
Tight Lower Bounds on the Complexity of Derivative
Accumulation

Andrew Lyons

Computation Institute, University of Chicago, and

Mathematics and Computer Science Division, Argonne National Laboratory
lyonsam@gmail.com

Theory Seminar

Department of Computer Science, University of Chicago

March 9, 2010

mailto:lyonsam@gmail.com

Who Am I?

I B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)

I Background in graph/order theory, algorithms

I 2007-present: ANL

Specialized compiler OpenAD (http://www.mcs.anl.gov/OpenAD/)
implementing techniques of automatic (or algorithmic) differentiation

Primary application: MITgcm (General Circulation Model)
(http://mitgcm.org/)

http://www.mcs.anl.gov/OpenAD/
http://mitgcm.org/

Who Am I?

I B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)

I Background in graph/order theory, algorithms

I 2007-present: ANL

Specialized compiler OpenAD (http://www.mcs.anl.gov/OpenAD/)
implementing techniques of automatic (or algorithmic) differentiation

Primary application: MITgcm (General Circulation Model)
(http://mitgcm.org/)

http://www.mcs.anl.gov/OpenAD/
http://mitgcm.org/

Motivation: Derivatives are Ubiquitous in Computational
Science and Engineering

Examples:

I Derivative-based optimization

I Numerical simulation (sensitivities)

Have code for F ,

Want code to compute the value for F and its derivatives F ′ (at some
argument)

A Very High-Level Overview of Computational Derivatives

Divided Differences

I Treat F as a black box

I involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

I Ignore code for F , treat as a collection of expressions (formulas)

I ⇒ produce formula for F ′ from formula for F

Automatic (Algorithmic) Differentiation

I code for F
OpenAD−→ code for F and F ′

traditional compiler−→ machine code

I Considers the code for F as a circuit, appends to this a circuit for F ′

I Yields exact derivatives

A Very High-Level Overview of Computational Derivatives

Divided Differences

I Treat F as a black box

I involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

I Ignore code for F , treat as a collection of expressions (formulas)

I ⇒ produce formula for F ′ from formula for F

Automatic (Algorithmic) Differentiation

I code for F
OpenAD−→ code for F and F ′

traditional compiler−→ machine code

I Considers the code for F as a circuit, appends to this a circuit for F ′

I Yields exact derivatives

The Optimal Structural Derivative
Accumulation Problem

v 1
1

v 0
1 v 2

1x1
11 x2

11

v 1
2

v 0
2 v 2

2x1
22 x2

22

x1
12

x2
21x1

21

x2
12

straight-line code → G
Given any DAG G , find optimal way to evaluate

Jij(G) =
∑

P∈[si tj]

∏
(u,v)∈P

xuv ,

The Optimal Structural Derivative
Accumulation Problem

v 1
1

v 0
1 v 2

1x1
11 x2

11

v 1
2

v 0
2 v 2

2x1
22 x2

22

x1
12

x2
21x1

21

x2
12

exponential number of terms – easy to evaluate by dynamic programming

Straight-line code (no branches) – is this a toy problem?

The Optimal Structural Derivative
Accumulation Problem

v 1
1

v 0
1 v 2

1x1
11 x2

11

v 1
2

v 0
2 v 2

2x1
22 x2

22

x1
12

x2
21x1

21

x2
12

J (G) =

[
x1

11 x1
12

x1
21 x1

22

] [
x2

11 x2
12

x2
21 x2

22

]
What can we hope to say about the complexity of J (G)?
it includes matrix multiplication as a special case

Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (⇒ monotone circuits)

Theorem (Jerrum/Snir 1982)

(k − 1)n3 multiplications are necessary and sufficient to evaluate the
product A1A2 · · ·Ak of k dense n × n matrices over 〈R,+,×, 0, 1〉.

For k = 2, the above is implied by the following stronger result.

Theorem ((many – Pratt, Paterson, Kerr, Melhorn) 1970’s)

If A is an n0 × n1 matrix and B is an n1 × n2 matrix, then n0n1n2

multiplications and n0(n1 − 1)n2 additions are necessary and sufficient to
evaluate AB over any semiring of characteristic zero.

Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (⇒ monotone circuits)

Theorem (Jerrum/Snir 1982)

(k − 1)n3 multiplications are necessary and sufficient to evaluate the
product A1A2 · · ·Ak of k dense n × n matrices over 〈R,+,×, 0, 1〉.

For k = 2, the above is implied by the following stronger result.

Theorem ((many – Pratt, Paterson, Kerr, Melhorn) 1970’s)

If A is an n0 × n1 matrix and B is an n1 × n2 matrix, then n0n1n2

multiplications and n0(n1 − 1)n2 additions are necessary and sufficient to
evaluate AB over any semiring of characteristic zero.

Why Compute Over a Semiring?

Some combination of the following:

I Numerical stability (no run-time checks)

I Seems natural

I Our purview is the structure of derivatives and the chain rule

I This structure should certainly have meaning in semirings

Outline

Computational Model
Computing Polynomials over Semirings with Monotone Circuits
Monotone Multilinear Circuits Have Nice Properties

Tight Lower Bounds
3-homogeneous st-DAGs
Lower Bounds via Reduction Rules

Discussion of Results
Complexity of Circuit Minimization
Computing Polynomial Functions over Different Semirings
The Power of Constants
The Power of Commutativity

Outline

Computational Model
Computing Polynomials over Semirings with Monotone Circuits
Monotone Multilinear Circuits Have Nice Properties

Tight Lower Bounds
3-homogeneous st-DAGs
Lower Bounds via Reduction Rules

Discussion of Results
Complexity of Circuit Minimization
Computing Polynomial Functions over Different Semirings
The Power of Constants
The Power of Commutativity

Computational Model

The real semiring 〈R,+,×, 0, 1〉

I × and + are commutative, associative

I × distributes over +

I 1 - multiplicative identity

I 0 - additive identity/multiplicative annihilator

I No additive inverses – no cancellations

Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X , positive constants from underlying field

Gates: Always indegree 2, of the following two types:

⊗ gates : Compute the product of their children

⊕ gates : Compute the sum of their children

Think of polynomials in terms of set of sets representation (monomials
and indeterminates)

Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X , positive constants from underlying field

Gates: Always indegree 2, of the following two types:

⊗ gates : Compute the product of their children

⊕ gates : Compute the sum of their children

Think of polynomials in terms of set of sets representation (monomials
and indeterminates)

Arithmetic Circuits Compute (Collections of) Polynomials

x1

x2
x3

x4

x5

G

J (G) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

× 1
2 x3

×1
2 x2x3

+x1 + 1
2 x2x3

×x1x4 + 1
2 x2x3x4

× 1
2 x3x4

+ 1
2 x3x4 + x5

× 1
2 x2x3x4 + x2x5

+ x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

Φ

Monotone Multilinear Circuits Have Nice Properties

Definition (multilinear polynomial over R[X])

linear in each indeterminate in X

Monotone circuits for multilinear polynomials are multilinear
(Nisan/Wigderson 1995)

Monotone Multilinear Circuits Have Nice Properties

Definition (multiplicatively disjoint circuit)

No indeterminate x has both α and β as an ancestor

α β

× ρ

Parse Trees

Definition (Jerrum/Snir1982)

A subcircuit T of Φ is a parse tree of Φ if it satisfies the following
conditions:

1. T contains the (unique) output of Φ.

2. If T contains a sum gate σ, then T contains exactly one of the
children of σ.

3. If T contains a product gate ρ, then T contains both of the
children of ρ.

4. No proper subtree of T satisfies (i)-(iii).

Parse Trees

x1

x2
x3

x4

x5

G

J (G) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

× 1
2 x3

×1
2 x2x3

+x1 + 1
2 x2x3

×x1x4 + 1
2 x2x3x4

× 1
2 x3x4

+ 1
2 x3x4 + x5

× 1
2 x2x3x4 + x2x5

+ x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

Φ

Parse Trees

x1

x2
x3

x4

x5

G

J (G) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

×

1
2 x3

×

1
2 x2x3

+

x1 + 1
2 x2x3

×

x1x4 + 1
2 x2x3x4

×

1
2 x3x4

+

1
2 x3x4 + x5

×

1
2 x2x3x4 + x2x5

+

x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

x2x5

Φ

Parse Trees

x1

x2
x3

x4

x5

G

J (G) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

×

1
2 x3

×

1
2 x2x3

+

x1 + 1
2 x2x3

×

x1x4 + 1
2 x2x3x4

×

1
2 x3x4

+

1
2 x3x4 + x5

×

1
2 x2x3x4 + x2x5

+

x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

1
2x2x3x4

Φ

Parse Trees

x1

x2
x3

x4

x5

G

J (G) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

×

1
2 x3

×

1
2 x2x3

+

x1 + 1
2 x2x3

×

x1x4 + 1
2 x2x3x4

×

1
2 x3x4

+

1
2 x3x4 + x5

×

1
2 x2x3x4 + x2x5

+

x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

1
2x2x3x4

Φ

Parse Trees

x1

x2
x3

x4

x5

G

J (G) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

×

1
2 x3

×

1
2 x2x3

+

x1 + 1
2 x2x3

×

x1x4 + 1
2 x2x3x4

×

1
2 x3x4

+

1
2 x3x4 + x5

×

1
2 x2x3x4 + x2x5

+

x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

x1x4

Φ

Outline

Computational Model
Computing Polynomials over Semirings with Monotone Circuits
Monotone Multilinear Circuits Have Nice Properties

Tight Lower Bounds
3-homogeneous st-DAGs
Lower Bounds via Reduction Rules

Discussion of Results
Complexity of Circuit Minimization
Computing Polynomial Functions over Different Semirings
The Power of Constants
The Power of Commutativity

Tight Lower Bounds

Theorem
An optimal arithmetic circuit computing J (G) can be constructed in
polynomial time if G belongs to one of the following classes of DAGs.

I 3-homogeneous st-DAGs

I complete st-DAGs

I series-parallel st-DAGs

3-homogeneous st-DAGs

v 0
1

v 1
1 v 2

1

v 1
2 v 2

2

v 1
3 v 2

3

v 3
1

x1
11

x3
11

x1
12 x3

21

x1
13 x3

31

x2
11

x2
21

x2
31

x2
22

x2
32

x2
33

G

v 1
1 v 2

1

v 1
2 v 2

2

v 1
3 v 2

3

G 2

J (G) =
[

x1
11 x1

12 x1
13

]
︸ ︷︷ ︸

X 1

 x2
11 0 0

x2
21 x2

22 0
x2

31 x2
32 x2

33


︸ ︷︷ ︸

X 2

 x3
11

x3
21

x3
31


︸ ︷︷ ︸

X 3

3-homogeneous st-DAGs

v 0
1

v 1
1 v 2

1

v 1
2 v 2

2

v 1
3 v 2

3

v 3
1

x1
11

x3
11

x1
12 x3

21

x1
13 x3

31

x2
11

x2
21

x2
31

x2
22

x2
32

x2
33

G

v 1
1 v 2

1

v 1
2 v 2

2

v 1
3 v 2

3

G 2

If G is a 3-homogeneous st-DAG, then

C× (J (G)) =
∣∣X 2
∣∣+ τ

(
G 2
)
.

3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G 2, and assume WLOG that v 1
1 ∈ H

...

x1
11

x2
11

x2
12

x2
1n2

x3
11

x3
21

x3
n21

Produce a (sub)circuit for all paths containing x1
11

x1
11 x2

11 x2
12 · · · x2

1n2
x3

11 x3
21 · · · x3

n21

× × · · · ×
+

+

×φ

3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G 2, and assume WLOG that v 1
1 ∈ H

...

x1
11

x2
11

x2
12

x2
1n2

x3
11

x3
21

x3
n21

Produce a (sub)circuit for all paths containing x1
11

x1
11 x2

11 x2
12 · · · x2

1n2
x3

11 x3
21 · · · x3

n21

× × · · · ×
+

+

×φ

3-homogeneous st-DAGs: The Upper Bound

x1
11 x1

12 x1
13 x2

11 x2
21 x2

22 x2
32 x2

31 x2
33 x3

11 x3
21 x3

31

X 1 X 2 X 3

×λ11 × λ21 ×λ22 × λ32 ×λ31 × λ33

+ + +

×υ11 = υ21 × υ22 = υ32 × υ31 = υ33

+

+φ

Φ

v 1
1 v 2

1

v 1
2 v 2

2

v 1
3 v 2

3

G 2

3-homogeneous st-DAGs: The Lower Bound

Note 1-1 correspondence between monomials of J (G) and elements of
X 2

xsui xuiwj xwj t

×λij

×υij

Type I

xsui xuiwj xwj t

× λij

× υij

Type II

xsui xuiwj xwj t

×λij

× υij

Type III

Consider the gates where indeterminates come together

Λ: (the “lower”) gates – two indeterminates

Υ: (the “upper”) gates – three indeterminates

3-homogeneous st-DAGs: The Lower Bound

xsui xuiwj xwj t

×λij

× υij

xsui xuiwj xwj t

×λij

×υij

|Λ| ≥ |X 2|
|Υ| ≥ τ

(
G 2
)

Lower Bounds via Reduction Rules

We consider local transformations

G → G ′

where we can relate the complexity of G to that of G ′

In some cases, a sequence

G → G ′ → · · · → G (k−1) → G (k)

with k = O (|A(G)|) reduces the graph to a single edge.

Lower Bounds via Reduction Rules: Parallel Arcs

x1

x2
x ′

Lemma
C (J (G)) = C

(
J (G ′)

)
+ 1

C+ (J (G)) = C+

(
J (G ′)

)
+ 1

C× (J (G)) = C×
(
J (G ′)

)

Proof.
(≤): set x ′ = x1 + x2

(≥): set x1 = 0 (removes at least one sum gate)

Lower Bounds via Reduction Rules: Key Lemma

Let (u, v) be an arc in A(G).

Lemma
If there is no alternative path from u to v in G ,
then every parent of xuv ∈ Φ is a ⊗-gate

Proof.
Suppose a sum gate σ has children xuv and β.
For every parse tree that includes xuv there is a corresponding parse tree
including β.

Lower Bounds via Reduction Rules: Arcs in Series
v

x1 x2 x ′

Lemma
If v has exactly one inedge and exactly one outedge, then

C (J (G)) = C
(
J (G ′)

)
+ 1

C+ (J (G)) = C+

(
J (G ′)

)
C× (J (G)) = C×

(
J (G ′)

)
+ 1

Proof.

≤: set x ′ = x1 × x2

≥: set x1 = 1 (remove at least one ⊗-gate)

Lower Bounds via Reduction Rules: Arcs in Series
v

x1 x2 x ′

Lemma
If v has exactly one inedge and exactly one outedge, then

C (J (G)) = C
(
J (G ′)

)
+ 1

C+ (J (G)) = C+

(
J (G ′)

)
C× (J (G)) = C×

(
J (G ′)

)
+ 1

Proof.

≤: set x ′ = x1 × x2

≥: set x1 = 1 (remove at least one ⊗-gate)

Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition
A single isolated edge is a series-parallel st-DAG.
If G1,G2 are series-parallel st-DAGs, then so is their. . .

series composition: identify the sink of G1 with the source of G2

parallel composition: identify the two sources, identify the two sinks

Theorem
The following are equivalent.

I G is a series-parallel st-DAG

I G can be reduced to a single edge by a sequence of series and
parallel reduction rule applications

I there is a circuit for J (G) that is tree structured (like a formula)

Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition
A single isolated edge is a series-parallel st-DAG.
If G1,G2 are series-parallel st-DAGs, then so is their. . .

series composition: identify the sink of G1 with the source of G2

parallel composition: identify the two sources, identify the two sinks

Theorem
The following are equivalent.

I G is a series-parallel st-DAG

I G can be reduced to a single edge by a sequence of series and
parallel reduction rule applications

I there is a circuit for J (G) that is tree structured (like a formula)

Lower Bounds via Reduction Rules: Complete st-DAGs
u v w

x1 x2

x3

u v w
x1

x ′

Lemma
If v has exactly one inedge and there is no alternative path from v to
w, then

C (J (G)) = C
(
J (G ′)

)
+ 2

C+ (J (G)) = C+

(
J (G ′)

)
+ 1

C× (J (G)) = C×
(
J (G ′)

)
+ 1

Proof.
(≤): set x ′ = x3 + (x1 × x2)
(≥): set x2 = 0 (removes at least one ⊗-gate and at least one
⊕-gate)

Lower Bounds via Reduction Rules: Complete st-DAGs

Lower Bounds via Reduction Rules: Comments

Optimality-preserving reduction rules should be applied whenever possible

We can turn any DAG into a homogeneous DAG by subdividing arcs
(series reduction rule)

All of our reduction rules run in polynomial time.

future work: could these rules (or similar) imply a polynomial-size kernel?

Outline

Computational Model
Computing Polynomials over Semirings with Monotone Circuits
Monotone Multilinear Circuits Have Nice Properties

Tight Lower Bounds
3-homogeneous st-DAGs
Lower Bounds via Reduction Rules

Discussion of Results
Complexity of Circuit Minimization
Computing Polynomial Functions over Different Semirings
The Power of Constants
The Power of Commutativity

Discussion of Results

What have we seen so far?

I homogeneous DAGs correspond to iterated sparse matrix
multiplication

I finding an optimal circuit for a 3-homogeneous st-DAG ⇔ bipartite
vertex cover

I Lower bounds via reduction rules for series-parallel and complete
st-DAGs

Progress towards to original problem (Optimal Structural
Derivative Accumulation)?

Complexity of Circuit Minimization
The problem becomes NP-hard when some subset of the edges may be
labeled with the multiplicative unit “1”.

G



0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1


X 2

⇒ bilinear forms with {0, 1} constants
NP-hard via biclique cover (Gonzalez and JáJá, 1980)

Computing Polynomial Functions over Different Semirings

〈{0, 1},∨,∧〉
s-t connectivity

〈R ∪ {−∞,+∞},max,min〉
all-terminals bottleneck paths

〈R+ ∪ {+∞},min,+〉
all-terminals shortest paths

(non-negative edge weights)

〈N,+,×〉
s-t paths

〈R ∪ {+∞},min,+〉
all-terminals shortest paths

〈R,+,×〉
Jacobian accumulation

idempotence: x ◦ x = x

Computing Polynomial Functions over Different Semirings

〈{0, 1},∨,∧〉
s-t connectivity

〈R ∪ {−∞,+∞},max,min〉
all-terminals bottleneck paths

〈R+ ∪ {+∞},min,+〉
all-terminals shortest paths

(non-negative edge weights)

〈N,+,×〉
s-t paths

〈R ∪ {+∞},min,+〉
all-terminals shortest paths

〈R,+,×〉
Jacobian accumulation

idempotence: x ◦ x = x

The Power of Constants

constant terms

(1 + xa)(xb + xc) = xb + xc + xaxb + xaxc

this does not apply for homogeneous polynomials, and it also doesn’t
apply for “path polynomials”

Lemma
The parent of every constant input is a product gate.

Proof.
(Same as for edges with no alternative path.)

The Power of Constants: Monotone Multilinear Circuits
Without Constants are Even Nicer

scaling indeterminates by constants

x1 + ax2 + (1− a)x2 + x3

why is it useful to have constant-free circuits?

The Power of Constants

R = 〈R,+,×, 0, 1〉, M = 〈R ∪ {+∞},min,+,+∞, 0〉

Theorem (Jerrum/Snir 1982)

If p is a multilinear polynomial, then

CM(p) = CR(p)

CM× (p) = CR×(p)

CM+ (p) = CR+(p)

Optimal Circuits are Constant-Free

Conjecture

Let p be monic, multilinear.
If p is homogenous or p is the path polynomial of some st-DAG, then
every optimal arithmetic circuit computing p over 〈R,+,×〉 is
constant-free.

Proof.
If a monotone idempotent circuit computes a monic multilinear
polynomial, then we can remove the constants

The Power of Constants

R = 〈R,+,×, 0, 1〉, M+ = 〈R+ ∪ {+∞},min,+,+∞, 0〉

Theorem (Jerrum/Snir 1982)

If p is a homogeneous multilinear polynomial, then

CM
+

(p) = CR(p)

CM
+

× (p) = CR×(p)

CM
+

+ (p) = CR+(p)

Note here we have absorption: min(a, a + b) = a

The Power of Commutativity

〈Σ∗ ∪ {⊥},max, concat〉
lex. strings

〈R2×2,×,+〉
Jacobian accumulation
(over 2 × 2 matrices)

〈R ∪ {+∞},min,+〉
all-terminals shortest paths

〈R,+,×〉
Jacobian accumulation

Conjecture (Griewank/Naumann)

Commutativity has no power for evaluating J (G)

All our upper bounds use noncommutative circuits

Acknowledgements

I Jean Utke/Paul Hovland/Ilya Safro (ANL)

I Uwe Naumann (RWTH Aachen)

I Andreas Griewank (Humboldt Berlin)

I Sasha Razborov/Raghav Kulkarni (Chicago)

I Andrew Cone (Chicago alum)

Thanks!

Questions?

	Computational Model
	Computing Polynomials over Semirings with Monotone Circuits
	Monotone Multilinear Circuits Have Nice Properties

	Tight Lower Bounds
	3-homogeneous st-DAGs
	Lower Bounds via Reduction Rules

	Discussion of Results
	Complexity of Circuit Minimization
	Computing Polynomial Functions over Different Semirings
	The Power of Constants
	The Power of Commutativity

