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Who Am I?

I B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)

I Background in graph/order theory, algorithms

I 2007-present: ANL

Specialized compiler OpenAD (http://www.mcs.anl.gov/OpenAD/)
implementing techniques of automatic (or algorithmic) differentiation

Primary application: MITgcm (General Circulation Model)
(http://mitgcm.org/)

http://www.mcs.anl.gov/OpenAD/
http://mitgcm.org/
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Motivation: Derivatives are Ubiquitous in Computational
Science and Engineering

Examples:

I Derivative-based optimization

I Numerical simulation (sensitivities)

Have code for F ,

Want code to compute the value for F and its derivatives F ′ (at some
argument)



A Very High-Level Overview of Computational Derivatives

Divided Differences

I Treat F as a black box

I involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

I Ignore code for F , treat as a collection of expressions (formulas)

I ⇒ produce formula for F ′ from formula for F

Automatic (Algorithmic) Differentiation

I code for F
OpenAD−→ code for F and F ′

traditional compiler−→ machine code

I Considers the code for F as a circuit, appends to this a circuit for F ′

I Yields exact derivatives
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The Optimal Structural Derivative
Accumulation Problem
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straight-line code → G
Given any DAG G , find optimal way to evaluate

Jij(G ) =
∑

P∈[si tj ]

∏
(u,v)∈P

xuv ,
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exponential number of terms – easy to evaluate by dynamic programming

Straight-line code (no branches) – is this a toy problem?
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What can we hope to say about the complexity of J (G )?
it includes matrix multiplication as a special case



Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (⇒ monotone circuits)

Theorem (Jerrum/Snir 1982)

(k − 1)n3 multiplications are necessary and sufficient to evaluate the
product A1A2 · · ·Ak of k dense n × n matrices over 〈R,+,×, 0, 1〉.

For k = 2, the above is implied by the following stronger result.

Theorem ((many – Pratt, Paterson, Kerr, Melhorn) 1970’s)

If A is an n0 × n1 matrix and B is an n1 × n2 matrix, then n0n1n2

multiplications and n0(n1 − 1)n2 additions are necessary and sufficient to
evaluate AB over any semiring of characteristic zero.
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Why Compute Over a Semiring?

Some combination of the following:

I Numerical stability (no run-time checks)

I Seems natural

I Our purview is the structure of derivatives and the chain rule

I This structure should certainly have meaning in semirings
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Computational Model

The real semiring 〈R,+,×, 0, 1〉

I × and + are commutative, associative

I × distributes over +

I 1 - multiplicative identity

I 0 - additive identity/multiplicative annihilator

I No additive inverses – no cancellations



Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X , positive constants from underlying field

Gates: Always indegree 2, of the following two types:

⊗ gates : Compute the product of their children

⊕ gates : Compute the sum of their children

Think of polynomials in terms of set of sets representation (monomials
and indeterminates)
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Arithmetic Circuits Compute (Collections of) Polynomials

x1

x2
x3

x4

x5

G

J (G ) = x2x5 + x2x3x4 + x1x4

x1 x2
1
2 x3 x4 x5

× 1
2 x3

×1
2 x2x3

+x1 + 1
2 x2x3

×x1x4 + 1
2 x2x3x4

× 1
2 x3x4

+ 1
2 x3x4 + x5

× 1
2 x2x3x4 + x2x5

+ x2x5 + 1
2 x2x3x4 + 1

2 x2x3x4 + x1x4

Φ



Monotone Multilinear Circuits Have Nice Properties

Definition (multilinear polynomial over R[X ])

linear in each indeterminate in X

Monotone circuits for multilinear polynomials are multilinear
(Nisan/Wigderson 1995)



Monotone Multilinear Circuits Have Nice Properties

Definition (multiplicatively disjoint circuit)

No indeterminate x has both α and β as an ancestor

α β

× ρ



Parse Trees

Definition (Jerrum/Snir1982)

A subcircuit T of Φ is a parse tree of Φ if it satisfies the following
conditions:

1. T contains the (unique) output of Φ.

2. If T contains a sum gate σ, then T contains exactly one of the
children of σ.

3. If T contains a product gate ρ, then T contains both of the
children of ρ.

4. No proper subtree of T satisfies (i)-(iii).
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Tight Lower Bounds

Theorem
An optimal arithmetic circuit computing J (G ) can be constructed in
polynomial time if G belongs to one of the following classes of DAGs.

I 3-homogeneous st-DAGs

I complete st-DAGs

I series-parallel st-DAGs



3-homogeneous st-DAGs
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3-homogeneous st-DAGs
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If G is a 3-homogeneous st-DAG, then

C× (J (G )) =
∣∣X 2
∣∣+ τ

(
G 2
)
.



3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G 2, and assume WLOG that v 1
1 ∈ H
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3-homogeneous st-DAGs: The Upper Bound
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3-homogeneous st-DAGs: The Lower Bound

Note 1-1 correspondence between monomials of J (G ) and elements of
X 2

xsui xuiwj xwj t

×λij

×υij

Type I

xsui xuiwj xwj t

× λij

× υij

Type II

xsui xuiwj xwj t

×λij

× υij

Type III

Consider the gates where indeterminates come together

Λ: (the “lower”) gates – two indeterminates

Υ: (the “upper”) gates – three indeterminates



3-homogeneous st-DAGs: The Lower Bound

xsui xuiwj xwj t
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xsui xuiwj xwj t
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|Λ| ≥ |X 2|
|Υ| ≥ τ

(
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)



Lower Bounds via Reduction Rules

We consider local transformations

G → G ′

where we can relate the complexity of G to that of G ′

In some cases, a sequence

G → G ′ → · · · → G (k−1) → G (k)

with k = O (|A(G )|) reduces the graph to a single edge.



Lower Bounds via Reduction Rules: Parallel Arcs
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Lemma
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(
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+ 1
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(
J (G ′)

)
+ 1

C× (J (G )) = C×
(
J (G ′)

)

Proof.
(≤): set x ′ = x1 + x2

(≥): set x1 = 0 (removes at least one sum gate)



Lower Bounds via Reduction Rules: Key Lemma

Let (u, v) be an arc in A(G ).

Lemma
If there is no alternative path from u to v in G ,
then every parent of xuv ∈ Φ is a ⊗-gate

Proof.
Suppose a sum gate σ has children xuv and β.
For every parse tree that includes xuv there is a corresponding parse tree
including β.



Lower Bounds via Reduction Rules: Arcs in Series
v

x1 x2 x ′

Lemma
If v has exactly one inedge and exactly one outedge, then

C (J (G )) = C
(
J (G ′)

)
+ 1

C+ (J (G )) = C+

(
J (G ′)

)
C× (J (G )) = C×

(
J (G ′)

)
+ 1

Proof.

≤: set x ′ = x1 × x2

≥: set x1 = 1 (remove at least one ⊗-gate)
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Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition
A single isolated edge is a series-parallel st-DAG.
If G1,G2 are series-parallel st-DAGs, then so is their. . .

series composition: identify the sink of G1 with the source of G2

parallel composition: identify the two sources, identify the two sinks

Theorem
The following are equivalent.

I G is a series-parallel st-DAG

I G can be reduced to a single edge by a sequence of series and
parallel reduction rule applications

I there is a circuit for J (G ) that is tree structured (like a formula)
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Lower Bounds via Reduction Rules: Complete st-DAGs
u v w

x1 x2
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Lemma
If v has exactly one inedge and there is no alternative path from v to
w, then

C (J (G )) = C
(
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)
+ 2

C+ (J (G )) = C+

(
J (G ′)

)
+ 1

C× (J (G )) = C×
(
J (G ′)
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+ 1

Proof.
(≤): set x ′ = x3 + (x1 × x2)
(≥): set x2 = 0 (removes at least one ⊗-gate and at least one
⊕-gate)



Lower Bounds via Reduction Rules: Complete st-DAGs



Lower Bounds via Reduction Rules: Comments

Optimality-preserving reduction rules should be applied whenever possible

We can turn any DAG into a homogeneous DAG by subdividing arcs
(series reduction rule)

All of our reduction rules run in polynomial time.

future work: could these rules (or similar) imply a polynomial-size kernel?
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Discussion of Results

What have we seen so far?

I homogeneous DAGs correspond to iterated sparse matrix
multiplication

I finding an optimal circuit for a 3-homogeneous st-DAG ⇔ bipartite
vertex cover

I Lower bounds via reduction rules for series-parallel and complete
st-DAGs

Progress towards to original problem (Optimal Structural
Derivative Accumulation)?



Complexity of Circuit Minimization
The problem becomes NP-hard when some subset of the edges may be
labeled with the multiplicative unit “1”.

G



0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1


X 2

⇒ bilinear forms with {0, 1} constants
NP-hard via biclique cover (Gonzalez and JáJá, 1980)



Computing Polynomial Functions over Different Semirings

〈{0, 1},∨,∧〉
s-t connectivity

〈R ∪ {−∞,+∞},max,min〉
all-terminals bottleneck paths

〈R+ ∪ {+∞},min,+〉
all-terminals shortest paths

(non-negative edge weights)

〈N,+,×〉
# s-t paths

〈R ∪ {+∞},min,+〉
all-terminals shortest paths

〈R,+,×〉
Jacobian accumulation

idempotence: x ◦ x = x
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The Power of Constants

constant terms

(1 + xa)(xb + xc) = xb + xc + xaxb + xaxc

this does not apply for homogeneous polynomials, and it also doesn’t
apply for “path polynomials”

Lemma
The parent of every constant input is a product gate.

Proof.
(Same as for edges with no alternative path.)



The Power of Constants: Monotone Multilinear Circuits
Without Constants are Even Nicer

scaling indeterminates by constants

x1 + ax2 + (1− a)x2 + x3

why is it useful to have constant-free circuits?



The Power of Constants

R = 〈R,+,×, 0, 1〉, M = 〈R ∪ {+∞},min,+,+∞, 0〉

Theorem (Jerrum/Snir 1982)

If p is a multilinear polynomial, then

CM(p) = CR(p)

CM× (p) = CR×(p)

CM+ (p) = CR+(p)



Optimal Circuits are Constant-Free

Conjecture

Let p be monic, multilinear.
If p is homogenous or p is the path polynomial of some st-DAG, then
every optimal arithmetic circuit computing p over 〈R,+,×〉 is
constant-free.

Proof.
If a monotone idempotent circuit computes a monic multilinear
polynomial, then we can remove the constants



The Power of Constants

R = 〈R,+,×, 0, 1〉, M+ = 〈R+ ∪ {+∞},min,+,+∞, 0〉

Theorem (Jerrum/Snir 1982)

If p is a homogeneous multilinear polynomial, then

CM
+

(p) = CR(p)

CM
+

× (p) = CR×(p)

CM
+

+ (p) = CR+(p)

Note here we have absorption: min(a, a + b) = a



The Power of Commutativity

〈Σ∗ ∪ {⊥},max, concat〉
lex. strings

〈R2×2,×,+〉
Jacobian accumulation
(over 2 × 2 matrices)

〈R ∪ {+∞},min,+〉
all-terminals shortest paths

〈R,+,×〉
Jacobian accumulation

Conjecture (Griewank/Naumann)

Commutativity has no power for evaluating J (G )

All our upper bounds use noncommutative circuits
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Thanks!

Questions?
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