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Abstract. In this paper we study valid inequalities for a set that in-
volves a continuous vector variable x ∈ [0, 1]n, its associated quadratic
form xxT , and binary indicators on whether or not x > 0. This structure
appears when deriving strong relaxations for mixed integer quadratic
programs (MIQPs). Valid inequalities for this set can be obtained by
lifting inequalities for a related set without binary variables (QPB),
that was studied by Burer and Letchford. After closing a theoretical gap
about QPB, we characterize the strength of different classes of lifted
QPB inequalities. We show that one class, lifted-posdiag-QPB inequali-
ties, capture no new information from the binary indicators. However, we
demonstrate the importance of the other class, called lifted-concave-QPB
inequalities, in two ways. First, all lifted- concave-QPB inequalities define
the relevant convex hull for the case of convex quadratic programming
with indicators. Second, we show that all perspective constraints are a
special case of lifted-concave-QPB inequalities, and we further show that
adding the perspective constraints to a semidefinite programming relax-
ation of convex quadratic programs with binary indicators results in a
problem whose bound is equivalent to the recent optimal diagonal split-
ting approach of Zheng et al.. Finally, we show the separation problem
for lifted-concave-QPB inequalities is tractable if the number of binary
variables involved in the inequality is small. Our study points out a direc-
tion to generalize perspective cuts to deal with non-separable nonconvex
quadratic functions with indicators in global optimization. Several inter-
esting questions arise from our results, which we detail in our concluding
section.

Keywords: Mixed integer quadratic programming, Semidefinite pro-
gramming, Valid inequalities, Perspective reformulation

1 Introduction

Our primary goal in this work is to solve Mixed Integer Quadratic Programming
(MIQP) problems with indicator variables of the form

min
x∈Rn,z∈{0,1}n

{qTx+cT z+xTQx | Ax+Bz ≤ b, 0 ≤ xi ≤ uizi ∀i = 1, . . . n}. (1)
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In (1), the binary variable zi is used to indicate the positivity of its associated
continuous variable xi,∀i = 1, . . . , n. Related problems of this type arise in many
applications, including portfolio selection [4], sparse least-squares [20], optimal
control [18], and unit-commitment for power generation [14]. The optimization
problem (1) can be very difficult to solve to optimality. Computational experi-
ence presented in [3] shows that for problems of size n = 100, a branch-and-
bound algorithm typically requires more than 106 nodes to solve the problem to
optimality.

A standard technique for solving (1) is to linearize the objective by intro-
ducing a new variable for each product of variables xixj , arranging these new
variables into a matrix variable X. Problem (1) can then be written as

min
(x,z,X)∈T

{qTx+ cT z +Q •X}, (2)

where

T :=

{
(x, z,X) ∈ R2n+

n(n+1)
2

∣∣∣∣ z ∈ {0, 1}n, X = xxT , Ax+Bz ≤ b
0 ≤ xi ≤ uizi, i = 1, ..., n

}
.

All matrices considered in this paper are symmetric, so they can be represented

as a vector in a linear space of dimension n(n+1)
2 by stacking columns of upper

triangular part of the matrix. Given two n × n symmetric matrices X and Y ,
their inner product is defined as X • Y =

∑n
i=1XiiYii + 2

∑
i<j XijYij .

To solve Problem 2, it suffices to optimize the objective over conv(T ), so it
is natural to study T and closely-related sets. In this paper, we primarily study
valid inequalities for the following set and its convex hull:

S :=

{
(x, z,X) ∈ R2n+

n(n+1)
2 ,

x ∈ [0, 1]n, z ∈ {0, 1}n,
X = xxT , xi ≤ zi, i = 1, ..., n

}
.

In S, the general bounds on the continuous variables in T have changed to
x ∈ [0, 1]n. This change results in no loss of generality. However, the set S does
not have the linear constraints Ax+Bz ≤ b in the definition of T .

By moving the nonlinearity in (1) into the constraints, many of the results
we obtain can be directly applied to create strong convex relaxations of prob-
lems that additionally have quadratic constraints and indicator variables. These
problem arise in applications such as product pooling with network design [12,
22] and digital filter design [24].

When the quadratic functions are convex, a more natural relaxation to study
is the following “larger” set,

S� :=

{
(x, z,X) ∈ R2n+

n(n+1)
2 ,

x ∈ [0, 1]n, z ∈ {0, 1}n,
X � xxT , xi ≤ zi, i = 1, ..., n

}
,

where the notation X � xxT means that the matrix X−xxT is positive semidef-
inite.

The remainder of the extended abstract is organized into five sections. Sec-
tion 2, describes basic properties of the set S. The relationship between S, the
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Boolean Quadric Polytope BQP [21], and the box-constrained QP set QPB
[10] is shown, and we slightly strengthen an earlier result known about valid
inequalities for QPB. We next discuss valid inequalities of S obtained by lift-
ing certain inequalities for QPB. The inequalities are divided into two classes,
called lifted-posdiag-QPB inequalities, and lifted-concave-QPB inequalities. Sec-
tion 3 shows the negative results that lifted-posdiag-QPB inequalities contribute
essentially no additional strength to the continuous relaxation. In Section 4, we
establish the importance of lifted-concave-QPB inequalities for defining strong
relaxations of S. We show that the “simplest” class of lifted-concave-QPB in-
equalities already contains all perspective cuts [13]. As a by-product, for convex
quadratic programs with binary indicators, we propose a semidefinite program-
ming (SDP) relaxation that is no worse than the relaxation obtained by any
diagonal splitting and perspective reformulation scheme [15]. Further, the cor-
responding dual SDP provides the optimal diagonal splitting. A similar (but
slightly weaker) result was previously obtained in [25]. In Section 4, we also
show that every valid linear inequality for conv(S�) is a lifted-concave-QPB
inequality. Finally, in Section 5, we provide a tractability result on the separa-
tion of lifted-concave-QPB inequalities, establishing that the inequalities can be
separated (in the weak sense) in time that is polynomial in n when the binary
variables simultaneously lifted is bounded. Section 5 also contains an example of
size n = 3 where the relaxation with lifted-concave-QPB inequalities dominates
the doubly-nonnegative relaxation of [8]. We conclude in Section 6 with some
natural directions for research that are motivated by this work.

2 Basic Properties

Proposition 1 establishes three fundamental properties of conv(S) and conv(S�).

Proposition 1

– Both conv(S) and conv(S�) are full-dimensional;
– The set of extreme points for conv(S) is S;

– conv(S�) = conv(S) +
{

(0, 0, X) ∈ R2n+
n(n+1)

2 , X � 0
}

.

Proof. The straightforward proof is given in the appendix.

By projecting away z from conv(S), we obtain the set QPB studied in [10],

proj(x,X) (conv(S)) = QPB = conv{(x,X) ∈ Rn+
n(n+1)

2 :

x ∈ [0, 1]n, Xij = xixj , 1 ≤ i ≤ j ≤ n}.

Furthermore, as proved by [10], projecting away the diagonal entries of X in
QPB yields the well-known Boolean Quadric Polytope (BQP) [21]:

proj(x,ADiag(X)) (QPB) = BQP = conv{(x, y) ∈ Rn+
n(n−1)

2 :

x ∈ {0, 1}n, yij = xixj , 1 ≤ i < j ≤ n},
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where ADiag(X) denotes a vector of dimension n(n−1)/2 obtained by stacking
entries above (but not including) the diagonal of X. These two observations
reveal the set conv(S) to contain interesting interactions between continuous
and binary variables in the quadratic context.

Burer and Letchford [10] also classified linear inequalities valid for QPB
according to the eigenvalues of the matrix of coefficients for X. Specifically, the
inequality

B •X + αTx+ γ ≤ 0 (3)

is called convex-QPB, concave-QPB, or indefinite-QPB, if its associated quadratic
form xTBx + αTx + γ is convex, concave or indefinite, respectively. Burer and
Letchford proved the following results for convex and concave-QPB inequalities.

Proposition 2 ([10],Proposition 8) A point (x̄, X̄) ∈ Rn+
n(n+1)

2 satisfies all
concave-QPB inequalities if and only if it is in the convex set{

(x,X)
∣∣X � xxT , x ∈ [0, 1]n

}
.

The original proposition in [10] does not demonstrate the “only if” part of Propo-
sition 2, but the result easily follows from the fact that X � xxT is equivalent
to (x,X) satisfying the infinitely-many concave inequalities

−
(
s
v

)T (
1 xT

x X

)(
s
v

)
= −(vvT ) •X − 2(sv)Tx− s2 ≤ 0,∀s ∈ R, v ∈ Rn−1.

This observation also establishes that it suffices to consider concave-QPB in-
equalities with rank(B) ≤ 1.

For convex-QPB inequalities, Burer and Letchford provided the following
partial characterization.

Proposition 3 ([10], Proposition 9) If B • X + αTx + γ ≤ 0 is a valid in-
equality for QPB and B � 0, then it is valid for the convex set

{(x,X)|(x,ADiag(X)) ∈ BQP, Xii ≤ xi,∀i = 1, . . . , n} .

Proposition 3 only establishes the necessity for (3) to be a convex-QPB inequal-
ity, not its sufficiency. We fill this gap in Proposition 4 by considering a larger
class that includes the convex-QPB inequalities.

Proposition 4 A point (x̄, X̄) satisfies all inequalities B • X + αTx + γ ≤ 0
with Bii ≥ 0,∀i = 1, ..., n valid for QPB if and only if it is in the convex set

{(x,X)|(x,ADiag(X)) ∈ BQP, Xii ≤ xi,∀i = 1, . . . , n} .

Proof. The proof is given in the appendix.

We call inequalities (3) with Bii ≥ 0 valid for QPB posdiag-QPB inequalities.
Let Q be the intersection of the two convex sets in Propositions 2 and 4, i.e.,

Q is the relaxation of QPB defined by all concave and posdiag-QPB inequalities.
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Separating concave-QPB inequalities can be done in polynomial time, but sepa-
rating convex, or posdiag-QPB inequalities is NP-Complete, as BQP is affinely
equivalent to the cut polytope [21].

Burer and Letchford demonstrate that QPB ( Q, even for n = 3, although
it follows from [2] that QPB = Q for n ≤ 2. On the other hand, Q empirically
has been shown to be a very tight relaxation of QPB. Specifically, Anstreicher
[1] shows that using a subset of all valid inequalities for Q suffices to solve 49 of
50 instances (up to size n = 60) of the BoxQP library [11] at the root node. The
inequalities used in the study of Anstreicher are all concave-QPB inequalities and
posdiag-QPB inequalities derived via the Reformulation-Linearization Technique
[23] and the triangle inequalities for BQP introduced by [21].

In the remainder of the paper, we study valid inequalities for the case conv(S)
(and conv(S�)), when the indicator variables z come into play. Note that by
setting zi = 1 ∀i, conv(S) is easily mapped to QPB. Our hope is to capitalize
on the strength of Q as a relaxation of QPB to generate strong relaxations for
conv(S). More specifically, for any valid inequality for conv(S)

B •X + αTx+ γ ≤ δT z, (4)

the inequality B•X+αTx+(γ−δT e) ≤ 0 is a valid inequality for QPB, where e
is a vector of all ones with proper dimension. In this sense, valid inequalities for
conv(S) can be obtained by lifting valid inequality for QPB, i.e., by determining
δ and modifying the constant term appropriately. We analyze the strength of
lifted-concave and lifted-posdiag-QPB inequalities separately in the following
two sections.

3 Lifted-Posdiag-QPB Inequalities

In this section we characterize the set defined by all lifted-posdiag-QPB inequal-
ities for conv(S). The analysis shows the “negative” result that lifted-posdiag-
QPB inequalities provide no restriction on zi other than that provided by the
continuous relaxation: xi ≤ zi ≤ 1.

Theorem 1. A point (x̄, X̄, z̄) ∈ R2n+
n(n+1)

2 satisfies all valid inequalities
B •X + αTx+ γ ≤ δT z for conv(S), with Bii ≥ 0,∀i = 1, . . . , n, if and only if
it is in the following convex set:

{(x,X, z)|(x,ADiag(X)) ∈ BQP, Xii ≤ xi ≤ zi ≤ 1,∀i = 1, . . . .n} . (5)

Proof. We first show that if (x̄, X̄, z̄) satisfies all valid inequalities for conv(S)
with Bii ≥ 0, then the point is in the set defined in (5). Since BQP is a projection
of QPB, any valid inequality for (x,ADiag(X)) ∈ BQP is a lifted-posdiag-QPB
inequality for conv(S), as the coefficients for Xii are zeros. The inequalities
Xii − xi ≤ 0, xi ≤ zi and −1 ≤ −zi are also lifted-posdiag-QPB inequalities.

To prove the other direction, let (x̄, X̄, z̄) be such that (x̄,ADiag(X̄)) ∈
BQP, X̄ii ≤ x̄i ≤ z̄i ≤ 1∀i = 1, . . . , n. We show this point satisfies all lifted-
posdiag-QPB inequalities for conv(S). The first claim is that it suffice to show
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this for all lifted-posdiag-QPB inequalities with δi ≥ 0 ∀i = 1, . . . , n. A proof of
the claim is given in the appendix.

Claim. B • X + αTx + γ ≤ δT z is valid for conv(S) if and only if the tighter
inequality

B •X + αTx+ γ ≤
∑
i:δi≥0

δizi +
∑
i:δi<0

δi (6)

is also valid for conv(S).

Next for any B •X + αTx + γ ≤ δT z valid for conv(S), if x = z ∈ {0, 1}n,
we have that xTBx+ (α− δ)Tx+ γ ≤ 0 for all x ∈ {0, 1}n.

As we assumed (x̄,ADiag(X̄)) ∈ BQP, there exists a set with at most

K = n + n(n+1)
2 + 1 binary vectors: {yk}Kk=1 such that x̄ =

∑K
k=1 λkyk and

X̄ − Diag(X̄) + Diag(x̄) =
∑K
k=1 λkyky

T
k . Here λk ≥ 0,

∑
k λk = 1, X̄ −

Diag(X̄) + Diag(x̄) means replacing the diagonal of X̄ with entries in x̄, i.e.,
Diag(X̄) is a diagonal matrix with the diagonal entries of X̄, and Diag(x̄) is a
diagonal matrix with entries of vector x̄. Then,

B • X̄ + αT x̄+ γ − δT z̄ ≤ B • X̄ + (α− δ)T x̄+ γ

= B • (X̄ −Diag(X̄) + Diag(x̄)) + (α− δ)T x̄+ γ +

n∑
i=1

Bii(X̄ii − x̄i)

≤ B •

(∑
k

λkyky
T
k

)
+ (α− δ)T

(∑
k

λkyk

)
+ γ

=
∑
k

λk
(
B • ykyTk + (α− δ)T yk + γ

)
≤ 0.

The first inequality follows because δi ≥ 0 and x̄i ≤ z̄i. The second inequality is
because Bii ≥ 0 and X̄ii ≤ x̄i. The final inequality follows from the observation
in the previous paragraph. This concludes our proof.

A similar negative result holds for conv(S�).

Proposition 5 An inequality B•X+αTx+γ ≤ δT z with Bii ≥ 0, ∀i = 1, . . . , n
is valid for conv(S�) if and only if B = 0 and αTx + γ ≤ δT z is valid for the
convex set {(x, z) | 0 ≤ x ≤ z ≤ 1} .

Proof. The proof is given in the appendix.

4 Lifted-Concave-QPB Inequalities

In this section, we consider the lifted-concave-QPB inequalities for conv(S) and
show that the class defines conv(S�).

Proposition 6 A point (x̄, X̄, z̄) ∈ R2n+
n(n+1)

2 satisfies all valid inequalities
B • X + αTx + γ ≤ δT z for conv(S), with B � 0 if and only if (x̄, X̄, z̄) ∈
conv(S�).
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Proof. The proof uses the fact that

conv(S�) = conv(S) +
{

(0, 0, X) ∈ R2n+
n(n+1)

2 , X � 0
}

and is given in the appendix.

Next we consider the special case where each of B, α, and δ have at most one
nonzero entry. We show that this class of inequalities includes all perspective
cuts that use diagonal entries of X. Further, we show that by adding this simple
class of inequalities to the semidefinite programming (SDP) relaxation of (1)
when Q � 0 results in an relaxation equivalent to the recent optimal diagonal
splitting approach of [25]. We first characterize all valid inequalities for conv(S)
that involve only x, diag(X) and z.

Theorem 2. A point (x̄, z̄, X̄) satisfies all valid inequalities
∑n
i=1 biXii+α

Tx+
γ ≤ δT z for conv(S) if and only if it is in the convex set

P :=

{
(x, z,X)

∣∣∣∣0 ≤ Xii ≤ xi ≤ zi ≤ 1,
Xiizi ≥ x2

i ,∀i = 1, ..., n

}
.

Proof. Note that the definition of P involves only x, z and diag(X). For all
i = 1, . . . , n, since Xii ≥ 0 and zi ≥ 0, the second-order-cone representable
constraints Xiizi ≥ x2

i are can be replaced by their (infinite number of) linearized

inequalities. At point (x̂i, X̂ii, ẑi) such that X̂iiẑi = x̂2
i and 0 ≤ x̂i ≤ ẑi ≤ 1, the

linearization is
−ẑiXii + 2x̂ixi ≤ X̂iizi. (7)

So if (x̄, z̄, X̄) satisfies all
∑n
i=1 biXii+α

Tx+γ ≤ δT z that are valid for conv(S),
it must be in P.

On the other hand, if
∑n
i=1 biXii+αTx+γ ≤ δT z is valid for conv(S), then

γ ≤ min{δT z−
∑n
i=1 bix

2
i −αTx|0 ≤ xi ≤ zi ∈ {0, 1},∀i}. Define γi = min{δizi−

bix
2
i − αixi|0 ≤ xi ≤ zi ∈ {0, 1}}, we must have γ ≤

∑n
i=1 γi. Further, each

disaggregated inequality biXii+αixi+γi ≤ δizi is valid for {(xi, zi, x2
i )|0 ≤ xi ≤

zi ∈ {0, 1}}. By the convex hull characterization of the latter set (for example
[16]), such a disaggregated inequality is valid for P. Therefore

∑n
i=1 biXii +

αTx+ γ ≤ δT z is also valid for P.

The inequalities Xiizi ≥ x2
i are called perspective constraints in the literature

[15–17]. In these works, the variables Xii are introduced to represent x2
i . For

fixed i, in the space of (xi, zi, Xii), the lower convex envelope of the feasible set
{(0, 0, 0)} ∪ {(xi, 1, x2

i )|0 ≤ xi ≤ 1} is

X̃ii(zi, xi) =

{
x2
i

zi
, 0 ≤ xi ≤ zi ≤ 1, zi 6= 0,

0, xi = zi = 0.

So we see that Xii ≥ X̃ii(zi, xi) is equivalent to Xiizi ≥ x2
i with additional

restriction 0 ≤ Xii ≤ xi ≤ zi ≤ 1.
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It is shown, for example in [16], that if the nonlinear functions are appro-
priately separable (in our context, that there are no off-diagonal entries of X
appearing in the objective or constraints), employing perspective constraints
improves the solution time significantly for convex MINLPs. For the case of
non-separable quadratic programs, one approach is to extract a separable part
from the objective function, and apply the perspective constraints on this sep-
arable part. We briefly describe this procedure here and show how it is related
with the simplest class of lifted-concave-QPB inequalities.

Let ζ denote the optimal value of (1) with Q � 0. A method to strengthen
the continuous relaxation of (1) proposed by [15] is to find a diagonal matrix
D with Dii ≥ 0 ∀i and Q − D � 0, and to solve the diagonally-split convex
(perspective) relaxation

ζPR(D) := min
p,x,z

{
xT (Q−D)x+

n∑
i=1

pi + qTx+ cT z

∣∣∣∣∣Ax+Bz ≤ b, pizi ≥ Diix
2
i

0 ≤ xi ≤ zi ≤ 1,∀i

}
.

The constraints pizi ≥ Diix
2
i come again from the fact that the function f(xi, zi) =

Diix
2
i

zi
(if we define f(0, 0) = 0) is the lower convex envelope of set {(0, 0)} ∪{

(Diix
2
i , 1)

∣∣ 0 ≤ xi ≤ 1
}

in the space of (xi, zi). The matrix D can be chosen
to be λminI if Q is positive definite with λmin as its minimum eigenvalue, or D
can be obtained from the solution of a semidefinite program that seeks to max-
imize its trace. The work [15] also illustrates that this approach improves the
performance of standard commercial solvers by several orders of magnitude on
some portfolio optimization problems. In [15], the second order cone constraints
pizi ≥ Diix

2
i are used to generate linear cutting planes (perspective cuts) like

(7).

An alternative way of constructing a tight relaxation is to use SDP. The
standard semidefinite relaxation for (1) is

ζSDP := min

{
Q •X + qTx+ cT z

∣∣∣∣X � xxT , Ax+Bz ≤ b,
0 ≤ xi ≤ zi ≤ 1,∀i

}
, (8)

and it is easy to show that the bound obtained from (8) is equal to the bound
obtained from the continuous relaxation of (1). However, if we strengthen (1)
by adding the perspective constraints as in Theorem 2, we obtain a semidefinite
relaxation which is no worse than ζPR(D) with any valid splitting Q = D +
(Q−D). Specifically, if we define

ζSDP/PR := min

{
Q •X + qTx+ cT z

∣∣∣∣X � xxT , Ax+Bz ≤ b,
Xiizi ≥ x2

i , 0 ≤ xi ≤ zi ≤ 1,∀i

}
, (9)

then we have the following proposition.

Proposition 7 For all diagonal D � 0 and Q−D � 0, ζ ≥ ζSDP/PR ≥ ζPR(D).
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Proof. It is straightforward to see ζ ≥ ζSDP/PR. Suppose (x̄, X̄, z̄) is an optimal
solution to (9), then for any nonnegative diagonal D such that Q−D � 0,

ζSDP/PR = Q • X̄ + qT x̄+ cT z̄ = D • X̄ + (Q−D) • X̄ + qT x̄+ cT z̄

≥
∑
i:z̄i>0

Dii
x̄2
i

z̄i
+ x̄T (Q−D)x̄+ qT x̄+ cT z̄ ≥ ζPR(D).

The first inequality is due to the fact that X̄iiz̄i ≥ x̄2
i and X̄ � x̄x̄T , and last

one is by definition of ζPR(D).

Further, if under some mild conditions, we can illustrate that there exists an
“optimal” D∗ such that ζSDP/PR = ζPR(D∗). This result can be seen as a more
natural derivation of the main result in [25], while our result deals with slightly
more general linear constraints.

Proposition 8 Suppose at least one of the following two conditions are satisfied,

1. ∃x̄, z̄ such that Ax̄ + Bz̄ < b, 0 < x̄i < z̄i < 1,∀i = 1, . . . , n (Slater Condi-
tion);

2. Q is positive definite.

Let
(
ŷ, α̂, β̂, γ̂, ŝ, v̂, Ŵ , λ̂, µ̂, τ̂

)
be an optimal solution to the following semidefi-

nite optimization

ζDSDP/PR := max −bT y − s− eT τ
s.t. Q−Diag(α) = W

q +AT y = 2γ + 2v + λ− µ
c+BT y = β + µ− τ(
s vT

v W

)
� 0,

(
αi γi
γi βi

)
� 0,∀i = 1, ..., n,

y, λ, µ, τ ∈ Rn+,

then ζPR(Diag(α̂)) = ζSDP/PR = ζDSDP/PR.

Proof. The proof is given in the appendix.

Two remarks are in order. First, Proposition 7 and 8 are relevant to results
for the so called QCR method [5, 6]. The QCR method aims to convexify non-
convex quadratic programs by adding terms which do not change the optimal
value, for example by adding a constant multiple of x2

i − xi if xi is binary, or
(aTx−b)2 if aTx = b is a valid constraint. The diagonal splitting approach works
in the opposite manner. One starts with a convex objective, extracts a separa-
ble part while maintaining the convexity, and strengthen the separable terms
using perspective constraints. It is interesting that in both cases, the optimal
reformulation parameters can be found by solving an SDP. Second, as suggested
by Kurt Anstreicher (personal communication), the inequalities Xiizi ≥ x2

i are
implied by the standard doubly nonnegative (DNN) relaxations [8, 9] for (1).



10 Hongbo Dong and Jeff Linderoth

5 Separation of Lifted-Concave-QPB Inequalities via
Simultaneous Lifting

In this section we show that if the number of binary variables appearing in the
inequality (Card(δ)) is fixed, then separation for lifted-concave-QPB inequalities
can be accomplished by solving a semidefinite programming problem of size
polynomial in n. Key to showing this result is a “dual” result to Proposition 2,
which gives a direct characterization of all concave-QPB inequalities.

Proposition 9 An inequality B •X+αTx+γ ≤ 0 is a concave-QPB inequality
if and only if (B,α, γ) is in the following set Vn:

Vn :=

(B,α, γ)

∣∣∣∣∣∣
(
s vT

v −B

)
� 0, µ− 2v + λ = α

−s− µT e ≥ γ, v ∈ Rn, λ, µ ∈ Rn+, s ≥ 0

 .

Proof. The proposition is proved by noting that B • X + αTx + γ ≤ 0 is a
concave-QPB inequality if and only if the following optimization (P) has non-
positive optimal objective value, where (D) is the associated dual problem.

max
0≤x≤e

B •X + αTx+ γ

s.t.,

(
1 xT

x X

)
� 0

(P)

min
λ,µ∈Rn

+

γ + s+ µT e,

s.t., α = µ− 2v − λ(
s vT

v −B

)
� 0

(D)

The primal problem satisfies the Slater condition, so by strong duality the con-
clusion easily follows.

We use Proposition 9 to create a separation problem for lifted-concave-QPB
inequalities. Note that B • X + αTx + γ ≤ δT z is a valid lifted-concave-QPB
inequality and Card(δ) ≤ k if and only if for all I ⊆ {1, ..., n}, |I| ≥ n − k,
(B[I,I], αI , γ − δT eI) ∈ V|I|, where B[I,I], αI are the corresponding principal
submatrix and subvector, and eI is a vector with ones at indices in I and zeros
elsewhere. In the separation problem, we write constraints defining V|I| for vari-
ables I we want appearing in the lifted-concave-QPB inequality. Thus, for fixed k,
the separation problem of all lifted-concave-QPB inequalities with Card(δ) ≤ k
can be written as an SDP of polynomial size in n. (In general the SDP size is of
O(nk)).

We conclude this paper by providing a small computational example to illus-
trate using that lifted-QPB-inequalities can improve the DNN relaxation, even
for n = 3. The example seems to also suggest the importance of lifted concave
inequalities with rank(B) small.

Example 1 (Non-dominance by doubly non-negative relaxation). We consider the
following convex quadratic program with binary indicators

min
x∈[0,1]3

xTQx+ cTx+ dT z

s.t. 0 ≤ xi ≤ zi, zi ∈ {0, 1}, i = 1, 2, 3,
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where

Q =

 4.4 3.1 −4.2
3.1 3.0 −3.2
−4.2 −3.2 4.6

 , c =

−1.4
−1.4
0.1

 , d =

0.4
0.2
0.5

 .

The optimal value is 0 and the optimal solution is x = z = 0. The DNN relax-
ation [8] (solved by using Yalmip [19] with CSDP [7]) yields a lower bound that
equals approximately −3.89× 10−2. Then we employ the SDP-based separation
procedure based on Proposition 9 with k = 3 to generate a valid lifted concave
inequality, and then resolve the strengthened DNN relaxation. The lower bound
is improved to the exact optimal value 0 (with accuracy about 10−10) after three
rounds. This computationally verifies Proposition 6. It is worth noting that the
eigenvalues of B matrices in three cuts are

[0.0000, 0.0000,−0.5492], [0.0000,−0.0469,−0.6526], [0.0000, 0.0000,−0.7511],

respectively, i.e., all of the B matrices are close to rank-one.

6 Discussion and Future Work

Results in this paper leave interesting open questions that we hope to address
in future work. First, note for the set QPB, we may assume that all concave
inequalities have rank(B) ≤ 1. A natural question is the extent to which this
result is true for conv(S). Example 1 suggests that lifted concave-QPB inequal-
ities with low rank of B may be more important than those with high rank.
Next, can we design effective separation heuristic algorithms for lifted concave-
QPB inequalities, especially when B has low rank? Last but not least, does the
lifted concave approach motivate “projected formulations” where one derives
valid inequalities using only O(n) number of variables?
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19. J. Löfberg. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

20. A. Miller. Subset Selection in Regression, volume 40 of Monographs in Statistics
and Applied Probability. Chapman and Hall, London, 1990.

21. M. Padberg. The Boolean quadric polytope: some characteristics, facets and rela-
tives. Math. Programming, 45(1, (Ser. B)):139–172, 1989.

22. D. J. Papageorgiou, A. Toriello, G. L. Nemhauser, and M. W. P. Savelsbergh.
Fixed-charge transportation with product blending. Transportation Science,
46(2):281–295, May 2012.

23. H. D. Sherali and W. P. Adams. A reformulation-linearization technique for solving
discrete and continuous nonconvex problems, volume 31 of Nonconvex Optimization
and its Applications. Kluwer Academic Publishers, Dordrecht, 1999.

24. D. Wei and A. V. Oppenheim. A branch-and-bound algorithm for quadratically-
constrained sparse filter design. IEEE Transactions on Signal Processing, 2012. To
appear.

25. X. Zheng, X. Sun, and D. Li. Improving the performance of MIQP solvers
for quadratic programs with cardinality and minimum threshold constraints: A
semidefinite program approach. Manuscript, Nov. 2010.



On Valid Inequalities for QP with Indicator Variables 13

Appendix

Proof of Proposition 1.

Proof. To show conv(S) is full-dimensional, we enumerate the following affinity
independent points in S. All entries we do not mention are assumed to be 0.

1. (x, z,X) = 0;
2. zi = 1, x = 0, X = 0, for i = 1, ..., n;
3. zi = 1, xi = 1, Xii = 1, for i = 1, ..., n;
4. zi = 1, xi = 0.5, Xii = 0.25, for i = 1, ..., n;
5. zi = zj = 1, xi = xj = Xii = Xij = Xjj = 1, for 1 ≤ i < j ≤ n.

The above n(n+1)
2 + 2n + 1 points are affinely independent. Therefore conv(S)

is full-dimensional. Because S ⊆ S�, conv(S�) is also full-dimensional.
Since every extreme point of conv(S) is in S, to show the second result,

it suffices to show every point in S is extremal in conv(S). If otherwise, there

exists x̂ and
{
x(1), · · · , x(K)

}
∈ Rn such that x̂x̂T =

∑K
j=1 λjx

(j)x(j)T , where

λj ≥ 0 and
∑K
j=1 λj = 1. This contradicts with the extremal characterization of

the positive semidefinite cone. Therefore the set of extreme points for conv(S)
is exactly S.

For the last result, take a point (x̄, z̄, X̄) ∈ conv(S) and X̃ � 0, and let
(x̄, z̄, X̄) =

∑
j λj(x

(j), z(j), x(j)x(j)T ) be the convex combination of points in S,

then (x̄, z̄, X̄+X̃) = λ1(x(j), z(j), x(j)x(j)T +X̃)+
∑
j>1 λj(x

(j), z(j), x(j)x(j)T ) ∈
conv(S�). So

conv(S�) ⊇ conv(S) +
{

(0, 0, X) ∈ R2n+
n(n+1)

2 , X � 0
}
.

To show the other direction, note every point (x, z,X) ∈ S� can be written as

(x, z, xxT )+(0, 0, X−xxT ), hence is in conv(S)+
{

(0, 0, X) ∈ R2n+
n(n+1)

2 , X � 0
}

.

Proof of Proposition 4.

Proof. Suppose that ∃(x̄, X̄) such that (x̄,ADiag(X̄)) ∈ BQP and X̄ii ≤
x̄i∀i = 1, . . . , n. By the properties of projection, there then exist y1, y2, . . . , yK ∈
{0, 1}n such that

(x̄, X̄ −Diag(X̄) + Diag(x̄)) =

K∑
k=1

λk(yk, yky
T
k ),

where λk ≥ 0,∀k = 1, . . . ,K,
∑K
k=1 λk = 1, and X̄ − Diag(X̄) + Diag(x̄) is

the matrix X̄ with its diagonal replaced by entries in x̄. Then B • X̄ + αT x̄+ γ
equals

B • (X̄ −Diag(X̄) + diag(x̄)) + αT x̄+ γ +

n∑
i=1

Bii(X̄ii − x̄i)

≤ B •

(
K∑
k=1

λkyky
T
k

)
+ αT

(
K∑
k=1

λkyk

)
+ γ ≤ 0.
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The first inequality is because X̄ii ≤ x̄i and Bii ≥ 0, and the second inequality
is because B •X+αTx+γ ≤ 0 is valid for QPB, hence valid for (yk, yky

T
k )∀k =

1, . . . ,K.
The opposite direction of the proof is easy because BQP equals a projection

of QPB, so any inequality from (x,ADiag(X)) ∈ BQP is a posdiag inequality
for QPB as all diagonal coefficients are zeros.

Proof of Proposition 5

Proof. By Proposition 1, all X � 0 defines a recession direction for conv(S�)).
From this, and the fact that x and z are bounded in conv(S�), if B •X+αTx+
γ ≤ δT z with Bii ≥ 0 ∀i = 1, . . . , n is valid for conv(S�), then we must have
B � 0. Together with Bii ≥ 0, ∀i = 1, . . . , n, it follows that B = 0. Further, if
αTx+ γ ≤ δT z is valid for conv(S�), then it is valid for {(x, z)|0 ≤ x ≤ z ≤ 1},
which is the projection of conv(S�) onto the space of (x, z). The other direction
is trivial.

Proof of Claim in Theorem 1.

Proof. For any triplet (x, xxT , z) such that 0 ≤ xi ≤ zi ∈ {0, 1},∀i, there is a
triplet (x̃, x̃x̃T , z̃) such that ‖x− x̃‖ is arbitrarily small, 0 ≤ x̃i ≤ z̃i ∈ {0, 1},∀i,
and z̃i = zi ∀i such that δi ≥ 0 and z̃i = 1 ∀i such that δi < 0. Therefore if
there exists (x, xxT , z), 0 ≤ xi ≤ zi ∈ {0, 1},∀i violates (6), i.e. if B • xxT +
αTx+ γ >

∑
i:δi≥0 δizi +

∑
i:δi<0 δi, it must be that B • x̃x̃T + αT x̃+ γ > δT z̃,

so B •X + αTx+ γ ≤ δT z was not valid for conv(S). On the other hand, if all
admissible triplets (x, xxT , z) satisfy (6) then they satisfy B•X̄+αT x̄+γ ≤ δT z̄.

Proof of Proposition 6.

Proof. Let B •X+αTx+γ ≤ δT z be a valid inequality for conv(S) and B � 0.
Because of Proposition 1, B •X +αTx+ γ ≤ δT z is also valid for conv(S�). To
prove the converse, if B •X+αTx+γ ≤ δT z is a valid inequality for conv(S�),

because conv(S�) has the recession cone
{

(0, 0, X) ∈ R2n+
n(n+1)

2 , X � 0
}

, we

must have B � 0.

Proof of Proposition 8.

Proof. In (9) we may rewrite X � xxT and Xiizi ≥ x2
i as

(
1 x
x X

)
� 0 and(

Xii xi
xi zi

)
� 0. Then by introducing dual variables

(
s vT

v W

)
and

(
αi γi
γi βi

)
for

them respectively, and y for Ax + Bz ≤ b, λ, µ, τ for 0 ≤ x ≤ z ≤ e, it is
straightforward to verify that our optimization problem is the dual problem of
(9). Also condition 1 implies (9) is strictly feasible, and condition 2 implies the
dual SDP is strictly feasible. Hence by strong duality ζSDP/PR = ζDSDP/PR.
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Now we show that ζPR(diag(α̂)) = ζSDP/PR. By Proposition 7 it suffices to
show ζPR(diag(α̂)) ≥ ζDSDP/PR. Assume (x̄, X̄, z̄, p̄) is feasible in (7), then

−bT ŷ − ŝ− eT τ̂ ≤ −(Ax̄+Bz̄)T ŷ − ŝ− eT τ̂
= −x̄T (2γ̂ + 2v̂ + λ̂− µ̂− q)− z̄T (β̂ + µ̂− τ̂ − c)− s− eT τ̂
≤ qT x̄+ cT z̄ + x̄T (Q− diag(α))x̄

−x̄T (2γ̂ + λ̂− µ̂)− z̄T (β̂ + µ̂− τ̂)− eT τ̂
≤ cT x̄+ dT z̄ + x̄T (Q− diag(α))x̄+

∑
i

p̄i − x̄T (λ̂− µ̂)

−z̄T (µ̂− τ̂)− eT τ̂
≤ cT x̄+ dT z̄ + x̄T (Q− diag(α))x̄+

∑
i

p̄i

The equality is because AT ŷ = 2γ̂ + 2v̂ + λ̂ − µ̂ − q and BT ŷ = β̂ + µ̂ − τ̂ − c.

The second inequality is because

(
1 x̄
x̄ x̄x̄T

)
•
(
ŝ v̂T

v̂ Ŵ

)
≥ 0 ⇔ −ŝ − 2v̂T x̄ ≤

x̄T (Q − diag(α̂))x̄. The third is because when α̂i 6= 0, p̄iz̄i ≥ α̂ix̄
2
i implies( p̄i

α̂i
x̄i

x̄i z̄i

)
•
(
α̂i γ̂i
γ̂i β̂i

)
≥ 0 ⇔ −β̂iz̄i − 2γ̂ix̄i ≤ p̄i, and when α̂i = 0, γ̂i = 0,

−β̂iz̄i ≤ 0 ≤ p̄i. The last inequality is because of the non-negativity of λ̂, µ̂, τ̂
and that 0 ≤ x̄ ≤ z̄ ≤ e.


