Sep/2008 Adjoints of MPI programs 1

é ‘ Adjoints of MPI programs I
Argonne

NATIONAL
LABORATORY

e based on discussions with Paul Hovland, Laurent Hascoét, Uwe Naumann,
Bill Gropp, Darius Buntinas

e wanted by: Chris and Patrick
e general things about MPI
e MPI use in MITgcm

e a solution prototype in OpenAD
UChicago » P>—=5" Office of

4 Science
A rgo n n e LLC U.S. DEPARTMENT OF ENERGY

S »
P M
% 3
37 %
f~f \&
& |
c 5]
& /S
N /&
105 4
Z1TES O' el

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 2

/ MPI - data transfer between processes' \

e in MITgcm: exchange tile halos, reductions operations. synchronization...

e simple MPI program needs 6 calls :

mpi_init // initialize the environment

mpi_comm _size // number of processes in the communicator
mpi_comm_rank // rank of this process in the communicator
mpi_send // send (blocking)

mpi_recv // receive (blocking)

mpi_finalize // cleanup

e 287 routines standardized by MPI-2

e covering: communication, setup, grouping of processes, I/0O, status queries,
topologies, debugging,...

e send modes: mpi [i] [bls|r]send

e receive modes: mpi_[ilrecv

\o ensure correctness and improve efficiency = want the same for adjoints /

Utke ECCO2 meeting

Sep/2008

Adjoints of MPI programs

-

_

‘correctness as 1n I

e correct parameters 7 (data,endpoints)
e no deadlocks 7 (look at communication graphs)

e for example: data exchange between P1 and P2

SEND SEND
P1 P2
L Sy
REC RECV

... has a cycle (involving comm.edges)

e break with buffered® sends, reordering, non-blocking sends, ...

| ISEND

v

" RECV

BSEND BSEND SEND = » RECV ISEND |
\\\\\\\ /////// + M~ N
P1 P2 P1 P2 RECY b
woo Ty v v \
RECV RECV RECV & - » SEND WAIT

v

the last idiom is used in MITgcm

WAIT

*

resource starvatioy

Utke

ECCO2 meeting

Sep/2008 Adjoints of MPI programs 4

/ ‘easy adjoints for blocking calls' \

I [—
c=a SEND(Q) =------ » RECV(c) I ;:Ea;/ 0 A - g:E(I)\I DO a=atc; c=0;
ie) -
P1 g J PD | o1 A % A -
o =
v = | = 8 | ==
. b=0 d=d+t p R e vl
b:d; RECV(b) Il B » SEN D(d) | SEN D(B) |- - - - 23 RECV(t) d_d+b1 b—01
I

e ecasy adjoint transformation: send +— recv and recv — send

e hyp.: if the forward communication graph is acyclic, so is the adjoint; look at the
communication graph with reversed edges

e for activity analysis: difficult to statically determine send/recv pairs; e.g.
consider set of all possible dynamic comm. graphs

e with wildcards (but no threads): record actual sources/tags on receive and send
with recorded tag to recorded source in the adjoint sweep

e hyp.: no forward deadlock = no cycle in current dynamic comm. graph = no
\ cycle in inverted dynamic comm. graph = no adjoint deadlock /

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 5

/ ‘previously on “AD and MPI” I \

not exhaustive and in no particular order:

e Griewank: first ed. of “the book” had 2 pages on parallel programs; second edition has

more
e Hovland: thesis “AD of parallel programs” - mostly forward

e Hovland/Bischof: “Automatic Differentiation for Message-Passing Parallel Programs”
- association between value and derivative

e Carle/Fagan: “Automatically Differentiating MPI-1 Datatypes” - ditto

e Faure/Dutto: “FEzxtension of Odyssée to the MPI library -Reverse mode”

- plain send/recv

e Cheng: “A Duality between Forward and Adjoint MPI Communication Routines”
- ditto

e Carle: in ch. 24 of “Sourcebook of Parallel Computing” - 4 pgs on analysis, plain
send /recv

e Strout/Hovland/Kreaseck: “Data flow analysis for MPI programs”

e Heimbach/Hill/Giering: “Automatic generation of efficient adjoint code for a parallel
\ Navier-Stokes Solver” - hand-written communication adjoints in MITgcm /

Utke ECCO2 meeting

Sep/2008

Adjoints of MPI programs

/

‘Why the wrappers in MITgcm?I

~

/

_ o i actually in E-W and N-S; need to consider
l‘fl/x o _ corners...
: T =
P | s A
e every tile needs to talk to its
\g% N - \/% neigthI‘S
B L R 1 Iy mposi
.S o o o5 e prevent deadlocks by imposing
-f/t:\ 8 ordering 7 (can be a bit complicated
P | .fE+: = depending on the decomposition)

e prevent deadlocks by buffered
communication? (can run out of
bufferspace)

, \ e use non-blocking calls, the idiom
— east .
PO aE= (e i P2 used here is
i send(ak, r .
(2 ISEND* - RECV* - WAITALL
aWe (el
v _ ge '

recv(bE) |qp-oreeem i send(awr) ‘I recv(bw e no “easy” transformation; in

overiap / ~PE | ovaiap) ~PW MITgecm EXCH routines have
(Wwaitall(r) l|a hand-written adjoints
Utke ECCO2 meeting

Sep/2008

Adjoints of MPI programs

/

v

ISEND(X,I) ISEND(X,I)

RECV v || RECV(y)

\gNAwaxﬂ’ \SNAWUXN

IRECV(y,r) IRECV(y,r)
‘ :

SEND(x) | SEND(x)

v PG
' RWAIT(r,y)|

v
'RWAIT(r,y)|

A

X+=t X+=t
WAIT() ™ Y WAIT(r)

A A A
y=0 “[y=0
SEND(Y) SEND(Y)

A =47 A
TRECV(,r) || | [IRECV(tr) |
y=0 y=0
WAIT() ™ Y WAIT(r)

A A A
X+=t [x+=t
RECV(t) RECV/(t)

A =47 A
ISEND(,") || | [ISEND@.) |

e the above transformations are provably correct

‘no easy transformation because I

e consider the communication graphs for simple nonblocking idioms

e need to retain correctness, i.e. use nonblocking calls in the adjoint

~

ISEND | ISEND)
e extensions to convey context I g I
= enables a transformation recipe per call C RECV (1 G RECV A~ *
e promises to not read or the respective ¢ SR ‘ 4 . e ee
WAITALL WAITALL
\ buffer
Utke ECCO2 meeting

Sep/2008

Adjoints of MPI programs

/

ISEND(b3,r3)
v

(ISEND(b5,r3) |

IRECV(bRrp]
.

| IRECV(bf,r{)\\

SWAIT(Sh) |
v ;)

4

 SWAIT(rsbs)|

4

RWAIT(rEb5)

RWAIT(rfo[
! :

‘ ...solution A I

e require individual, marked WAITs (achieves 1 on 1 comm edges)

A

—

b=t
WAIT(S)

b=0
WAIT(r?)

oo —p o

|

IRECV(t,r) |

o —P
N
S

\lSENb(tTﬁ rA)

indistinguishable request and buffer arrays

\o but individual WAITSs impose artificial order = bad for performance

(Y] X}
-

|,

e extra arguments permit simple transformation recipe with (otherwise)

/

Utke

ECCO2 meeting

Sep/2008

Adjoints of MPI programs

-

_

...solution B '

e require a symmetric counterpart to the waitall; think “anti_waitall”

e retains more efficient pattern ©

e extend promises symmetrically to AWAITALL

AWAITALL(r)

ISEND(bsr)

—————————————————————

N
N
»

IRECV (bEr....)

.
WAITALL(r)

&

J

&

WAITALL ()

I IRECV (bSr;

ZISEND(BE, T ..)

A

J

e wrapped MPI calls have logic to delay zeroing/increment buffers

/

Utke

ECCO2 meeting

Sep/2008 Adjoints of MPI programs 10

in the OpenAD prototype'

call ampi_awaitall(exchNReqsX(1,bi,bj) ,&
exchReqIdX(1,1,bi,bj), &
mpiStatus, mpiRC)

AWAITALL(r)

,,,,,,,,,,,,,,,, *\

call ampi_isend(westSendBuf_RL(1,eBl,bi,bj),&
theSize, theType, theProc, theTag, &
MPI_COMM_MODEL, &
exchReqIdX(pReqIl,1,bi,bj), &
exchNReqsX(1,bi,bj),&
mpiStatus , mpiRc)

ISEND(bSr)

[RECV(bEro.)

v
[WAITALL(r)

call ampi_wrecv(westRecvBuf _RL(1,eBl,bi,bj),&
theSize, theType, theProc, theTag,&
MPI_COMM_MODEL ,&
exchReqIdX(pReqIl,1,bi,bj), &
exchNReqsX(1,bi,bj), &
mpiStatus, mpiRc)

call ampi_waitall(exchNReqsX(1,bi,bj) ,&
exchReqIdX(1,1,bi,bj), &
mpiStatus, mpiRC)

_ /

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 11

/ ‘what about <insert problem here> ?I \

e solutions A & B disambiguate edges in dynamic comm. graph

e don’t do much for static analysis:

| branch on rank |

— e.g. modeled with MPI-enhanced CFG
(Strout/Hovland /Kreaseck)

— useful for activity analysis

| end branch |

e would like to identify communication “channels” using
— pragmas (can make up anything but no external support), or

— aspects (existing systems w support, suggested by B. Gropp; no “Aspecttran”)

e group certain send - recv - wait / certain collective and barrier calls
— would like runtime validity checks
— reusable for analysis, debugging, adjoint generation

— don’t assume locality of channels in the source or single call location of

\ collective ops /

Utke ECCO2 meeting

Sep/2008

Adjoints of MPI programs

12

-

V

e retains pattern (rsend may improve performance by avoiding hand shake)

‘What about barrier ?I

e simple synch point = same for adjoint, example:

IRECV(y,r) |

Y
| BARRIER \«f»\ BARRIER |
\RSEND(X) \ “TIRWAIT(r.y)

¥

P1

[do nasty stuff, e.g. shared]

BARRIER |

'BARRIER |

original program

A

X+=t y=0

WAIT(r) RSEND(Y)

'BARRIER || | BARRIER |
A

IRECVItr) | T

A

e barrier itself does not conceptualize a critical section

P1

P2

BARRIER

BARRIER

do nasty stuff

e can rationalize the need for barrier enclosed section for correctness of

\o note - MPI’s one-sided commun. has “fence” to demark section ®

/

Utke

ECCO2 meeting

Sep/2008

Adjoints of MPI programs

13

/

‘ collective communication I

e example: reduction followed by broadcast
b() = Z a; followed by b, = bOVi

e conceptually simple; reduce +— bcast and bcast +— reduce

P P
| .) |
reduce(a, b, +) | P bcast (t); a+=...
-.‘.\~ O
! f
bcast (b) o : reduce(a, b, +) reduce(b, t, +)
ot Y ES
e bcast (b ' yo
reduce(a, b, +) g X (b) bcast (t);a+=... i
Y b }
s s
bcast (b) reduce(b, t, +)

Po

o beast (t);a+=. ..

t

reduce(b, t, +)

P ‘ ‘ P
j j

e adjoint: ty = > b; followed by a;+=t(Vi

e has single transformation points (connected by hyper communication edge)

e efficiency for product reduction because of increment a;+=(0bg/da;)toVi

/

Utke

ECCO2 meeting

Sep/2008

Adjoints of MPI programs

14

/

summary '

prerequisites: communication edges not interrupted by checkpoints

resource problem for communicators (topology descriptions)

initial wrapped MPI solution

later integrated MPI solution + analysis support

goal standardize (small) set of guaranteed adjoinable MPI calls

— ongoing discussion with MPI group at Argonne

final remark: adjoining OpenMP has problems too, e.g.

the adjoint of omp parallel do isn’t necessarily parallel too

DO I=2, N-1

DO I=N-1,2, -1

/

A(I)=X(I-1)-2%X(I)+X(I+1) A(I) =A(I) +B(I)
B(I)=A(I)+SQRT(X(I)) X(I) =X(I) +B(I)*1./(2*%SQRT(X(I))
ENDDO X(I-1)=X(I-1)+A(I)
X(I) =X(I) +2%A(I)
X(I+1)=X(I+1)+A(I)
\ race between reads and writes on the X — ENDDO
Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 15

current developments in OpenADI

e debugging 1x1 MITgcm setup

e scarcity-based heuristics
e tracing of non-smooth model behavior

e redesign push/pop
— to minimize tape
— allow a variant to locally recompute during the adjoint sweep

— framework to optimize push/pop placement
e misc. front-end fixes

e investigate candidates to replace the Open64 front-end

(need long-term support for Fortran 200X)

_ /

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 16

/ ‘aspect oriented programming' \

e a typical program modularization is 1/O, solver, communication

e logging is a typical example of a “cross cutting concern” (not encapsulated in OOP)

AOP aims to aid separation of concerns

e principle approach:

— aspect: bits of new code (advice) injected into certain spots (join points) in the given

program.

— systems differ in how to specify join points (aka “point cuts”), what can be an advice

(executable code, new members to classes)
— tightly integrated with compilers

— example 1: int C::%(...) matches all member functions of the class C that return

an int

— example 2: call("void draw()") && within("Shape") describes the set of calls to
the function draw that are within methods of the class Shape

e while channels may be a cross-cutting concern they may not always be

\ amenable to point cut specs ® /

Utke ECCO2 meeting

