (IGLS)
Global and local register allocation (GRA, LRA)

10/31/00 \Gao\Pro64-CG

Flowchart of Code Generator

WHIRL-to-TOP Lowering

WHIRL

Abstract syntax tree based

Symbol table links, map annotations

Base representation 1s simple and efficient
Used through several phases with lowering

Designed for multiple target architectures

10/31/00 \Gao\Pro64-CG

Code Generation Intermediate
Representation (CGIR)

TOPs (Target Operations) are “quads”™
Operands/results are TNs

Basic block nodes 1n control flow graph
Load/store architecture

Supports predication

Flags on TOPs (copy ops, integer add, load, etc.)

Flags on operands (TNs)

10/31/00 \Gao\Pro64-CG

From WHIRL to CGIR
An Example

ST aa T, =sp + &a;

/ T,=1d T,

LD T, =sp + &i;

/ T,=1d T,
T,=sxt T,

+
/\ Te=Ts <<2
a * T,=Tg
/\ Li=T,+ T,

CVTL32 e T

/ T,,=sp + &aa

=stT,, T,

1

(a) Source (b) WHIRL (¢) CGIR

10/31/00 \Gao\Pro64-CG

From WHIRL to CGIR

Cont’d

 Information passed

— alias information
— loop information

— symbol table and maps

10/31/00 \Gao\Pro64-CG

The Target Information Table
(TARG_INFO)

Objective:

* Parameterized description of a target
machine and system architecture

» Separates architecture details from the
compiler’s algorithms

* Minimizes compiler changes when targeting
a new architecture

10/31/00 \Gao\Pro64-CG

The Target Information Table
(TARG_INFO) Cont’d

* Based on an extension of Cydra tables, with
major improvements

 Architecture models have already targeted:
— Whole MIPS family
— TA-64
— TA-32
— SGI graphics processors (earlier version)

10/31/00 \Gao\Pro64-CG

Flowchart of Code Generator

Hyperblock Formation and
Predicated Execution

* Hyperblock single-entry multiple-exit
control-flow region:

— loop body, hammock region, etc.

* Hyperblock formation algorithm

— Based on Scott Mahlke’s method /Mahike9s)

— But, less aggressive tail duplication

10/31/00 \Gao\Pro64-CG

Hyperblock Formation Algorithm

Hammock regions

Innermost loops

General regions (path based)

Paths sorted by priorities (freq., size, length, etc.)

Inclusion of a path is guided by its impact on
resources, scheduling height, and priority level

Internal branches are removed via predication
Predicate reuse

Objective: Keep the scheduling height close to that of the highest priority path.

10/31/00 \Gao\Pro64-CG

Hyperblock Formation - An Example

~ aa = ali];
bb = b[i];
switch (aa) {
~ case 1:
~ if (aa < tabsiz)
aa = tab[aa];

C case 2: S
— if (bb < tabsiz)
- bb = tab[bb];
— default:
_ ans =aa + bb;
L

(a) Source

(b) CFG (¢) Hyperblock formation
with aggressive tail
duplication

10/31/00 \Gao\Pro64-CG

Hyperblock Formation - An Example

N

(b) Hyperblock formation (c) Pro64 hyperblock
(a) CFG with aggressive tail formatizg

duplication

10/31/00 \Gao\Pro64-CG

Features of the Pro64 Hyperblock
Formation (HBF) Algorithm

10/31/00

Form “good” vs. “maximal” hyperblocks
Avoid unnecessary duplication
No reverse 1f-conversion

Hyperblocks are not a barrier to global code
motion later in IGLS

\Gao\Pro64-CG

Predicate Query System (PQS)

* Purpose: gather information and provide
interfaces allowing other phases to make queries
regarding the relationships among predicate
values

* PQS functions (examples)

BOOL PQSCG is_disjoint (PQS_TN tn,, PQS_TN #n,)
BOOL PQSCG _is_subset (PQS_TN_SET& tns,, PQS_TN_SET& tns,)

10/31/00 \Gao\Pro64-CG

Flowchart of Code Generator

Process Inner Loops: unrolling,
EBO
Loop prep, software pipelining

10/31/00 \Gao\Pro64-CG

Loop Preparation and Optimization
for Software Pipelining

10/31/00

Loop canonicalization for SWP
Read/Write removal (register aware)
Loop unrolling (resource aware)
Recurrence removal or extension
Prefetch

Forced if-conversion

\Gao\Pro64-CG

10/31/00

Pro64 Software Pipelining
Method Overview

Test for SWP-amenable loops

Extensive loop preparation and optimization
before application /De7093]

Use lifetime sensitive SWP algorithm /Huf93]

Register allocation after scheduling based on
Cydra 5 [RLTS92, DeT093]

Handle both while and do loops

Smooth switching to normal scheduling 1f not
successful.

\Gao\Pro64-CG

Pro64 Litetime-Sensitive Modulo
Scheduling for Software Pipelining

Features

* Try to place an op ASAP
or ALAP to minimize
register pressure

Slack scheduling
Limited backtracking

Operation-driven yes }
scheduling framework f
no

done

10/31/00 \Gao\Pro64-CG

Flowchart of Code Generator

Integrated Global Local
Scheduling (IGLS) Method

* The basic IGLS framework integrates
global code motion (GCM) with local
scheduling /MaJD98]

IGLS extended to hyperblock scheduling

Performs profitable code motion between
hyperblock regions and normal regions

\Gao\Pro64-CG

IGLS Phase Flow Diagram

Hyperblock Scheduling
(HBS)
Block Priority Selection

Global Code Motion Motion Selection

(GCM)
Target Selection

Local Code Scheduling
(LCS)

10/31/00 \Gao\Pro64-CG

Advantages of the Extended 1GLS
Method - The Example Revisited ,/ o

* Advantages:

— No rigid
boundaries
between
hyperblocks and
non-hyperblocks

GCM moves

code into and out
of a hyperblock \

: J2)2
according to = d

profitability
(a) Pro64 hyperblock (b) Profitable
duplication

10/31/00 \Gao\Pro64-CG

Software Pipelining

Normal szheduling

a SWP-amenable
loop candidate ?

Inner loop processing
software pipelining

Failure/not profitable

Success 4

10/31/00 \Gao\Pro64-CG

Flowchart of Code Generator

Global and Local

Register Allocation
(GRA/LRA)

From prepass IGLS

« LRA-RQ provides an
estimate of local register
requirements

Allocates global variables

using a priority-based
register allocator

[ChowHennessy90,Chow83,
Briggs92]

Incorporates 1A-64 specific
extensions, €.g. register

stack usage
To postpass IGLS

10/31/00 \Gao\Pro64-CG

Local Register Allocation
(LRA)

* Assign registers
using reverse linear .
Scan .;” failed succeed

Reordering: depth-
first ordering on
the DDG

10/31/00 \Gao\Pro64-CG

Future Research Topics
for Pro64 Code Generator

* Hyperblock formation
* Predicate query system

* Enhanced speculation support

10/31/00 \Gao\Pro64-CG

