Automatic Discretization of ODE and
PDE Systems Using Pyomo

Bethany Nicholson - Carnegie Mellon University
Victor Zavala - Argonne National Laboratory
August 4, 2014

,("Z‘R}ﬁ‘ U.S. DEPARTMENT OF
{#) ENERGY

Automatic Discretization

Dynamic
Model

s

~\

Discretization

Scheme

Algebraic
Model

Automated

= Popular Algebraic Modeling Languages
e.g., GAMS, AMPL, MOSEL

— Can’t represent differential equations

— Syntax isn’t easily extended

— Limited scripting capability

oMEcy

Coopr: a COmmon Optimization Python Repository

’,)
#cooPR T
% Gurobi
.. . c . A
Decomposition Strategies S o g e Xpress
| -
- Progressive Hedging N g E § = GLPK
- Generalized Benders E g L % qg CBC
- DIP Interface (coming soon) 8— L c 9 |
| ¥= 8 < || PICO
. S £ EREN N
Language extensions S o N OpenOpt
- Disjunctive Programming ™\ AMPL Solver Library
- Stochastic Programming
- Differential Equations u Ipopt
- | — KNITRO
3”pyomo [Colin
.. . . . — BONMIN
N . PYthon Optimization Modeling Objects

Pyomo Overview

~
)" PYOMO

= Formulating optimization models natively within Python
— Provide a natural syntax to describe mathematical models
— Formulate large models with a concise syntax

= Highlights:
: : £ . ; t *
— Python scripts provide romccwprtpyozolmpor
. = M
a flexible context for " oneretetiodet 0
. m.x1 = Var()
exploring the structure m.x2 = Var (bounds=(-1,1))
of Pyomo models m.x3 = Var (bounds=(1,2))
— Leverage high-quality third- [m.obJ = Objective(
. . sense = minimize,
party Python libraries, e.g., expr = m.x1**2 + (m.x2%m.x3)**4 +
SciPy, NumPy, MatPlotLib m.x1*m.x3 + m.x2 +
m.x2*sin(m.x1l+m.x3))

New Coopr Package: coopr.dae

= Extend Pyomo object model
— ContinuousSet
— StateVar
— DerivativeVar

= General model transformations
— Standardized framework for transforming dynamic system to (N)LP
— Finite Difference Methods
e Backward, Forward, and Central
— Orthogonal Collocation
e Radau and Legendre roots

oMEcy

PDE Example

= Matlab example problem
— PDE
T2 &'u/ ot = ﬁ/ ox (&'u/ ox) el slulen campute uih 20 mesh ot

— Initial Condition B R W Hat

0.8

u(x,0)=sin(mx)

— Boundary Conditions

©(0,£)=0

mwel—t+du/ox (1,¢)=0

Disiance x

MACH -

PDE Example

from cocopr.environ import *

from cocopr.pyomo import *

from cocopr.dae import *

from cocopr.opt import SolverFactory

from coopr.dae.plugins.finitedifference import Finite_Difference_Transformation
from coopr.dae.plugins.colloc import Collocation_Discretization Transformation
import math

ConcreteModel ()
= ContinuousSet (bounds=(0,2))
= ContinuousSet (bounds=(0,1))

StateVar (m.x,m.t) def pde(m,i,]j):

ifi=0o0ri=10r3]=210:1:
return Constraint.Skip

m.dudx = DerivativeVar (m.u,wrt=m.x) & h.pi#k2%n. dudt [i.9] = m.dudx2[i.-
m.dudx2 = DerivativeVar(m.u,wrt=(m.x,m.x)) re-u(r:-n - fpl m.au t[i’i] = m.du (1,31
m.dudt = DerivativeVar(m.u,wrt=m.t) ®.pde = Constraint(m.x,m.t,rule=_pde)
def initcon(m,i):
ifi=0o0ri=1:
72'7\2 é’u/a"t — 0”/0")((/ﬁx) return Constraint.Skip
return m.u[i,0] == sin(math.pi*i)
m.initcon = Constraint(m.x,rule= initcon)
def lowerbound(m,J):
return m.u[0,3] = 0

m.lowerbound = Constraint(m.t,rule=_lowerbound)

HoE
o oMot |l

u(x,0)=sin(mx)
©(0,£)=0
wel—t+du/ox (1,t)=

/ def upperbound(m,]j):
Q/ return math.pi*exp(-j)+m.dudx[1,j] = 0

m.upperbound = Constraint(m.t,rule=_upperbound)

m.cb] = Cbjective (expr=1)

[S

PDE Example

Discretize using Finite Difference Method

discretize = Finite_Difference_Transformation()

disc = discretize.apply(m,nfe=25,wrt=m.x,scheme="BACKWARD')

disc = discretize.apply(disc,nfe=20,wrt=m.t,scheme='BACKWARD', clonemodel=False)

Discretize using Orthogonal Collocation

#discretize2 = Collocation_Discretization_Transformation()

#disc = discretize2.apply(disc,nfe=10,ncp=3,wrt=m.x)

#disc = discretize2.apply(disc,nfe=20,ncp=3,wrt=m.t,clonemodel=False)

soclver='ipopt'
opt=SclverFactory(sclver)

results = opt.sclve(disc,tee=True)
disc.load(results)

Numerical Solution Using Backward Difference Method

Humerdcal =olulion cormpuled wit 20 mesh poinis.

Other Work

= Additional Examples
— Optimal Control
— Parameter Estimation
— Heat transfer in a building
— Gas network
— Distillation Column

= |ntegrals

Summary

= Created a flexible and concise way of representing arbitrary ordinary and
partial differential equations

= |mplemented several discretization schemes and developed a framework
that is extensible to include others

= Future work
— Finish implementing Integrals
— Additional discretization schemes
— Link coopr/pyomo to an integrator for doing model simulation or
initialization

— Develop frameworks for multigrid (multiscale) methods

MACT Y - Y

Questions?

= Additional information:

https://software.sandia.gov/trac/coopr

Crcd

Automatic Discretization of ODE and
PDE Systems Using Pyomo

Bethany Nicholson - Carnegie Mellon University
Victor Zavala - Argonne National Laboratory
August 4, 2014

®)

Automatic Discretization

Dynamic
Model

7

\

Discretization

Scheme

Algebraic
Model

Automated

= Popular Algebraic Modeling Languages
e.g., GAMS, AMPL, MOSEL

— Can’t represent differential equations

— Syntax isn’t easily extended

— Limited scripting capability

M_:z A\ |

Presenter
Presentation Notes
Diagram of process and what I mean by “automatic discretization”. Idea is that the modeler will formulate the continuous version of the model with the differential equations and be able to pass this model to a tool which will discretize the model and return the discrete model. Can easily apply different discretization schemes on a model to see which works the best for a particular model.

Being able to write the model in a more natural form will lead to less formulation mistakes and faster modeling so that the user can focus more on the parts of the simulation that really matter. Problem is that implementing a general tool for doing discretization of models formulated in popular algebraic modeling languages such as Ampl and GAMS is difficult because they have a customized syntax designed to make model formulation straightforward and don’t support many common features of a regular computer programming language such as loops, classes, and functions (check this)

Who else is doing it
Other AML’s don’t have the syntax to represent differential equations in their continuous form
They are specialized model languages with their own syntax
Can’t get to the code under the hood
They aren’t actual programming languages so can’t use things like if statements or loops
-> Can’t develop a general tool using native syntax of the AML would have to make an outside tool that would deal with the text of the models and not modeling objects themselves which is not smart and just a bad way of doing it

®
Coopr: a COmmon Optimization Python Repository

@cooPR fcrx
/ .
_ ’ / Gurobi
Decomposition Strategies S o § P Xpress
O
- Progressive Hedging _g g U?)) § | GLPK
- Generalized Benders § S L o ©
- DIP Interface (coming soon) Q un o 9
O Qo] (oY) -+ \\
| o= on S PICO
. S = \\
Language extensions S o N OpenOpt
- Disjunctive Programming ™\ AMPL Solver Library
- Stochastic Programming
- Differential Equations] Ipopt
- | = L { KNITRO
“ .
)~ PYOMO I
.. . . . — BONMIN
PYthon Optimization Modeling Objects

- /

MECT | O [

S0

Presenter
Presentation Notes
Briefly talk about coopr and pyomo and how they fit together.

coopr has been designed to be extensible! So the idea is to extend the language to deal with differential equations

Pyomo Overview

X .
)-PYOMO

= Formulating optimization models natively within Python
— Provide a natural syntax to describe mathematical models
— Formulate large models with a concise syntax

= Highlights:
— Python scripts provide
a flexible context for

from coopr.pyomo import *

m = ConcreteModel ()

. m.x1l = Var()
exploring the structure m.x2 = Var (bounds=(-1,1))
of Pyomo models m.x3 = Var (bounds=(1,2))
— Leverage high-quality third- [m-obj = Objective(

. . sense = minimize,
party Python libraries, e.g., expr = m.x1**2 + (m.x2*m.x3)%*4 +

SciPy, NumPy, MatPlotLib m.x1*m.x3 + m.x2 +

m.x2*sin(m.x1l+m.x3))

‘MECS f [+ S

Presenter
Presentation Notes
Since everything is in Python, we should be able to develop a general way for transforming a model with differential equations into a discretized version that can be sent to your favorite solver.

@ S

New Coopr Package: coopr.dae

= Extend Pyomo object model
— ContinuousSet
— StateVar
— DerivativeVar

= General model transformations
— Standardized framework for transforming dynamic system to (N)LP
— Finite Difference Methods
e Backward, Forward, and Central
— Orthogonal Collocation
e Radau and Legendre roots

AICS '

Presenter
Presentation Notes
Overview of the package I’ve created. Modeling components and transformations

With these components a user may now represent any ODE or PDE in any form in any dimension. This also includes mixed partial derivatives

PDE Example

= Matlab example problem
— PDE

T

2 du . d [{du ||urrl=r|i.'ﬂ|=l:|||.rlll:|1a:|rrp|.|'lf:.|-'.:dr‘l.'|.20|'n=h|:|:|lrr|=.
ot 0dx \odx R S

— Initial Condition

08T

u(x,0) = sin(mx)

— Boundary Conditions

u(0,t) =0

ou
me t+—(1,t) =0
ax

AACH

PDE Example

from coopr.environ import *

from coopr.pyomo import *

from coopr.dae import *

from coopr.opt import SoclverFactory

from coopr.dee.plugins.finitedifference import Finite Difference Transformation
from coopr.dae.plugins.colloc import Collocation Discretization Transformation

import math
m = ConcreteModel ()
m.t = ContinuousSet {(bounds=(0,2))
m.X = ContinuousSet {(bounds=(0,1)) o
m.u = StateVar{m.x,m.t) def pde(m,1,3):
ifi=00ri=1o0rj=1>0
m.dudx = DerivativeVar (m.u,wWrt=m.x) return Constraint.Skip
return math.piv*2*m. dudt[i,j] = m.dudx2[i,]]

m.dudx? = DerivativeVar(m.u,wrt={(m.Xx,m.x))

m.dudt = DerivativeVar(m.u,Wrt=m.t) m.pde = Conatraint(m.x,m.t,rule= pde)

def initcon(m,i):

if i =0o0r i = 1:
ou d [du return Constraint.Skip
T[Z return m.u[i,?] = sin{math.pi*i)

ot ox \ox

m.initcon = Constraint(m.x,rule= _initcon)

def lowerbound(m,j):
return m.u[0,j] = 0
m. lowerbound = Constraint(m.t,rule=_lowerbound)

u(x,0) = sin(mx)

U(O, t) - 0 def upperbound(m,j):
return math.pi*exp(-j)+m.dudx[1l,J] = 0O

m.upperbound = Constraint (m.t,rule=_upperbound)

WA\

I
o

m.obj = Objective (expr=1)

ou
me b + a (1,¢t)

S0

” O @

PDE Example

Discretize using Finite Difference Method

discretize = Finite_Difference_ Transformation()

disc = discretize.apply(m,nfe=25,wrt=m.x,scheme="'BACEWNLRD")

disc = discretize.apply(disc, nfe=20,wrt=m.t,scheme="BACEWNARD" ,clonemodel=Falae)

Discretize using Orthogonal Collocation

#discretize? = Collocation Discretization_Transformation()

#disc = discretizel.apply{disc,nfe=10,ncp=3, Wrt=m.Xx)

#disc = discretizel.apply{disc,nfe=20,ncp=3,wrt=m.t, clonemodel=Falae)

solver="ipopt'
opt=5SolverFactory (3o0lver)

results = opt.soclve{disc,tee=True)
disc.load (results)

urmerical e corrgted wit 20 mesh poirts, Numerical Solution Using Backward Difference Method

Tirre 4 Dizlance x

Other Work

= Additional Examples

Optimal Control
Parameter Estimation
Heat transfer in a building
Gas network

Distillation Column

= Integrals

Summary

= Created a flexible and concise way of representing arbitrary ordinary and
partial differential equations

= Implemented several discretization schemes and developed a framework
that is extensible to include others

= Future work
— Finish implementing Integrals
— Additional discretization schemes
— Link coopr/pyomo to an integrator for doing model simulation or
initialization
— Develop frameworks for multigrid (multiscale) methods

MPAC) [+ S

Questions?

= Additional information:

https://software.sandia.gov/trac/coopr

	Nicholson_SASSY_slides2.pdf
	Automatic Discretization of ODE and PDE Systems Using Pyomo
	Automatic Discretization
	Coopr: a COmmon Optimization Python Repository
	Pyomo Overview
	New Coopr Package: coopr.dae
	PDE Example
	PDE Example
	PDE Example
	Other Work
	Summary
	Questions?

