Open64 (mfef90, whirl2f, and IR tools)  TAG: version-openad; SVN changeset: 916
ttype.cxx
Go to the documentation of this file.
00001 /*
00002 
00003   Copyright (C) 2000, 2001 Silicon Graphics, Inc.  All Rights Reserved.
00004 
00005   This program is free software; you can redistribute it and/or modify it
00006   under the terms of version 2 of the GNU General Public License as
00007   published by the Free Software Foundation.
00008 
00009   This program is distributed in the hope that it would be useful, but
00010   WITHOUT ANY WARRANTY; without even the implied warranty of
00011   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  
00012 
00013   Further, this software is distributed without any warranty that it is
00014   free of the rightful claim of any third person regarding infringement 
00015   or the like.  Any license provided herein, whether implied or 
00016   otherwise, applies only to this software file.  Patent licenses, if 
00017   any, provided herein do not apply to combinations of this program with 
00018   other software, or any other product whatsoever.  
00019 
00020   You should have received a copy of the GNU General Public License along
00021   with this program; if not, write the Free Software Foundation, Inc., 59
00022   Temple Place - Suite 330, Boston MA 02111-1307, USA.
00023 
00024   Contact information:  Silicon Graphics, Inc., 1600 Amphitheatre Pky,
00025   Mountain View, CA 94043, or:
00026 
00027   http://www.sgi.com
00028 
00029   For further information regarding this notice, see:
00030 
00031   http://oss.sgi.com/projects/GenInfo/NoticeExplan
00032 
00033 */
00034 
00035 
00036 /* ====================================================================
00037  * ====================================================================
00038  *
00039  *
00040  * Revision history:
00041  *  26-May-89 - Original version of header.
00042  *  12-Jun-91 - Integrated from Josie
00043  *
00044  * Description:
00045  *
00046  * Map tree nodes to the types of the objects represented.
00047  *
00048  * ====================================================================
00049  * ====================================================================
00050  */
00051 
00052 #ifdef USE_PCH
00053 #include "common_com_pch.h"
00054 #endif /* USE_PCH */
00055 #pragma hdrstop
00056 #include "defs.h"
00057 #include "config.h"
00058 #include "erglob.h"
00059 
00060 #include "strtab.h"
00061 #include "stab.h"
00062 #include "opcode.h"
00063 #include "targ_const.h"
00064 #include "const.h"
00065 #include "wn_core.h"
00066 #include "ttype.h"
00067 
00068 #ifdef FRONT_F90
00069 #include "wn.h"
00070 #include "wn_simp.h"
00071 #endif
00072 
00073 TPDEF *Global_Tpdefs = NULL;
00074 
00075 #ifdef FRONT_END_FORTRAN
00076 
00077 TY *Fe_Type_Tbl_[FETYPE_LAST+1];
00078 
00079 /* ====================================================================
00080  *
00081  * FE_Type_Name
00082  *
00083  * Return a printable (character string) representation of
00084  * the FETYPE number of input TY.
00085  *
00086  * ====================================================================
00087  */
00088 
00089 char *
00090 FE_Type_Name ( TY *ty )
00091 {
00092   if ( ty == NULL )  return "<null TY>";
00093   if ( TY_kind(ty) != KIND_SCALAR )  return Kind_Name(TY_kind(ty));
00094 
00095   switch ( TY_fe_btype(ty) ) {
00096     case FETYPE_BAD:    return "FETYPE_BAD";
00097     case FETYPE_UNK:    return "FETYPE_UNK";
00098     case FETYPE_NONE:   return "FETYPE_NONE";
00099     case FETYPE_L1:     return "FETYPE_L1";
00100     case FETYPE_L2:     return "FETYPE_L2";
00101     case FETYPE_L4:     return "FETYPE_L4";
00102     case FETYPE_L8:     return "FETYPE_L8";
00103     case FETYPE_I1:     return "FETYPE_I1";
00104     case FETYPE_I2:     return "FETYPE_I2";
00105     case FETYPE_I4:     return "FETYPE_I4";
00106     case FETYPE_I8:     return "FETYPE_I8";
00107     case FETYPE_R4:     return "FETYPE_R4";
00108     case FETYPE_R8:     return "FETYPE_R8";
00109     case FETYPE_R16:    return "FETYPE_R16";
00110     case FETYPE_C8:     return "FETYPE_C8";
00111     case FETYPE_C16:    return "FETYPE_C16";
00112     case FETYPE_C32:    return "FETYPE_C32";
00113     case FETYPE_CH:     return "FETYPE_CH";
00114   }
00115 
00116   return "<unknown scalar TY>";
00117 }
00118 #endif /* FRONT_END_FORTRAN */
00119 
00120 
00121 /* ====================================================================
00122  *
00123  * TY *TY_Of_Expr (WN *expr)
00124  *
00125  * Return the ty for a whirl expression 
00126  *
00127  * ====================================================================
00128  */
00129 
00130 TY_IDX
00131 TY_Of_Expr (const WN *expr)
00132 {
00133     TY_IDX type;
00134 
00135     switch (WN_operator(expr)) {
00136     case OPR_PARM:
00137         type = WN_ty(expr);
00138         break;
00139     case OPR_IDNAME:
00140         type = WN_type(expr);
00141         break;
00142     case OPR_MLOAD:
00143         type = TY_pointed (Ty_Table[WN_ty (expr)]);
00144         break;
00145     default:
00146         type = MTYPE_To_TY(WN_rtype(expr));
00147         break;
00148     }
00149 
00150     TYPE_ID mtype = TY_mtype (type);
00151 
00152     if (MTYPE_is_complex (mtype)) 
00153         return MTYPE_To_TY (mtype);
00154     
00155     return type;
00156 }
00157 
00158 /* ====================================================================
00159  *
00160  * TY_Of_Parameter (WN *expr)
00161  *
00162  * Return the ty for a whirl expression , accounting for the 
00163  * SCLASS_FORMAL_REF lie (in the context in which this routine is called
00164  * the formal ref will eventually be dereferenced)
00165  *
00166  * ====================================================================
00167  */
00168 TY_IDX
00169 TY_Of_Parameter (WN *expr)
00170 {
00171     TY_IDX type;
00172 
00173     type = TY_Of_Expr (expr);
00174 
00175     if ((WN_has_sym(expr))) {
00176         if (WN_sclass(expr) == SCLASS_FORMAL_REF)
00177             return Make_Pointer_Type(type);
00178     }
00179 
00180     return type;
00181 }
00182 
00183 
00184 /* ====================================================================
00185  *
00186  * Is_Float_Type / Is_Float_Node
00187  *
00188  * Determine whether the given type (the type of the object represented
00189  * by the given tree node) is a floating point type.  For this purpose,
00190  * the Fortran complex types are considered floating point.
00191  *
00192  * ====================================================================
00193  */
00194 
00195 BOOL
00196 Is_Float_Type ( TY_IDX ty )
00197 {
00198     TYPE_ID tid;
00199 
00200     /* Determine whether it's floating point: */
00201     switch (TY_kind (ty)) {
00202     case KIND_SCALAR:
00203         tid = TY_mtype (ty);
00204         if (tid > 0 && tid <= MTYPE_LAST)
00205             return MTYPE_float(tid);
00206         break;
00207 
00208     }
00209     return FALSE;
00210 }
00211 
00212 
00213 #ifndef MONGOOSE_BE
00214 /* ====================================================================
00215  *
00216  * Similar_BE_Types
00217  *
00218  * Routine to compare two types. This routine should be called to
00219  * determine whether two TY records are equivalent from a back end
00220  * implementation point of view, i.e. whether they have the same bit
00221  * representation (TY_mtype).  It ignores diffences of volatile and
00222  * const qualifiers. 
00223  *
00224  * WARNING:  This routine is currently used to decide whether a
00225  * field/member is of an appropriate type for use in struct/class
00226  * decomposition for parameter passing in registers.  It is therefore
00227  * irrelevant how it behaves except for scalar and pointer types.  If
00228  * other users are identified, those cases can be modified as
00229  * appropriate for the new users.
00230  *
00231  * ====================================================================
00232  */
00233 
00234 BOOL
00235 Similar_BE_Types ( TY_IDX t1_idx, TY_IDX t2_idx )
00236 {
00237   /* Do a quick check for identical types: */
00238   if ( t1_idx == t2_idx )
00239     return TRUE;
00240 
00241   TY& t1 = Ty_Table [t1_idx];
00242   TY& t2 = Ty_Table [t2_idx];
00243 
00244   /* Insist on valid kinds: */
00245   if ( TY_kind(t1) == 0 || TY_kind(t2) == 0 )
00246     return FALSE;
00247   
00248   switch (TY_kind(t1)) {
00249 
00250     case KIND_SCALAR:
00251     case KIND_POINTER:
00252       return TY_mtype(t1) == TY_mtype(t2) &&
00253              TY_size(t1) == TY_size(t2);
00254 
00255     default:
00256       return FALSE;
00257   }
00258 }
00259 #endif /* MONGOOSE_BE */
00260 
00261 /* ====================================================================
00262  *
00263  * Equivalent_Types
00264  *
00265  * Routine to compare two types. This routine should be called to
00266  * determine whether two TY records are equivalent.
00267  * 
00268  * There are several cases where comparing TY pointers directly
00269  * can yield FALSE even though the types are the same for purposes
00270  * of assignment or comparison.  Using Equivalent_Types to compare
00271  * two types deals with all these cases.
00272  *
00273  *   1) If two types have the same machine representation (be type)
00274  *      except that one is volatile, const or restrict qualified and
00275  *      the other is not.  Such differences between types should
00276  *      usually be ignored by the back-end.  (QUAL_IGNORE)
00277  *
00278  *   2) If two types have the same machine representation (be type)
00279  *      but differ in the volatile, const and/or restrict qualifiers
00280  *      AND this difference is significant to the back-end.
00281  *      (QUAL_CONSIDER)
00282  *
00283  *   3) To the front-ends, there are more qualifiers which are important
00284  *      to determining type equivalency.  Only if these and the volatile,
00285  *      const and restrict qualifiers are identical can the two types be
00286  *      considered equivalent.  (QUAL_FULL)
00287  *
00288  * ====================================================================
00289  */
00290 
00291 
00292 BOOL
00293 Equivalent_Types (TY_IDX t1, TY_IDX t2, QUAL_CHECK consider_qualifiers)
00294 {
00295 
00296     /* Quick check for identical types: */
00297     if ( t1 == t2 )
00298         return TRUE;
00299 
00300     const TY& ty1 = Ty_Table[t1];
00301     const TY& ty2 = Ty_Table[t2];
00302 
00303     /* Insist on identical, valid, TY_kinds: */
00304     if (TY_kind (ty1) != TY_kind (ty2) || TY_kind (ty1) == KIND_INVALID)
00305         return FALSE;
00306     
00307     BOOL match_q =
00308         (consider_qualifiers == QUAL_IGNORE ||
00309          ((TY_is_volatile (t1) == TY_is_volatile (t2) &&
00310            TY_is_const (t1) == TY_is_const (t2) &&
00311            TY_is_restrict (t1) == TY_is_restrict (t2)) &&
00312           (consider_qualifiers != QUAL_FULL ||
00313            (TY_align_exp (t1) == TY_align_exp (t2) &&
00314             TY_is_character(ty1)==TY_is_character(ty2) &&
00315             TY_is_logical(ty1)==TY_is_logical(ty2)))));
00316 
00317     switch ( TY_kind (ty1)) {
00318 
00319     case KIND_VOID:
00320         return match_q;
00321 
00322     case KIND_SCALAR:
00323         return (TY_mtype (ty1) == TY_mtype (ty2) &&
00324                 TY_size (ty1) == TY_size (ty2) &&
00325                 match_q);
00326                 
00327     case KIND_POINTER:
00328         return match_q && Equivalent_Types (TY_pointed (ty1),
00329                                             TY_pointed (ty2),
00330                                             consider_qualifiers);
00331 
00332     case KIND_FUNCTION:
00333         return match_q && Equivalent_Types (Tylist_Table[TY_tylist (ty1)],
00334                                             Tylist_Table[TY_tylist (ty2)],
00335                                             consider_qualifiers);
00336 
00337     case KIND_ARRAY:
00338          return (match_q && 
00339                  Equivalent_Types (TY_etype (ty1), TY_etype (ty2),
00340                                    consider_qualifiers) &&
00341                  ARB_are_equivalent(TY_arb(ty1), TY_arb(ty2)));
00342 
00343     case KIND_STRUCT:
00344         return TY_fld (ty1) == TY_fld (ty2) && match_q;
00345 
00346     default:
00347         ErrMsg ( EC_Invalid_Case, "Equivalent_Types", __LINE__ );
00348         return FALSE;  /* not needed but silences return w/o value warnings */
00349     }
00350 } // Equivalent_Types
00351 
00352 
00353 #ifndef MONGOOSE_BE
00354 #endif /* MONGOOSE_BE */
00355 
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines