
Sep/2008 Adjoints of MPI programs 1'

&

$

%

Adjoints of MPI programs

• based on discussions with Paul Hovland, Laurent Hascoët, Uwe Naumann,

Bill Gropp, Darius Buntinas

• wanted by: Chris and Patrick

• general things about MPI

• MPI use in MITgcm

• a solution prototype in OpenAD

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 2'

&

$

%

MPI - data transfer between processes

• in MITgcm: exchange tile halos, reductions operations. synchronization...

• simple MPI program needs 6 calls :

mpi init // initialize the environment

mpi comm size // number of processes in the communicator

mpi comm rank // rank of this process in the communicator

mpi send // send (blocking)

mpi recv // receive (blocking)

mpi finalize // cleanup

• 287 routines standardized by MPI-2

• covering: communication, setup, grouping of processes, I/O, status queries,

topologies, debugging,...

• send modes: mpi [i][b|s|r]send

• receive modes: mpi [i]recv

• ensure correctness and improve efficiency ⇒ want the same for adjoints

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 3'

&

$

%

correctness as in ...

• correct parameters ? (data,endpoints)

• no deadlocks ? (look at communication graphs)

• for example: data exchange between P1 and P2

SEND SEND

RECV RECV

P1 P2

... has a cycle (involving comm.edges)

• break with buffered∗ sends, reordering, non-blocking sends, ...

RECV RECV

P1 P2

SEND

RECV

P1 P2

ISENDBSENDBSEND RECV

SEND

RECVRECV

WAITWAIT

ISEND

the last idiom is used in MITgcm ∗
resource starvation?

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 4'

&

$

%

easy adjoints for blocking calls

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)
a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

• easy adjoint transformation: send 7→ recv and recv 7→ send

• hyp.: if the forward communication graph is acyclic, so is the adjoint; look at the

communication graph with reversed edges

• for activity analysis: difficult to statically determine send/recv pairs; e.g.

consider set of all possible dynamic comm. graphs

• with wildcards (but no threads): record actual sources/tags on receive and send

with recorded tag to recorded source in the adjoint sweep

• hyp.: no forward deadlock ≡ no cycle in current dynamic comm. graph ⇒ no

cycle in inverted dynamic comm. graph ≡ no adjoint deadlock

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 5'

&

$

%

previously on “AD and MPI”

not exhaustive and in no particular order:

• Griewank: first ed. of “the book” had 2 pages on parallel programs; second edition has

more

• Hovland: thesis “AD of parallel programs” - mostly forward

• Hovland/Bischof: “Automatic Differentiation for Message-Passing Parallel Programs”

- association between value and derivative

• Carle/Fagan: “Automatically Differentiating MPI-1 Datatypes” - ditto

• Faure/Dutto: “Extension of Odyssée to the MPI library -Reverse mode”

- plain send/recv

• Cheng: “A Duality between Forward and Adjoint MPI Communication Routines”

- ditto

• Carle: in ch. 24 of “Sourcebook of Parallel Computing” - 4 pgs on analysis, plain

send/recv

• Strout/Hovland/Kreaseck: “Data flow analysis for MPI programs”

• Heimbach/Hill/Giering: “Automatic generation of efficient adjoint code for a parallel

Navier-Stokes Solver” - hand-written communication adjoints in MITgcm

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 6'

&

$

%

why the wrappers in MITgcm?

w
es

t

ov
er

la
p

 e
dg

e

ea
st

 e
dg

e

P0 P1 P2

P

P

=

=

+=

+=

ea
st

ov
er

la
p

w
es

t

aE= edge
east

isend(aE,r)
1

edge
west

waitall(r)

aW=

isend(aW,r)
2

P1

overlap

P0

east

recv(bE)

=bE west
overlap

P2

recv(bW)

=bW

actually in E-W and N-S; need to consider

corners...

• every tile needs to talk to its

neighbors

• prevent deadlocks by imposing

ordering ? (can be a bit complicated

depending on the decomposition)

• prevent deadlocks by buffered

communication? (can run out of

bufferspace)

• use non-blocking calls, the idiom

used here is

ISEND∗ - RECV∗ - WAITALL

• no “easy” transformation; in

MITgcm EXCH routines have

hand-written adjoints

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 7'

&

$

%

no easy transformation because ...

• consider the communication graphs for simple nonblocking idioms

• need to retain correctness, i.e. use nonblocking calls in the adjoint

y=0

x+=t

y=0

x+=tISEND(x,r)

WAIT(rS ,x)

RECV(y)

ISEND(x,r)

WAIT(rS ,x)

RECV(y) SEND(y)

WAIT(r)

IRECV(t,r)

SEND(y)

WAIT(r)

IRECV(t,r)

x+=t

y=0 y=0

x+=t

IRECV(y,r)

WAIT(rR)

SEND(x)

IRECV(y,r)

WAIT(r)

SEND(x)

WAIT(r) WAIT(r)

R,y ,y ISEND(y,r)

RECV(t) RECV(t)

ISEND(y,r)

• the above transformations are provably correct

• extensions to convey context

⇒ enables a transformation recipe per call

• promises to not read or write the respective

buffer

RECV

ISEND

WAITALL

ISEND

RECV

WAITALL

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 8'

&

$

%

...solution A

• require individual, marked WAITs (achieves 1 on 1 comm edges)

i
R

i
R

WAIT(r)R
i

b =0
IRECV(b ,r)

ISEND(b ,r)

ISEND(b ,r)

S

R

1
S

2

1
S

2
S

R
1 1

WAIT(r R,b2)2

WAIT(r 1R,b1
R)R

R R

WAIT(r S,b2
S)S 2

WAIT(r 1S,b1
S)S

ISEND(b , r)i
R

k k
SIRECV(t ,r)

R
2
R

2IRECV(b ,r)

WAIT(r)S
k

b +=tk
S

• extra arguments permit simple transformation recipe with (otherwise)

indistinguishable request and buffer arrays

• but individual WAITs impose artificial order ⇒ bad for performance

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 9'

&

$

%

...solution B

• require a symmetric counterpart to the waitall; think “anti waitall”

• retains more efficient pattern ,

• extend promises symmetrically to AWAITALL

IRECV(b ,r)k
R

n+k

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r)

AWAITALL(r)

i
S

iIIRECV(b ,r)

n+kk
RZISEND(b ,r)

WAITALL(r)

• wrapped MPI calls have logic to delay zeroing/increment buffers

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 10'

&

$

%

in the OpenAD prototype

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r)

n+kk
R,rRECV(b)

call ampi_awaitall(exchNReqsX(1,bi,bj),&

exchReqIdX(1,1,bi,bj), &

mpiStatus, mpiRC)

call ampi_isend(westSendBuf_RL(1,eBl,bi,bj),&

theSize, theType, theProc, theTag, &

MPI_COMM_MODEL,&

exchReqIdX(pReqI,1,bi,bj), &

exchNReqsX(1,bi,bj),&

mpiStatus , mpiRc)

call ampi_wrecv(westRecvBuf_RL(1,eBl,bi,bj),&

theSize, theType, theProc, theTag,&

MPI_COMM_MODEL ,&

exchReqIdX(pReqI,1,bi,bj), &

exchNReqsX(1,bi,bj), &

mpiStatus, mpiRc)

call ampi_waitall(exchNReqsX(1,bi,bj),&

exchReqIdX(1,1,bi,bj), &

mpiStatus, mpiRC)

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 11'

&

$

%

what about <insert problem here> ?

• solutions A & B disambiguate edges in dynamic comm. graph

• don’t do much for static analysis:

– e.g. modeled with MPI-enhanced CFG

(Strout/Hovland/Kreaseck)

– useful for activity analysis

branch on rank

end branch

0
1 2

3

send(a,tagA) send(b,tagB)

recv(c,tagC) recv(d,tagD)

• would like to identify communication “channels” using

– pragmas (can make up anything but no external support), or

– aspects (existing systems w support, suggested by B. Gropp; no “Aspecttran”)

• group certain send - recv - wait / certain collective and barrier calls

– would like runtime validity checks

– reusable for analysis, debugging, adjoint generation

– don’t assume locality of channels in the source or single call location of

collective ops

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 12'

&

$

%

what about barrier ?

• simple synch point ⇒ same for adjoint, example:

x+=tIRECV(y,r)

WAIT(r)

WAIT(r)

R ,y

BARRIER BARRIER

RSEND(x) IRECV(t,r)

RSEND(y)
y=0

BARRIERBARRIER

• retains pattern (rsend may improve performance by avoiding hand shake)

• barrier itself does not conceptualize a critical section

BARRIER

BARRIER BARRIER

BARRIER

BARRIER

P1 P2 P2P1

BARRIER

do nasty stuff, e.g. shared
memory maniputation do nasty stuff

• can rationalize the need for barrier enclosed section for correctness of

original program

• note - MPI’s one-sided commun. has “fence” to demark section ,

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 13'

&

$

%

collective communication

• example: reduction followed by broadcast

b0 =
∑

ai followed by bi = b0∀i

• conceptually simple; reduce 7→ bcast and bcast 7→ reduce
P
i

P
j

bcast(b)

bcast(b)

bcast(b)

reduce(a,b,+)

reduce(a,b,+)

reduce(a,b,+)

0P

P
i

P
j

bcast(t);a+=...

reduce(b,t,+) bcast(t);a+=...

reduce(b,t,+)
bcast(t);a+=...

reduce(b,t,+)

0
P

• adjoint: t0 =
∑

b̄i followed by āi+=t0∀i

• has single transformation points (connected by hyper communication edge)

• efficiency for product reduction because of increment āi+=(∂b0/∂ai)t0∀i

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 14'

&

$

%

summary

• prerequisites: communication edges not interrupted by checkpoints

• resource problem for communicators (topology descriptions)

• initial wrapped MPI solution

• later integrated MPI solution + analysis support

• goal standardize (small) set of guaranteed adjoinable MPI calls

=⇒ ongoing discussion with MPI group at Argonne

• final remark: adjoining OpenMP has problems too, e.g.

the adjoint of omp parallel do isn’t necessarily parallel too

DO I=2, N-1

A(I)=X(I-1)-2*X(I)+X(I+1)

B(I)=A(I)+SQRT(X(I))

ENDDO

race between reads and writes on the X̄ =⇒

DO I=N-1,2, -1

Ā(I) =Ā(I) +B̄(I)

X̄(I) =X̄(I) +B̄(I)*1./(2*SQRT(X(I))

X̄(I-1)=X̄(I-1)+Ā(I)

X̄(I) =X̄(I) +2*Ā(I)

X̄(I+1)=X̄(I+1)+Ā(I)

ENDDO

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 15'

&

$

%

current developments in OpenAD

• debugging 1x1 MITgcm setup

• scarcity-based heuristics

• tracing of non-smooth model behavior

• redesign push/pop

– to minimize tape

– allow a variant to locally recompute during the adjoint sweep

– framework to optimize push/pop placement

• misc. front-end fixes

• investigate candidates to replace the Open64 front-end

(need long-term support for Fortran 200X)

Utke ECCO2 meeting

Sep/2008 Adjoints of MPI programs 16'

&

$

%

aspect oriented programming

• a typical program modularization is I/O, solver, communication

• logging is a typical example of a “cross cutting concern” (not encapsulated in OOP)

• AOP aims to aid separation of concerns

• principle approach:

– aspect: bits of new code (advice) injected into certain spots (join points) in the given

program.

– systems differ in how to specify join points (aka “point cuts”), what can be an advice

(executable code, new members to classes)

– tightly integrated with compilers

– example 1: int C::%(...) matches all member functions of the class C that return

an int

– example 2: call("void draw()") && within("Shape") describes the set of calls to

the function draw that are within methods of the class Shape

• while channels may be a cross-cutting concern they may not always be

amenable to point cut specs /

Utke ECCO2 meeting

