Open64 (mfef90, whirl2f, and IR tools)  TAG: version-openad; SVN changeset: 916
targ_sim_body.h
Go to the documentation of this file.
00001 /*
00002 
00003   Copyright (C) 2000, 2001 Silicon Graphics, Inc.  All Rights Reserved.
00004 
00005   This program is free software; you can redistribute it and/or modify it
00006   under the terms of version 2 of the GNU General Public License as
00007   published by the Free Software Foundation.
00008 
00009   This program is distributed in the hope that it would be useful, but
00010   WITHOUT ANY WARRANTY; without even the implied warranty of
00011   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  
00012 
00013   Further, this software is distributed without any warranty that it is
00014   free of the rightful claim of any third person regarding infringement 
00015   or the like.  Any license provided herein, whether implied or 
00016   otherwise, applies only to this software file.  Patent licenses, if 
00017   any, provided herein do not apply to combinations of this program with 
00018   other software, or any other product whatsoever.  
00019 
00020   You should have received a copy of the GNU General Public License along
00021   with this program; if not, write the Free Software Foundation, Inc., 59
00022   Temple Place - Suite 330, Boston MA 02111-1307, USA.
00023 
00024   Contact information:  Silicon Graphics, Inc., 1600 Amphitheatre Pky,
00025   Mountain View, CA 94043, or:
00026 
00027   http://www.sgi.com
00028 
00029   For further information regarding this notice, see:
00030 
00031   http://oss.sgi.com/projects/GenInfo/NoticeExplan
00032 
00033 */
00034 
00035 //
00036 // This file should only be included by <targ>/targ_sim.cxx
00037 // It is for target-independent things that are shared by the targ_sim code.
00038 //
00039 
00040 /*
00041  * This defines the ABI subprogram interface,
00042  * and is used to determine how parameters and results are passed.
00043  * We have an array of tables, where each table describes the info
00044  * for one abi.  The array is indexed by the TARGET_ABI enumeration.
00045  * The register values are the PREG offsets, so these values can be
00046  * used in WHIRL.
00047  */
00048 
00049 typedef mUINT8 mDED_PREG_NUM;   /* physical pregs will be in 0..127 range */
00050 
00051 /* Preg_Range defines a sequence of preg values */
00052 typedef struct {
00053         mDED_PREG_NUM first_reg;
00054         mDED_PREG_NUM last_reg;
00055         mINT16 skip_value;      /* whether to increment by 1 or 2 */
00056         /* only need 2 bits, but use 16 so no padding & no purify complaint */
00057 } Preg_Range;
00058 
00059 #define PR_first_reg(x)         x.first_reg
00060 #define PR_last_reg(x)          x.last_reg
00061 #define PR_skip_value(x)        x.skip_value
00062 
00063 /* Define an interface descriptor: */
00064 typedef struct subprogram_interface {
00065 
00066   mUINT32 flags;                        /* Flags -- see masks below */
00067 
00068   /* Registers used for parameters and results */
00069   Preg_Range int_args;
00070   Preg_Range flt_args;
00071   Preg_Range dbl_args;
00072   Preg_Range int_results;
00073   Preg_Range flt_results;
00074   Preg_Range dbl_results;
00075 
00076   /* Argument conversion: */
00077   mTYPE_ID int_type;    /* Convert to at least this type */
00078   mTYPE_ID flt_type;    /* Convert to at least this type */
00079   mTYPE_ID dbl_type;    /* Convert to at least this type */
00080 
00081   /* Argument save area definition: */
00082   mINT16 min_save_area_bytes;   /* Minimum size to be reserved */
00083   mINT16 formal_save_area_bytes;        /* save area for formals */
00084   mINT16 varargs_save_offset;   /* First argument offset (varargs) */
00085 
00086   /* Miscellaneous: */
00087   mINT16 max_struct_size;       /* Max size of structs in regs */
00088         /* -1 for no maximum; see IFACE_REG_STRUCTS flag */
00089   mINT16 max_struct_result;     /* Max size of struct result (in bits) */
00090 
00091   mDED_PREG_NUM slink_reg;      /* Static link register */
00092   mDED_PREG_NUM pic_call_reg;   /* PIC call address register */
00093 
00094 } SIM;
00095 
00096 /* Flag masks */
00097 #define SIM_EXTRA_FLT_IN_INT    0x0001  /* Use int regs for extra flts? */
00098         /* After all available floating point argument registers have
00099          * been used, should we use integer registers?
00100          */
00101 #define SIM_FLT_AFTER_INT       0x0002  /* Use flt regs after int args? */
00102         /* Can we use floating point argument registers for floating
00103          * point arguments which come after (right of) integer args?
00104          */
00105 #define SIM_FIXED_REG_BYTES     0x0008  /* Max bytes in registers? */
00106         /* The MIPS and SPARC ABIs both reserve enough save area space
00107          * for all of the integer argument register contents, but
00108          * considering floating point arguments as well actually could
00109          * allow more register arguments than will fit in the minimum
00110          * space.  Can we actually use more registers than the minimum?
00111          */
00112 #define SIM_COORD_INT_FLT       0x0010  /* Coordinate int/flt regs? */
00113         /* Does the next available integer register get incremented
00114          * when we assign a float argument, and vice versa?  (The MIPS
00115          * conventions say YES.)
00116          */
00117 #define SIM_COORD_MEM_REG       0x0020  /* Coordinate mem and regs? */
00118         /* Are the registers a map of memory, i.e. does alignment in
00119          * memory force equivalent alignment in registers?
00120          */
00121 #define SIM_REG_STRUCTS         0x0040  /* Pass structs in regs? */
00122 #define SIM_FLT_RTN_COMPLEX     0x0080  /* Return complex in flt regs? */
00123 #define SIM_CALLER_SAVE_GP      0x0100  /* GP is caller-save? */
00124 #define SIM_FLT_REG_FIELDS      0x0200  /* Float fields in float regs? */
00125 #define SIM_DBL_REG_FIELDS      0x0400  /* Double fields in float regs? */
00126 #define SIM_VARARGS_FLOATS      0x0800  /* Variable float args in fregs? */
00127 #define SIM_RET_ADDR_VIA_ARGS   0x1000  /* if return large structs via addr
00128                                          * in implicit arg, do we use normal 
00129                                          * parameter passing conventions for 
00130                                          * that implicit arg. */
00131 #define SIM_RET_ADDR_VIA_INT_RET 0x2000 /* if return large structs via addr
00132                                          * in implicit arg, do we use integer 
00133                                          * return register rather than normal
00134                                          * parameter passing for that 
00135                                          * implicit arg. */
00136 
00137 extern SIM SIM_Info[];
00138 #define SIM_INFO        SIM_Info[Target_ABI]
00139 
00140 #define SIM_varargs_floats      ((SIM_INFO.flags & SIM_VARARGS_FLOATS) != 0)
00141 #define SIM_flt_after_int       ((SIM_INFO.flags & SIM_FLT_AFTER_INT) != 0)
00142 #define SIM_caller_save_gp      ((SIM_INFO.flags & SIM_CALLER_SAVE_GP) != 0)
00143 #define SIM_dbl_fields_in_reg   ((SIM_INFO.flags & SIM_DBL_REG_FIELDS) != 0)
00144 #define SIM_return_addr_via_int_return_reg      ((SIM_INFO.flags & SIM_RET_ADDR_VIA_INT_RET) != 0)
00145 
00146 /*
00147  *  check for array case where fe doesn't fill in right btype
00148  */
00149 TYPE_ID
00150 Fix_TY_mtype (TY_IDX ty)
00151 {
00152     TYPE_ID type = TY_mtype (ty);
00153     if (type == MTYPE_UNKNOWN && TY_kind (ty) == KIND_ARRAY)
00154         type = Pointer_Mtype;
00155     else if (MTYPE_is_complex(type) && TY_kind (ty) == KIND_STRUCT)
00156         type = MTYPE_M;
00157 
00158     return type;
00159 }
00160 
00161 static INT Current_Param_Num = -1;
00162         /* number of current logical parameter register, start at 0 */
00163 static INT Last_Param_Offset = 0;       /* stack offset */
00164 static INT Last_Fixed_Param = INT_MAX;  /* # of last fixed param (varargs) */
00165 
00166 
00167 static inline PREG_NUM
00168 Get_Current_Preg_Num (Preg_Range pr)
00169 {
00170         PREG_NUM i;
00171         i = PR_first_reg(pr) + (Current_Param_Num * PR_skip_value(pr));
00172         if (i > PR_last_reg(pr))
00173                 return 0;
00174         else
00175                 return i;
00176 }
00177 
00178 static PLOC Setup_Parameter_Locations (TY_IDX pu_type);
00179 static PLOC Get_Parameter_Location (TY_IDX ty, BOOL is_output);
00180 
00181 extern PLOC
00182 Setup_Input_Parameter_Locations (TY_IDX pu_type)
00183 {
00184     return Setup_Parameter_Locations (pu_type);
00185 }
00186 
00187 extern PLOC
00188 Setup_Output_Parameter_Locations (TY_IDX pu_type)
00189 {
00190     return Setup_Parameter_Locations (pu_type);
00191 }
00192 
00193 extern PLOC
00194 Get_Input_Parameter_Location (TY_IDX ty)
00195 {
00196   return Get_Parameter_Location (ty, FALSE);
00197 }
00198 
00199 extern PLOC
00200 Get_Output_Parameter_Location (TY_IDX ty)
00201 {
00202   return Get_Parameter_Location (ty, TRUE);
00203 }
00204 
00205 static PLOC Get_Vararg_Parameter_Location (PLOC prev);
00206 
00207 extern PLOC
00208 Get_Vararg_Input_Parameter_Location (PLOC prev)
00209 {
00210   return Get_Vararg_Parameter_Location (prev);
00211 }
00212 
00213 extern PLOC
00214 Get_Vararg_Output_Parameter_Location (PLOC prev)
00215 {
00216   return Get_Vararg_Parameter_Location (prev);
00217 }
00218 
00219 #define IS_INT_PREG(p) \
00220         ((PR_first_reg(SIM_INFO.int_args) <= p) \
00221         && (p <= PR_last_reg(SIM_INFO.int_args)))
00222 
00223 #define IS_FLT_PREG(p) \
00224         ((PR_first_reg(SIM_INFO.flt_args) <= p) \
00225         && (p <= PR_last_reg(SIM_INFO.flt_args)))
00226 
00227 /* return position (0'th parameter...8'th parameter) of preg */
00228 #define GET_PREG_POSITION(p,range) \
00229         ((p - PR_first_reg(range)) / PR_skip_value(range))
00230 
00231 
00232 extern INT32
00233 Get_Preg_Size (PREG_NUM p)
00234 {
00235         if (IS_FLT_PREG(p))
00236                 return MTYPE_RegisterSize(SIM_INFO.flt_type);
00237         else
00238                 return MTYPE_RegisterSize(SIM_INFO.int_type);
00239 }
00240 
00241 static void Setup_Struct_Parameter_Locations (TY_IDX struct_ty);
00242 static PLOC Get_Struct_Parameter_Location (PLOC prev);
00243 
00244 extern void
00245 Setup_Struct_Input_Parameter_Locations (TY_IDX struct_ty)
00246 {
00247     Setup_Struct_Parameter_Locations (struct_ty);
00248 }
00249 
00250 extern void
00251 Setup_Struct_Output_Parameter_Locations (TY_IDX struct_ty)
00252 {
00253     Setup_Struct_Parameter_Locations (struct_ty);
00254 }
00255 
00256 extern PLOC
00257 Get_Struct_Input_Parameter_Location (PLOC prev)
00258 {
00259   return Get_Struct_Parameter_Location (prev);
00260 }
00261 
00262 extern PLOC
00263 Get_Struct_Output_Parameter_Location (PLOC prev)
00264 {
00265   return Get_Struct_Parameter_Location (prev);
00266 }
00267 
00268 
00269 static TYPE_ID ploc_parm_mtype;
00270 static INT32 ploc_last_offset;
00271 
00272 
00273 static PLOC
00274 First_PLOC_Reg (PLOC ploc, TY_IDX parm_ty)
00275 {
00276         ploc_parm_mtype = Fix_TY_mtype (parm_ty);       /* Target type */
00277         PLOC first = ploc;
00278         ploc_last_offset = PLOC_total_size(ploc);
00279         switch (ploc_parm_mtype) {
00280         case MTYPE_M:
00281                 Setup_Struct_Parameter_Locations (parm_ty);
00282                 first = Get_Struct_Parameter_Location (ploc);
00283                 break;
00284         case MTYPE_C4:
00285                 PLOC_size(first) = MTYPE_RegisterSize(MTYPE_F4);
00286                 break;
00287         case MTYPE_C8:
00288         case MTYPE_CQ:
00289         case MTYPE_FQ:
00290                 PLOC_size(first) = MTYPE_RegisterSize(MTYPE_F8);
00291                 break;
00292         }
00293         return first;
00294 }
00295 
00296 extern PLOC
00297 First_Input_PLOC_Reg (PLOC ploc, TY_IDX parm_ty)
00298 {
00299     return First_PLOC_Reg (ploc, parm_ty);
00300 }
00301 
00302 extern PLOC
00303 First_Output_PLOC_Reg (PLOC ploc, TY_IDX parm_ty)
00304 {
00305     return First_PLOC_Reg (ploc, parm_ty);
00306 }
00307 
00308 static PLOC
00309 Next_PLOC_Reg (PLOC prev)
00310 {
00311         PLOC next = prev;
00312         switch (ploc_parm_mtype) {
00313         case MTYPE_M:
00314                 next = Get_Struct_Parameter_Location (prev);
00315                 break;
00316         case MTYPE_C4:
00317         case MTYPE_C8:
00318         case MTYPE_CQ:
00319         case MTYPE_FQ:
00320                 if (ploc_parm_mtype == MTYPE_C4)
00321                         PLOC_offset(next) += MTYPE_RegisterSize(MTYPE_F4);
00322                 else
00323                         PLOC_offset(next) += MTYPE_RegisterSize(MTYPE_F8);
00324                 if (PLOC_offset(next) == ploc_last_offset) {
00325                         // end reached
00326                         PLOC_size(next) = 0;
00327                 }
00328                 PLOC_reg(next) += PR_skip_value(SIM_INFO.flt_args);
00329                 if (PLOC_reg(next) > PR_last_reg(SIM_INFO.flt_args)) {
00330                     PLOC_reg(next) = 0;
00331                 }
00332                 break;
00333         default:
00334                 PLOC_offset(next) = ploc_last_offset;
00335                 PLOC_size(next) = 0; 
00336         }
00337         return next;
00338 }
00339 
00340 extern PLOC
00341 Next_Input_PLOC_Reg (PLOC prev)
00342 {
00343         return Next_PLOC_Reg (prev);
00344 }
00345 
00346 extern PLOC
00347 Next_Output_PLOC_Reg (PLOC prev)
00348 {
00349         return Next_PLOC_Reg (prev);
00350 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines