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à eliminating quantifiers

The dominant theme at the AWARD 2003 workshop was the study of single axioms for a variety of logical and algebraic
systems.  Otter  is an extremely powerful tool for studying such questions.  A natural question is whether Otter  could also
be used to reason about algebraic systems as well as reasoning within an algebraic system.  An example is the proof of
Lagrange’s theorem in group theory; the reasoning involves not only the axioms for group theory, but also such notions as
subgroups, cosets, counting and arithmetic.  A natural idea would be to tackle such studies by extending the work of Boyer,
et al., Quaife and the author, based on Gödel’s class theory.  

Semigroups come to mind as one of the simplest algebraic systems.  A semigroup can be regarded as a binary function  f  
whose domain is a cartesian square  cart[s, s]  and whose range is contained in  s, with the associative law as the sole
axiom.  The associative law is usually stated in terms of applications of the function  f,  but for the present discussion it is
more convenient to rewrite the associative law in terms of images of singletons:

In[2]:= image@f, cart@image@f, cart@singleton@uD, singleton@vDDD, singleton@wDDD ==
image@f, cart@singleton@uD, image@f, cart@singleton@vD, singleton@wDDDDD;

This equation is to hold for all  u, v and  w  belonging to  s.  The restriction of the quantifiers to  s  is not essential because
the domain information is already contained in the function  f.  If  any of the variables  u, v or  w fails to belong to  s, then
the images are empty and the above equation reduces to the tautology  0 = 0.   A natural starting point for the theory of
semigroups would be to define a function  f   to be associative if  and only if  the above law holds.  When Otter  is used, the
only−if  part of the definition of associativity produces Skolem functions.   (Of course, one does not encounter these Skolem
functions when all one is doing is deriving consequences of the associative law.)
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à reification

One of the pleasant features of Gödel’s class theory is that all quantifiers over set−variables  can be eliminated.  Since the
variables  u, v and  w  in the definition of associativity all refer to sets, these variables can be eliminated to obtain a quanti-
fier−free  definition of associativity.  The technical means for doing this in a nice way is to use a technique that the author
calls reification.  The idea is to assign an object (class) to each class−constructor.   Consider, for example, the power class
contructor  P[x].  Corresponding to this constructor, there is a function  POWER  that takes each set to the corresponding
power set:

In[3]:= class@pair@x, yD, equal@y, P@xDDD
Out[3]= POWER

This idea works fine for many constructors, but not when the constructor takes a set to a proper class.  For example, the
complement of a set is a proper class, and so there is no useful function that corresponds to it:

In[4]:= class@pair@x, yD, equal@y, complement@xDDD
Out[4]= 0

The idea of reification is to replace  equal  by  member.  Of course, one no longer gets a function, but one does obtain a
relation that captures all of the information contained in the constructor that pertains to the case when the constructor is
applied to sets.  (One does lose the information about the constructor when it is applied to proper classes.)

In[5]:= class@pair@x, yD, member@y, P@xDDD
Out[5]= inverse@SD
In[6]:= class@pair@x, yD, member@y, complement@xDDD
Out[6]= composite@Id, complement@inverse@EDDD
In general,  reify[x,  F[x]]   denotes the result of reifying a constructor  F.  For example:

In[7]:= reify@x, P@xDD
Out[7]= inverse@SD
An interesting feature of reification is that the reification of a composite constructor  F[G[x]]  can be expressed in terms of
the reification of the inner constructor.  The formula for this is different for each outer constructor.  For example:

In[8]:= reify@x, complement@G@xDDD
Out[8]= composite@Id, complement@reify@x, G@xDDDD
In[9]:= reify@x, P@G@xDDD
Out[9]= inverse@LB@reify@x, G@xDDDD

award−03.nb 2



à the associative law without variables

When reification is applied to the middle variable  v  in the associativity condition, one obtains a statement with one fewer
variable.  It says that left multiplication by u commutes with right multiplication by  w.  (For convenience, application of the
function  f  will  be called multiplication.)

In[10]:= Map@reify@v, #D &,
image@f, cart@image@f, cart@singleton@uD, singleton@vDDD, singleton@wDDD ==
image@f, cart@singleton@uD, image@f, cart@singleton@vD, singleton@wDDDDDD

Out[10]= composite@f, RIGHT@wD, f, LEFT@uDD == composite@f, LEFT@uD, f, RIGHT@wDD
The functions  LEFT[u]    and  RIGHT[w] are defined as follows:

In[11]:= class@pair@x, pair@y, zDD, and@equal@y, uD, equal@z, xDDD
Out[11]= LEFT@uD
In[12]:= class@pair@x, pair@y, zDD, and@equal@y, xD, equal@z, wDDD
Out[12]= RIGHT@wD
The composite function  composite[f,  LEFT[u]]   is  left−multiplication  by  u  and  composite[f, RIGHT[w]]   is right−
multiplication  by  w.  

The elimination of variables can be continued.  The results are improved by judicious applications of flip, rotate and
inverse:

In[13]:= Map@rotate@inverse@reify@u, #DDD &,
composite@f, RIGHT@wD, f, LEFT@uDD == composite@f, LEFT@uD, f, RIGHT@wDD D

Out[13]= composite@f, RIGHT@wD, f, id@cart@V, VDDD ==
composite@f, cross@Id, composite@f, RIGHT@wDDDD

In[14]:= Map@flip@rotate@inverse@reify@w, #DDDD &, composite@f, RIGHT@wD, f, id@cart@V, VDDD ==
composite@f, cross@Id, composite@f, RIGHT@wDDDDD

Out[14]= composite@f, cross@composite@f, id@cart@V, VDDD, IdDD ==
composite@f, cross@Id, fD, ASSOCD

Because  f  is a binary function, this equation can be cleaned up by noticing that  composite[f, id[cart[V,  V]]   =  f.  The
associative law in this form also makes sense when  f  is not single−valued.   The predicate  associative  in the GOEDEL
program is defined as follows:

In[15]:= associative@xD �� AssertTest

Out[15]= associative@xD ==
and@equal@composite@x, cross@x, IdDD, composite@x, cross@Id, xD, ASSOCDD,
subclass@x, cart@cart@V, VD, VDDD

It  would be natural to call  x  an associative relation when this condition holds.  (Remark: this term has other meanings in
psychology and elsewhere.)   No restrictions are placed on the domain other than that it is contained in the class of ordered
pairs.  The class  x  need not be a set.
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à some examples

Some familiar functions that are associative come to mind: most of these are proper classes.

In[16]:= Select@NamedClasses, associativeD
Out[16]= 80, CAP, COMPOSE, CUP, FIRST, NATADD, NATMUL, SECOND, SYMDIF<
The functions  NATADD  and  NATMUL   are addition and multiplication of natural numbers.  The domains of all these are
cartesian squares:

In[17]:= Map@domain, 80, CAP, COMPOSE, CUP, FIRST, NATADD, NATMUL, SECOND, SYMDIF<D
Out[17]= 80, cart@V, VD, cart@V, VD, cart@V, VD, cart@V, VD,

cart@omega, omegaD, cart@omega, omegaD, cart@V, VD, cart@V, VD<
The domain of an associative function need not be a cartesian square.  A simple example is the inverse of the duplication
function:

In[18]:= class@pair@pair@x, yD, zD, and@equal@x, yD, equal@y, zDDD
Out[18]= inverse@DUPD
In[19]:= 8associative@inverse@DUPDD, FUNCTION@inverse@DUPDD, domain@inverse@DUPDD<
Out[19]= 8True, True, Id<
Another example is the so−called  pair−groupoid,  studied by W. Brandt in the 1920’s.  The idea is to define a multiplication
by   (a, b) (b, c) = (a, c).  The function that does this is:

In[20]:= class@pair@pair@pair@u, vD, pair@w, xDD, pair@y, zDD,
and@equal@v, wD, equal@u, yD, equal@x, zDDD

Out[20]= composite@RIF, cross@SWAP, SWAPDD
This is indeed an associative function.  Its domain is not a cartesian square.  

In[21]:= Map@8associative@#D, FUNCTION@#D, domain@#D< &, 8composite@RIF, cross@SWAP, SWAPDD<D
Out[21]= 88True, True, composite@inverse@FIRSTD, SECONDD<<
The rotation−invariant  function  RIF  that appears here has many other important applications.  It  has the property of
converting cartesian products into composites:

In[22]:= image@RIF, cart@x, yDD
Out[22]= composite@inverse@yD, inverse@xDD
Padmanabhan pointed out another example of an associative function:

In[23]:= class@pair@pair@pair@u, vD, pair@w, xDD, pair@y, zDD, and@equal@u, yD, equal@x, zDDD
Out[23]= cross@FIRST, SECONDD
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This is also an associative function.  Its domain is a cartesian square.

In[24]:= Map@8associative@#D, FUNCTION@#D, domain@#D< &, 8cross@FIRST, SECONDD<D
Out[24]= 88True, True, cart@cart@V, VD, cart@V, VDD<<
à some theorems about associative relations

Only a few theorems have been derived so far about associative relations.  The flip of an associative relation is associative:

In[25]:= associative@composite@x, SWAPDD
Out[25]= associative@composite@x, id@cart@V, VDDDD
The direct product of associative relations is associative:

In[26]:= implies@and@associative@xD, associative@yDD,
associative@composite@cross@x, yD, TWISTDDD

Out[26]= True

The direct product is defined as follows:

In[27]:= class@pair@pair@pair@u1, u2D, pair@v1, v2DD, pair@w1, w2DD,
and@member@pair@pair@u1, v1D, w1D, xD, member@pair@pair@u2, v2D, w2D, yDDD

Out[27]= composite@cross@x, yD, TWISTD
Associated with any associative relation are left and right divisibility relations, and each of these is transitive.

In[28]:= implies@associative@xD, TRANSITIVE@composite@x, inverse@FIRSTDDDD
Out[28]= True

In[29]:= implies@associative@xD, TRANSITIVE@composite@x, inverse@SECONDDDDD
Out[29]= True

à semigroups, quasigroups and groups

The statement that  f  is a semigroup on  s  can be formulated as:

In[30]:= semigroup@f_, s_D :=
and@associative@fD, FUNCTION@fD, equal@domain@fD, cart@s, sDD, subclass@range@fD, sDD

For example:

In[31]:= semigroup@NATADD, omegaD
Out[31]= True
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The definition of quasigroup does not involve associativity.  The definition says that  f,  rotate[f]  and  rotate[rotate[f]]  are
all functions with domain  car t[s,s].

In[32]:= quasigroup@f_, s_D :=
and@FUNCTION@fD, FUNCTION@rotate@fDD, FUNCTION@rotate@composite@f, SWAPDDD,

equal@domain@fD, cart@s, sDD, equal@composite@f, inverse@FIRSTDD, cart@s, sDD,
equal@composite@f, inverse@SECONDDD, cart@s, sDDD

The fact that range[f] = s can be deduced as a theorem.  Note that the empty set satisfies this condition:

In[33]:= quasigroup@0, 0D
Out[33]= True

The traditional definition of group requires it to be nonempty.  This condition is independent of the other requirements in
the definition of a group.

In[34]:= group@f_, s_D := and@associative@fD, quasigroup@f, sD, not@equal@0, sDDD
This definition of group does not require that  s  be a set.  The symmetric difference function defines a group on the univer-
sal class, for example:

In[35]:= group@SYMDIF, VD
Out[35]= True

à abstraction

Although the predicate associative will  probably suffice for most algebraic studies, it is also possible to obtain an explicit
formula for the class of all associative relations.  To do this, it is useful to rewrite the associative law in an unusual way
which transforms it into a statement about the cartesian square of   f.  The chief tool here is abstraction, which is defined in
terms of reification.  The process is vaguely analogous to abstraction in lambda calculus.

In[36]:= Begin@"Goedel‘Private‘"D;
In[37]:= ?? abstract

abstract@x,F@xDD yields a class y satisfying F@xD = image@y,xD if such a class exists

abstract@x_, y_D := composite@reify@x, yD, SINGLETOND
A simple example is the sum−class  constructor:

In[38]:= class@z, exists@y, and@member@z, yD, member@y, xDDDD
Out[38]= U@xD
Abstraction yields:

In[39]:= abstract@x, U@xDD
Out[39]= inverse@ED
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One needs to verify that this is correct because the GOEDEL  program does not investigate whether  U[x]   can in fact be
written as an image.  It can:

In[40]:= image@inverse@ED, xD
Out[40]= U@xD
For binary constructors, one can iterate this procedure.  Consider the cartesian product constructor, for example:

In[41]:= abstract@x, abstract@y, cart@x, yDDD
Out[41]= composite@id@inverse@SECONDDD, inverse@SECONDD, inverse@FIRSTDD
It works:

In[42]:= image@image@composite@id@inverse@SECONDDD, inverse@SECONDD, inverse@FIRSTDD, xD, yD
Out[42]= cart@x, yD
For  composite, the rotation−invariant  function  RIF  makes its appearance:

In[43]:= abstract@x, abstract@y, composite@x, yDDD
Out[43]= composite@cross@Id, SWAPD, inverse@RIFDD
In[44]:= image@image@composite@cross@Id, SWAPD, inverse@RIFDD, xD, yD
Out[44]= composite@x, yD
In general, for a binary constructor, one can abstract on the two variables in either order.  If  the process works in one order,
it also works in the other order.  It is easy to relate the one order to the other:

In[45]:= Map@abstract@x, abstract@y, #DD &, image@image@u, xD, yD == image@image@v, yD, xDD
Out[45]= composite@id@cart@V, VDD, uD == inverse@rotate@composite@inverse@vD, SWAPDDD
The identity on the left side is not essential, both here and below.  The result obtained can be verified directly:

In[46]:= image@image@inverse@rotate@composite@inverse@vD, SWAPDDD, xD, yD
Out[46]= image@image@v, yD, xD
In addition, one can also replace the inner image with car t:

In[47]:= Map@abstract@x, abstract@y, #DD &, image@image@u, xD, yD == image@w, cart@x, yDDD
Out[47]= composite@id@cart@V, VDD, uD == composite@SWAP, inverse@rotate@composite@w, SWAPDDDD
One can solve for  w:

In[48]:= Map@rotate@inverse@#DD &, %D
Out[48]= rotate@inverse@uDD == composite@w, id@cart@V, VDDD
The result can be verified directly:
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In[49]:= image@rotate@inverse@uDD, cart@x, yDD
Out[49]= image@image@u, xD, yD
à the class of all associative relations

The expressions that appear in the associative law can not be written as image of anything, but one can apply abstraction
after replacing one of the variables on each side by a different variable.  In other words, one considers the following generali-
zation of the associative law:

In[50]:= composite@x, cross@y, IdDD == composite@x, cross@Id, yD, ASSOCD;
Abstract on  x  and  y  and apply rotate and inverse.  The upshot is that these formulas can be derived:

In[51]:= image@composite@SWAP, RIF,
cross@Id, composite@cross@SWAP, IdD, inverse@RIFDDDD, cart@x, yDD

Out[51]= composite@x, cross@y, IdDD
In[52]:= image@composite@SWAP, RIF,

cross@Id, composite@cross@inverse@ASSOCD, SWAPD, inverse@RIFDDDD, cart@x, yDD
Out[52]= composite@x, cross@Id, yD, ASSOCD
Setting  y  equal to  x, one finds that the associative law can now be written in the form of a condition on the cartesian
square:

In[53]:= image@u, cart@x, xDD == image@v, cart@x, xDD;
From this observation it is not hard to come up with the following formula for the class of associative relations:

In[54]:= intersection@fix@image@inverse@CARTD, fix@composite@inverse@IMAGE@
composite@SWAP, RIF, cross@Id, composite@cross@SWAP, IdD, inverse@RIFDDDDDD,

IMAGE@composite@SWAP, RIF, cross@Id, composite@cross@inverse@ASSOCD, SWAPD,
inverse@RIFDDDDDDDDD, P@cart@cart@V, VD, VDDD

Out[54]= ASSOCIATIVE

For example, the addition and multiplication functions for natural number arithmetic are members of this class:

In[55]:= member@NATADD, ASSOCIATIVED
Out[55]= True

In[56]:= member@NATMUL, ASSOCIATIVED
Out[56]= True
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à discussion about combinators

In the discussion following this talk the question was raised about the relation of  RIF  to the combinator  B.  The abstrac-
tion process does not allow one to find a full  model for the lambda calculus with image as application and proper classes as
combinators.  There are no classes that behave like the combinators  S  and  W, or anything that involves duplicating an
argument.  One can however find a class that behaves like the combinator  B.  To discover it, one abstracts on the defining
equation:

In[57]:= Map@abstract@x, abstract@y, abstract@z, #DDD &,
image@image@image@B, xD, yD, zD == image@x, image@y, zDDD

Out[57]= composite@id@cart@V, cart@V, VDDD, BD == composite@cross@Id, SWAPD, inverse@RIFDD
Ignore the identity for the moment, and make this into a definition:

In[58]:= B := composite@cross@Id, SWAPD, inverse@RIFDD
This combinator−like  relation has the following propertties.  It is not a function, but it is the inverse of one:

In[59]:= FUNCTION@inverse@BDD
Out[59]= True

The first image produces cross.

In[60]:= image@B, xD
Out[60]= cross@Id, xD
The second yields composite.

In[61]:= image@image@B, xD, yD
Out[61]= composite@x, yD
The third image gives back the defining equation for  B.

In[62]:= image@image@image@B, xD, yD, zD
Out[62]= image@x, image@y, zDD
The identities that were ignored above can be absorbed into  B.

In[63]:= composite@id@cart@V, cart@V, VDDD, BD == B

Out[63]= True

Similar results can be obtained for  I , K , C, and various other combinators, but not the mockingbird, etc.   In the case of  K
= inverse[SECOND], one needs to restrict the variables in the usual defining equation to nonempty classes:

In[64]:= equal@image@image@inverse@SECONDD, xD, yD, xD
Out[64]= or@equal@0, xD, not@equal@0, yDDD
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Suppose one defines a predicate cancellative by removing the domain conditions from the definition of quasigroup:

In[65]:= cancellative@f_D :=
and@FUNCTION@fD, FUNCTION@rotate@fDD, FUNCTION@rotate@composite@f, SWAPDDDD

Some examples :

In[66]:= Select@BinaryFuns@NamedClassesD, cancellativeD
Out[66]= 80, ASSOC, KURA, NATADD, RIF, ROT, SWAP, SYMDIF, TWIST<
The inverses of  B,  C = composite[SWAP, inverse[ASSOC], cross[Id, SWAP]] , and  T = image[C, Id]  = inverse[rotate[-
SWAP]]  are all cancellative.  But inverse[K] is not.  The relations rotate[inverse[K]] and rotate[inverse[B]] are associa-
tive, but  rotate[inverse[T]] is not.  Another interesting observation:  C  is its own inverse.  
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