
Nov/2007 Toward adjoinable MPI 1'

&

$

%

Toward adjoinable MPI

• based on discussions with Bill Gropp, Darius Buntinas, Laurent, Paul, Uwe

• wanted by: Chris and Patrick

• general things about MPI

• simple idioms

• troublesome idioms

• a way out

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 2'

&

$

%

some things to know about MPI...

• a standard, now in version 2 (much of MPI originated at Argonne along

with MPICH implementation)

• defines library interfaces (i.e. not a language)

• 287 routines in MPI-2

• covering: communication, setup, grouping of processes, I/O, status queries,

topologies, debugging,...

• simple 6 calls program:

mpi init ! initialize the environment

mpi comm size ! the number of processes in the communicator

mpi comm rank ! the rank of this process in the communicator

mpi send ! blocking send

mpi recv ! blocking receive

mpi finalize ! cleanup

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 3'

&

$

%

... some more

• point to point communication

– identified by (communicator,tag,source/destination)

– communicator = group of processes with rank 0 to n-1 (all are in

pre-allocated communicator called mpi comm world)

– non-deterministic: tag can be mpi any tag and source can be mpi any source

– no “any comm”, but communicators are allocated resources, i.e. same basic

problem as dynamic memory, I/O etc.

– special problems with MPI in multi-threaded environments

• collective communication (broadcast, reductions)

– mpi reduce(arg, res, size, type, op, rootRank, comm)

– combinations, e.g. mpi allreduce

– not required to be at a single location in the source code

• synchronization with mpi barrier

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 4'

&

$

%

...and then some

• a major concern is correctness

– correct communications (data,endpoints) ?

– no deadlocks? - look at communication (dependency) graphs

– example: exchange between P1 and P2

SEND SEND

RECV RECV

P1 P2

... has a cycle (involving comm.edges)

– break with buffered sends, reordering, non-blocking sends, ...

RECV RECV

P1 P2

SEND

RECV

P1 P2

ISENDBSENDBSEND RECV

SEND

RECVRECV

WAITWAIT

ISEND

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 5'

&

$

%

previously on “AD and MPI”

in no particular order

• “the book” has 2 pages on parallel programs

• Paul’s thesis “AD of parallel programs” - mostly forward

• Paul, Chris B. “Automatic Differentiation for Message-Passing Parallel Programs”

- association between value and derivative

• Alan, Mike: “Automatically Differentiating MPI-1 Datatypes” - ditto

• Christel, P. Dutto “Extension of Odyssée to the MPI library -Reverse mode”

- plain send/recv

• B. Cheng: “A Duality between Forward and Adjoint MPI Communication Routines”

- ditto

• Alan, in ch. 24 of “Sourcebook of Parallel Computing” - 4 pgs on analysis, plain send/recv

• Michelle, Paul, B. Kreaseck: “Data flow analysis for MPI programs”

• Patrick, Chris H., Ralf: “Automatic generation of efficient adjoint code for a parallel

Navier-Stokes Solver” - wrapper routines in MITgcm

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 6'

&

$

%

... even more and counting

• for plain send/recv calls:

– easy adjoint: send 7→ recv and recv 7→ send

– if forward communication graph acyclic, so is the adjoint; look at the

communication graph with reversed edges (Paul)

– difficult to statically analyze send/recv pairs; e.g. consider set of all possible

dynamic comm. graphs

– with wildcards: record actual sources/tags on receive and send with recorded

tag to recorded source in the adjoint sweep

– hypothesis: no forward deadlock ≡ no cycle in current dynamic comm. graph

⇒ no cycle in inverted dynamic comm. graph ≡ no adjoint deadlock

• send modes: mpi [i][b|s|r]send

• receive modes: mpi [i]recv

• variants balance correctness and speed concerns

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 7'

&

$

%

... piling it on

• for buffered/synchronous send - need to mark the recv

BSEND(x)

BRECV(y)

BSEND(x)

BRECV(y) B BRECV(y)

RECV(t) RECV(t)

y=0 y=0

x+=t x+=t

SEND(y)

• combination with non-blocking sends (promise to not read or write buffer)

y=0

x+=t

y=0

x+=tISEND(x,r)

WAIT(rS ,x)

RECV(y)

ISEND(x,r)

WAIT(rS ,x)

RECV(y) SEND(y)

WAIT(r)

IRECV(t,r)

SEND(y)

WAIT(r)

IRECV(t,r)

• or non-blocking receives

x+=t

y=0 y=0

x+=t

IRECV(y,r)

WAIT(rR)

SEND(x)

IRECV(y,r)

WAIT(r)

SEND(x)

WAIT(r) WAIT(r)

R,y ,y ISEND(y,r)

RECV(t) RECV(t)

ISEND(y,r)

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 8'

&

$

%

...still not done

• buffering takes time and system can run out of space,

• reordering to avoid deadlocks

– can be difficult

– order may be dynamic (forces non-blocking or buffered modes)

– order imposes extra waits for nodes with multiple communication

channels (e.g. Blue Gene, Cray XT3/4)

• least order imposed by non-blocking calls with collective mpi wait all

• example for exchange of boundary layers

IRECV

ISEND

WAITALL

IRECV

ISEND

WAITALL

• problem: the comm. edges are no longer 1 on 1 (multiple in-edges !)

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 9'

&

$

%

...solution A

• require individual, marked waits (achieves 1 on 1 comm edges)

i
R

i
R

WAIT(r)R
i

b =0
IRECV(b ,r)

ISEND(b ,r)

ISEND(b ,r)

S

R

1
S

2

1
S

2
S

R
1 1

WAIT(r R,b2)2

WAIT(r 1R,b1
R)R

R R

WAIT(r S,b2
S)S 2

WAIT(r 1S,b1
S)S

ISEND(b , r)i
R

k k
SIRECV(t ,r)

R
2
R

2IRECV(b ,r)

WAIT(r)S
k

b +=tk
S

• extra arguments permit simple transformation recipe with (otherwise)

indistinguishable request and buffer arrays

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 10'

&

$

%

...solution B

• require a symmetric counterpart to the waitall; think “anti waitall”

IRECV(b ,r)k
R

n+k

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r)
WAITALL(r)

i iIRECV(t ,r)

t =b

b =0R
k

k

AWAITALL(r)

k k
R

n+kISEND(t ,r)

*
S

*b +=t

• retains more efficient pattern ,

• effectively shifts “promises” /(though applied only to temp buffers)

• using only (wrapped) standard MPI calls:

– can replace collective zeroing of send buffers using temp buffers

– but: cannot avoid collective increment & extra copies (overhead!)

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 11'

&

$

%

...solution C

• integrate buffer increment & zeroing into MPI calls, and

• require new promises for AWAITALL

IRECV(b ,r)k
R

n+k

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r)

AWAITALL(r)

i
S

iIIRECV(b ,r)

n+kk
RZISEND(b ,r)

WAITALL(r)

• why would it be reasonable to integrate more tightly into MPI?

– MPI internally already knows buffer, extent and type

– heterogeneous communication requires data marshaling (i.e. would copy

anyway on sender or receiver, MPICH-2 doesn’t support it yet)

– send handler nullifies, recv handler increments ⇒ no extra copies

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 12'

&

$

%

what about <insert problem here> ?

• A/B/C disambiguate edges in dynamic comm. graph with extra

arguments, calls, data

• don’t do much for static analysis:

– e.g. modeled with MPI-enhanced CFG (Strout/Hovland/Kreaseck)

– useful for activity analysis

• would like to identify communication “channels” using

– pragmas (can make up anything but no external support), or

– aspects (existing systems w support, suggested by B. Gropp; no “Aspecttran”)

• group certain send - recv - wait / certain collective and barrier calls

– would like runtime validity checks

– reusable for analysis, debugging, adjoint generation

– don’t assume locality of channels in the source or single call location of

collective ops

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 13'

&

$

%

short detour - aspect oriented programming

• a typical program modularization is I/O, solver, communication

• logging is a typical example of a “cross cutting concern” (not encapsulated in OOP)

• AOP aims to aid separation of concerns

• principle approach:

– aspect: bits of new code (advice) injected into certain spots (join points) in the given

program.

– systems differ in how to specify join points (aka “point cuts”), what can be an advice

(executable code, new members to classes)

– tightly integrated with compilers

– example 1: int C::%(...) matches all member functions of the class C that return

an int

– example 2: call("void draw()") && within("Shape") describes the set of calls to

the function draw that are within methods of the class Shape

• while channels may be a cross-cutting concern they may not always be

amenable to point cut specs /

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 14'

&

$

%

what about barrier ?

• simple synch point ⇒ same for adjoint, example:

x+=tIRECV(y,r)

WAIT(r)

WAIT(r)

R ,y

BARRIER BARRIER

RSEND(x) IRECV(t,r)

RSEND(y)
y=0

BARRIERBARRIER

• retains pattern (rsend may improve performance by avoiding hand shake)

• barrier call has no concept of critical section, example:

BARRIER BARRIER

BARRIER

P1 P2 P2P1

BARRIER

do nasty stuff, e.g. shared
memory maniputation do nasty stuff

• leaving barrier in place isn’t an absolutely safe recipe

• note - MPI’s one-sided commun. requires “fence” to demark section ,

Utke AD fest at Inria

Nov/2007 Toward adjoinable MPI 15'

&

$

%

conclusions

• prerequisites: communication edges not interrupted by checkpoints

• resource problem for communicators (topology descriptions)

• initial wrapped MPI solution

• later integrated MPI solution + analysis support

• goal standardize (small) set of guaranteed adjoinable MPI calls

=⇒ ongoing discussion with MPI group at Argonne

• final remark: adjoining OpenMP has problems too, e.g.

the adjoint of omp parallel do isn’t necessarily parallel too

DO I=2, N-1

A(I)=X(I-1)-2*X(I)+X(I+1)

B(I)=A(I)+SQRT(X(I))

ENDDO

race between reads and writes on the X̄ =⇒

DO I=N-1,2, -1

Ā(I) =Ā(I) +B̄(I)

X̄(I) =X̄(I) +B̄(I)*1./(2*SQRT(X(I))

X̄(I-1)=X̄(I-1)+Ā(I)

X̄(I) =X̄(I) +2*Ā(I)

X̄(I+1)=X̄(I+1)+Ā(I)

ENDDO

Utke AD fest at Inria

