
OpenAD/F: User Manual

J. Utke
U. Naumann

A. Lyons

draft vers. hg:34a2b066dd68+:84+

compiled on May 7, 2009 with

../OpenAD svn:170

Open64 svn:821

OpenADFortTk svn:954

OpenAnalysis svn:433

xercesc svn:46

xaifBooster svn:98

xaif svn:34

angel cvs:None

boost/boost svn:52832

Regression hg:204:8d0e8fa4936a

OpenADFortTk/Regression hg:97:5ead75baa378

OpenADFortTk/tools/SourceProcessing/Regression hg:11:dc031b148d7a

RevolveF9X hg:3:32019b4179be

Examples hg:21:bebddffd10ba

This is hyperref’ed PDF and should be viewed in a
PDF reader instead of being printed!

Contents

Contents i

1 Introduction 3
1.1 Motivation for the OpenAD/F Design . 3
1.2 Overview . 4
1.3 A One-Minute Example . 4

1.3.1 Forward Mode . 5
1.3.2 Reverse Mode . 5

1.4 Deciding on OpenAD/F Usage Patterns . 9
1.4.1 When is AD via source transformation appropriate? . 9
1.4.2 When should the source code be split? . 9
1.4.3 When Should One Use Reverse Mode Instead of Forward Mode? . 10
1.4.4 When Should One Use Checkpointing? . 10
1.4.5 When should make rules be used instead of the openad script? . 10

2 Usage Details 11
2.1 Download and Build . 11
2.2 OpenAD/F Environment . 11
2.3 Code Preparation with Pragmas . 11
2.4 Running the tool chain with the openad script . 12
2.5 Explicitly invoking the tool chain elements . 13

2.5.1 Forward Mode . 13
2.5.2 Reverse Mode . 15

2.6 Compiling and Linking . 16
2.6.1 Runtime Support Files . 16

2.6.1.1 Front-End Definitions . 16
2.6.1.2 Active Type . 16

2.6.1.2.1 Scalar . 17
2.6.1.2.2 Vector . 17

2.6.1.3 Taping . 17
2.6.1.4 Reversal State . 17
2.6.1.5 Checkpointing . 18
2.6.1.6 PostProcessor - Inlining . 18
2.6.1.7 PostProcessor - Templates . 18
2.6.1.8 Trace . 18

3 AD Concepts 19
3.1 Computational Graphs . 19
3.2 Elimination Methods . 20
3.3 Control Flow Reversal . 21
3.4 Call Graph Reversal . 24

i

ii CONTENTS

4 Components of OpenAD/F 27
4.1 Language Independent Components (OpenAD) . 27

4.1.1 Static Code Analyses (OpenAnalysis) . 27
4.1.2 Representing the Numerical Core (XAIF) . 28
4.1.3 Transforming the Numerical Core (xaifBooster) . 28

4.1.3.1 Reading and Writing XAIF . 29
4.1.3.2 Type Change . 31
4.1.3.3 Linearization . 31
4.1.3.4 Basic Block Preaccumulation . 32
4.1.3.5 Memory/Operations Tradeoff . 32
4.1.3.6 Using the ANGEL Library . 33
4.1.3.7 CFG Reversal . 33
4.1.3.8 Writing and Consuming the Tape . 34
4.1.3.9 Basic Block Preaccumulation Reverse . 34

4.2 Language Dependent Components (OpenADFortTk) . 34
4.2.1 Canonicalization . 35
4.2.2 Compiler Front-End Components (from Open64) . 36

4.2.2.1 Parser . 37
4.2.2.2 Unparser . 37

4.2.3 Translating between whirl and XAIF . 38
4.2.4 Postprocessing . 39

4.2.4.1 Use of the Active Type . 39
4.2.4.2 Inlinable Subroutine Calls . 40
4.2.4.3 Subroutine Templates . 40

4.3 Ancillary Tools . 41
4.3.1 The openadUpdate and openadStatus Scripts . 41

5 Application 45
5.1 Toy Example . 45
5.2 Shallow Water Model . 45

5.2.1 Collect and Prepare Source Files . 45
5.2.2 Orchestrate a Reversal and Checkpointing Scheme . 46
5.2.3 File I/O and Simple Loops . 47
5.2.4 Results . 47

5.3 A Second Order Example . 47

6 Modifying OpenAD/F 49

7 Miscellaneous 51
7.1 Changes relative to the ACM TOMS paper . 51
7.2 Regression Tests . 51
7.3 Compiling and Contributing to this Manual . 52

List of Figures

1.1 OpenAD/F components and tool chain . 4
1.2 Simple example code (left, see file $OPENADROOT/Examples/OneMinute/head.f90), prepared for differen-

tiation (right, see file $OPENADROOT/Examples/OneMinute/head.prepped.f90) 5
1.3 Progress messages from openad for forward mode. 5
1.4 Forward mode transformed code for fig. 1.2 (left) . 6
1.5 Forward mode driver (see file $OPENADROOT/Examples/OneMinute/driver.f90) for the transformed code

shown in fig. 1.4 . 6
1.6 Portion of $OPENADROOT/Examples/OneMinute/Makefile needed compile and link the forward mode ex-

ample using the openad script . 7
1.7 Output from forward mode driver shown in fig. 1.10. 7
1.8 Progress messages from openad for reverse mode. 7
1.9 Reverse mode transformed code sections for taping (top) and adjoint (bottom) for the code from fig. 1.2 (left) 8
1.10 Reverse mode driver routine for the transformed code shown in fig. 1.9 . 8
1.11 Portion of $OPENADROOT/Examples/OneMinuteReverse/Makefile needed to compile and link the reverse

mode example using the openad script. 8
1.12 Output from reverse mode driver shown in fig. ??. 9

2.1 Actions to be performed for the default invocation of the openad script; we folded long lines. 13
2.2 Contents of $OPENADROOT/Examples/OneMinute/MakeExplRules.inc included in the example’s Makefile

providing explicit rules to replace the actions of the openad script for forward mode. 14
2.3 Output of invoking make driverE in $OPENADROOT/Examples/OneMinute 14
2.4 Contents of $OPENADROOT/Examples/OneMinuteReverse/MakeExplRules.inc included in the example’s

Makefile providing explicit rules to replace the actions of the openad script for reverse mode. 15
2.5 Output of invoking make driverE in $OPENADROOT/Examples/OneMinuteReverse 16
2.6 Propagation routines extracted from $OPENADROOT/runTimeSupport/scalar/OAD active.f90 17

3.1 Example of code contained in a basicblock . 20
3.2 (a) Computational graph G for (3.4), (b) eliminate vertex 3 from G, (c) front eliminate edge (1, 3) from G,

(d) back eliminate edge (3, 4) from G . 21
3.3 (a) G extended, (b) G overlaid, (c) face elimination . 22
3.4 Pseudo code for (3.4) and the computation of the cji . 22
3.5 Pseudo code for vertex eliminations for (3.4) . 23
3.6 Toy example code with control flow . 23
3.7 CFG of fig. 3.6 (a) original, (b) trace generating, (c) reversed . 24
3.8 Pseudo code for J3ẋ3 for the loop body in fig. 3.6 . 25
3.9 Pseudo code for writing the tape (a) and consuming the tape for JT3 ȳ3 (b) for the loop body in fig. 3.6 25
3.10 Dynamic call tree of a simple calling hierarchy . 25
3.11 Dynamic call tree for split reversal . 26
3.12 DCT of adjoint obtained by joint reversal mode . 26

4.1 Snippet of XAIF representation for lines 4–6 of fig. 1.2(right) . 29
4.2 Simplified class inheritance in xaifBooster . 30
4.3 Simplified class composition in xaifBooster . 31
4.4 xaifBooster algorithms . 31
4.5 Partial expressions for the division operator . 31

iii

iv LIST OF FIGURES

4.6 Canonicalizing a function (left, see see file $OPENADROOT/Examples/SRCanonical/func.f90), to a subrou-
tine (right, see file $OPENADROOT/Examples/SRCanonical/func.pre.f90 after running make) 35

4.7 Subset of whirl2f options that are relevant for OpenAD/F. 37
4.8 Options of whirl2xaif. 38
4.9 Options of xaif2whirl. 38
4.10 Options of the post processor . 39
4.11 Subroutine template components (a), split-mode Fortran90 template (b) . 41
4.12 Joint mode Fortran90 template with argument checkpointing . 42

5.1 A toy example(a) and the modified signature for the tangent-linear model(b) 45
5.2 A toy example tangent-linear driver(a) and output(b) . 46
5.3 A toy example adjoint driver(a) and output(b) . 46
5.4 Modification of the original code (a) to allow 2 checkpointing levels (b) . 47
5.5 Checkpointing scheme, the .∗ indicating .+(o−1)i . 47
5.6 Sensitivity (gradient) map for 2× 2 degree resolution . 48

6.1 Levels of complexity for modifications . 50

7.1 Example for numerical discrepancy shown for test case boxmodel for forward mode. 52

List of Tables

3.1 Symbols for call tree reversal . 26

4.1 Heuristics selection criteria . 33
4.2 saxpy operations from (4.1) and their corresponding adjoints . 34
4.3 Canonicalizing a function(a) to a subroutine(b) definition . 36
4.4 Before(a) and after(b) hoisting a non-variable parameter . 36
4.5 Converting a common block (a) to a module (b) . 36

7.1 Directory structure in xaifBooster . 53

1

LIST OF TABLES

vers. hg:34a2b066dd68+:84+ 2 OpenAD/F: User Manual

Chapter 1

Introduction

A general introduction to the aims of the OpenAD/F tool and the underlying principles was given in an ACM TOMS paper
[39]. Because of the ongoing development of the tool a number of changes have occured since finalizing this paper. The most
significant changes are listed in sec. 7.1. This manual concentrates the technical details of using OpenAD/F and introduces
the theoretical principles of automatic automatic differentiation (AD) only briefly. For more in-depth discussions the reader is
referred to [18], the series of AD conference proceedings [16, 8, 12, 11, 9], and the AD community’s website www.autodiff.org.

For a quick test with small-scale problems one may proceed directly to sec. 1.3.

1.1 Motivation for the OpenAD/F Design

One can categorize two user groups of AD tools. On one side are casual users with small-scale problems applying AD
mostly in a black-box fashion and demanding minimal user intervention. This category also includes users of AD tools
in computational frameworks such as NEOS [27]. On the other side are experienced AD users aiming for highly efficient
derivative computations. Their need for efficiency is dictated by the computational complexity of models that easily reaches
the limits of current supercomputers. In turn this group is willing to accept some limitation in the support of language
features.

One of the most demanding applications of AD is the computation of gradients for data assimilation on large-scale models
used in oceanography and climate research. This application clearly falls in the category of experienced users. An evaluation
of the available tools revealed some shortcomings from the perspectives of the tool users as well as the tool developers and
was the rationale for designing a new tool with particular emphasis on

• flexibility,

• the use of open source components, and

• modularity.

From the AD tool users point of view there is a substantial need for flexibility of AD tools. The most demanding numerical
models operate at the limit of the computing capacity of state-of-the-art facilities. Usually the model code itself is specifically
adapted to fit certain hardware characteristics. Therefore AD tool code generation ideally should be adaptable in a similar
fashion. Since some of these adaptations may be too specific for a general-purpose tool, the AD tool should offer flexibility
at various levels of the transformation – from simple textual preprocessing of the code down to the changes to the generic
code transformation engine. This is the rationale for developing an open source tool where all components are accessible
and may be freely modified to suit specific needs. A modular tool design with clearly defined interfaces supports such user
interventions. Since this design instigates a staged transformation, each transformation stage presents a opportunity to check
and modify the results.

From the AD tool developers point of view many AD tools share the same basic algorithms, but there is a steep hurdle to
establish a transformation environment consisting of a front-end that turns the textual program into a compilerlike internal
representation, an engine that allows the transformations of this internal representation, and an unparser that turns the
transformed internal representation back into source code. A modular, open-source tool facilitating the integration of new
transformations into an existing environment allows for a quick implementation and testing of algorithmic ideas. Furthermore,
a modular design permits the reuse of transformation algorithms across multiple target languages, provided the parsing front-
ends can translate to and from the common internal representation.

3

www.autodiff.org

CHAPTER 1. INTRODUCTION

whirl2xaif

Open64

xaif2whirl

whirl

xaifxaif

whirl

xaifBooster

OpenAnalysis

f f

f f

ff ’

’

’

Figure 1.1: OpenAD/F components and tool chain

These considerations motivated the Adjoint Compiler Technology & Standards [4] project, a research and development
collaboration of MIT, Argonne National Laboratory, The University of Chicago, and Rice University. OpenAD/F is one of
its major results.

1.2 Overview

OpenAD/F[29] is the Fortran incarnation of the AD framework OpenAD. The C/C++ oriented tool ADIC v2.0 [3] is based
on the same framework but is not subject of this article. OpenAD/F has a modular design. The collaboration of the
OpenAD/F components is illustrated in fig. 1.1. Our input is some numerical model given as a Fortran program f. The
Open64[28] front-end performs a lexical, syntactic, and semantic analysis and produces an intermediate representation of f,
here denoted by fwhirl, in the so-called whirl format. OpenAnalysis is used to build call and control flow graphs and perform
code analyses such as alias, activity, side-effect analysis. This information is used by whirl2xaif to construct a representation
of the numerical core of f in XAIF format shown as fxaif . A differentiated version of fxaif is derived by an algorithm that
is implemented in xaifBooster and is again represented XAIF as f ′xaif . The information in f ′xaif and the original fwhirl are
used by xaif2whirl to construct a whirl representation f ′whirl of the differentiated code. The unparser of Open64 transforms
f ′whirl into Fortran90, thus completing the semantic transformation of a program f into a differentiated program f ′. The gray
shaded area encloses the language specific front-end that can potentially be replaced by front-ends for languages other than
Fortran. For instance, the new version of ADIC [20] couples a C/C++ front-end based on the EDG parser [13] and uses
ROSE in combination with SAGE 3 [34] as internal representation in combination with language independent components
of OpenAD.

In sec. 3 we discuss the basic concepts of AD as relevant for the description of OpenAD, sec. 4 discusses the components
that make up OpenAD/F, and sec. 2 details the usage of the tool. Two applications further illustrate the tool usage in sec. 5
and we conclude with a section on future developments.

1.3 A One-Minute Example

This section provides a quick illustration of the tool without going into any detail of the inner workings. It may be useful to
run the examples as a sanity test.

Users familiar with source transformation AD tools may want to skip this section and proceed to sec. 1.4.

To obtain the source code for the examples in this section please refer to sec. 7.3. To run the examples one needs to install
OpenAD/F following the instructions in sec. 2.1. We assume a simple routine, see fig. 1.2 (left), computing y = f(x) = tan(x)
implemented by head. We need to prepare the code for the activity analysis by specifying the independent variables (here x)
and the dependent variables (here y) shown in lines 4 and 6 of fig. 1.2 (right). In the following we assume the OpenAD/F
environment has been set up as described in sec. 2.2.

vers. hg:34a2b066dd68+:84+ 4 OpenAD/F: User Manual

1.3. A One-Minute Example

1 subroutine head(x,y)
2 double precision :: x
3 double precision :: y
4

5 y=tan(x)
6

7 end subroutine

1 subroutine head(x,y)
2 double precision :: x
3 double precision :: y
4 !$openad INDEPENDENT(x)
5 y=tan(x)
6 !$openad DEPENDENT(y)
7 end subroutine

Figure 1.2: Simple example code (left, see file $OPENADROOT/Examples/OneMinute/head.f90), prepared for differentiation (right,
see file $OPENADROOT/Examples/OneMinute/head.prepped.f90)

openad -c -m f head.prepped.f90
openad log: openad.2009-05-07_11:24:32.log~
parsing head.prepped.f90
analyzing source code and translating to xaif
tangent linear transformation
getting runtime support file OAD_active.f90
getting runtime support file w2f__types.f90
getting runtime support file iaddr.c

translating transformed xaif to whirl
unparsing transformed whirl to fortran
postprocessing transformed fortran

Figure 1.3: Progress messages from openad for forward mode.

1.3.1 Forward Mode

For this simple example we can use the following wrapper script.

$OPENADROOT/bin/openad

The environment setup adds this directory to the PATH. All script options are shown when it is invoked with the -h flag. It
provides a simple recipe for the AD transformations that we can use in a straightforward case like this by calling

cd $OPENDADROOT/Examples/OneMinute

openad -c -m f head.prepped.f90

to generate a code version for forward mode. The transformation is selected by the flag -m f. The script produces progress
progress messages like the ones shown in fig. 1.3. The resulting Fortran output is written to a file called

$OPENDADROOT/Examples/OneMinute/head.prepped.xb.x2w.w2f.pp.f

and its contents is shown in fig. 1.4. The formal parameters x and y are active and consequently their type is changed. Lines
25 and 26 contain the derivative of tan(x) which is tan(x)2 + 1. Because of potential aliasing between the formal parameters
of head a temporary variable OADsym_0 is introduced to hold the result before it is assigned to the output’s value component
y%v. The call to sax performs the forward propagation operation

ẏ =
∂ tan(x)
∂x

· ẋ ,

see also (3.6) on pg. 23. A simple driver that calls the transformed head(x,y) is shown in fig. 1.10. It initializes x%d≡ ẋ ≡ 1
and therefore y%d≡ ẏ will contain just that partial derivative. Aside from running the transformation tool chain the openad

script also copies the appropriate run time support files into the working directory. These support files need to be compiled
and linked with the driver and the transformed code. The example includes a Makefile, see fig. 1.6, and the entire example
can be built by executing the following commands.

cd $OPENDADROOT/Examples/OneMinute

make

This creates an executable called driver. The output generated by running driver is shown in fig. 1.7.

An approach without using the openad script is explained in sec. 2.5.1.

1.3.2 Reverse Mode

There is a slighty different Makefile and driver for the reverse mode. As in sec. 1.3.1 we can use the openad script by calling

OpenAD/F: User Manual 5 vers. hg:34a2b066dd68+:84+

CHAPTER 1. INTRODUCTION

2 SUBROUTINE head(X, Y)
3 use w2f types
4 use OAD active
5 IMPLICIT NONE
6 C
7 C ∗∗∗∗ Global Variables & Derived Type Definitions ∗∗∗∗
8 C
9 REAL(w2f 8) OpenAD lin 0

10 REAL(w2f 8) OpenAD tmp 0
11 C
12 C ∗∗∗∗ Parameters and Result ∗∗∗∗
13 C
14 type(active) :: X
15 type(active) :: Y
16 C
17 C ∗∗∗∗ Top Level Pragmas ∗∗∗∗
18 C
19 C$OPENAD INDEPENDENT(X)
20 C$OPENAD DEPENDENT(Y)
21 C
22 C ∗∗∗∗ Statements ∗∗∗∗
23 C
24 OpenAD tmp 0 = TAN(X%v)
25 OpenAD lin 0 = (OpenAD tmp 0 ∗ OpenAD tmp 0 + INT(1 w2f i8))
26 Y%v = OpenAD tmp 0
27 CALL sax(OpenAD lin 0,X,Y)
28 END SUBROUTINE

Figure 1.4: Forward mode transformed code for fig. 1.2 (left)

1 program driver
2 use OAD active
3 implicit none
4 external head
5 type(active) :: x, y
6 x%v=.5D0
7 x%d=1.0D0
8 call head(x,y)
9 print ∗, ’driver running for x =’,x%v

10 print ∗, ’ yields y =’,y%v,’ dy/dx =’,y%d
11 print ∗, ’ 1+tan(x)ˆ2−dy/dx =’,1.0D0+tan(x%v)∗∗2−y%d
12 end program driver

Figure 1.5: Forward mode driver (see file $OPENADROOT/Examples/OneMinute/driver.f90) for the transformed code shown in
fig. 1.4

vers. hg:34a2b066dd68+:84+ 6 OpenAD/F: User Manual

1.3. A One-Minute Example

ifndef (F90C)
F90C=gfortran
endif
RTSUPP=w2f__types OAD_active
driver: $(addsuffix .o, $(RTSUPP)) driver.o head.prepped.xb.x2w.w2f.pp.o

${F90C} -o $@ $^
head.prepped.xb.x2w.w2f.pp.f $(addsuffix .f90, $(RTSUPP)) : toolChain
toolChain : head.prepped.f90

openad -c -m f $<
%.o : %.f90

${F90C} -o $@ -c $<
%.o : %.f

${F90C} -o $@ -c $<
clean:

rm -f ad_template* OAD_* w2f__* iaddr*
rm -f head.prepped.xb* *.B *.xaif *.o *.mod driver driverE *~

.PHONY: clean toolChain
the following include has explicit rules that could replace the openad script
include MakeExplRules.inc

Figure 1.6: Portion of $OPENADROOT/Examples/OneMinute/Makefile needed compile and link the forward mode example using
the openad script
.

driver running for x = 0.500000000000000

yields y = 0.546302489843790 dy/dx = 1.29844641040952

1+tan(x)^2-dy/dx = 3.859759734048396E-017

Figure 1.7: Output from forward mode driver shown in fig. 1.10.

cd $OPENDADROOT/Examples/OneMinuteReverse

openad -c -m rj head.prepped.f90

The reverse mode code generation is triggered by setting the flag -m rj where rj stands for reverse joint mode, see also
sec. 3.4. The script produces progress output like the one shown in fig. 1.8. The resulting Fortran output is written to a file
called

$OPENADROOT/Examples/OneMinuteReverse/head.prepped.xb.x2w.w2f.pp.f

and sections of it are shown in fig. 1.9. In particular in fig. 1.9(top) one can observe the writing of the local partial derivative
to the tape on line 6 which subsequently is retrieved in the adjoint sweep shown in fig. 1.9(bottom) on line 3 and used on
line 4. The latter represents the actual propagation operation

x̄+ =
∂ tan(x)
∂x

· ȳ ,

see also (3.7) on pg. 23. A simple driver that calls the transformed head(x,y) is shown in fig. ??. Note, that here we initialize
y%d ≡ (̄y) = 1.0 which implies that x%d ≡ x̄ holds the value of the partial derivative. As in sec. 1.3.1, the openad script copies
the appropriate run time support files into the working directory. These support files need to be compiled and linked with
the driver and the transformed code. The example includes a Makefile, see fig. ??, The output generated by the driver is
shown in fig. 1.12.

openad -c -m rj head.prepped.f90
openad log: openad.2009-05-07_11:24:38.log~
parsing head.prepped.f90
analyzing source code and translating to xaif
adjoint transformation
getting runtime support file OAD_active.f90
getting runtime support file w2f__types.f90
getting runtime support file iaddr.c
getting runtime support file ad_inline.f
getting runtime support file OAD_cp.f90
getting runtime support file OAD_rev.f90
getting runtime support file OAD_tape.f90
getting template file

translating transformed xaif to whirl
unparsing transformed whirl to fortran
postprocessing transformed fortran

Figure 1.8: Progress messages from openad for reverse mode.

OpenAD/F: User Manual 7 vers. hg:34a2b066dd68+:84+

CHAPTER 1. INTRODUCTION

1 C taping
2 OpenAD tmp 0 = TAN(X%v)
3 OpenAD lin 0 = (OpenAD tmp 0 ∗ OpenAD tmp 0 + INT(1 w2f i8))
4 Y%v = OpenAD tmp 0
5 double tape(double tape pointer) = OpenAD lin 0
6 double tape pointer = double tape pointer+1
7

8 C taping end

1 C adjoint
2 double tape pointer = double tape pointer−1
3 OpenAD Symbol 0 = double tape(double tape pointer)
4 X%d = X%d+Y%d∗(OpenAD Symbol 0)
5 Y%d = 0.0d0
6

7 C adjoint end

Figure 1.9: Reverse mode transformed code sections for taping (top) and adjoint (bottom) for the code from fig. 1.2 (left)

1 program driver
2 use OAD active
3 use OAD rev
4 implicit none
5 external head
6 type(active) :: x, y
7 x%v=.5D0
8 y%d=1.0D0
9 our rev mode%tape=.TRUE.

10 call head(x,y)
11 print ∗, ’driver running for x =’,x%v
12 print ∗, ’ yields y =’,y%v,’ dy/dx =’,x%d
13 print ∗, ’ 1+tan(x)ˆ2−dy/dx =’,1.0D0+tan(x%v)∗∗2−x%d
14 end program driver

Figure 1.10: Reverse mode driver routine for the transformed code shown in fig. 1.9

ifndef (F90C)
F90C=gfortran
endif
ifndef (CC)
CC=gcc
endif
RTSUPP=w2f__types OAD_active OAD_cp OAD_tape OAD_rev
driver: $(addsuffix .o, $(RTSUPP) iaddr) driver.o head.prepped.xb.x2w.w2f.pp.o

${F90C} -o $@ $^
head.prepped.xb.x2w.w2f.pp.f $(addsuffix .f90, $(RTSUPP)) iaddr.c : toolChain
toolChain : head.prepped.f90

openad -c -m rj $<
%.o : %.f90

${F90C} -o $@ -c $<
%.o : %.f

${F90C} -o $@ -c $<
%.o : %.c

${CC} -o $@ -c $<
clean:

rm -f ad_template* ad_inline.f OAD_* w2f__* iaddr*
rm -f head.prepped.xb* *.B *.xaif *.o *.mod driver driverE *~

.PHONY: clean toolChain
the following include has explicit rules that could replace the openad script
include MakeExplRules.inc

Figure 1.11: Portion of $OPENADROOT/Examples/OneMinuteReverse/Makefile needed to compile and link the reverse mode
example using the openad script.
.

vers. hg:34a2b066dd68+:84+ 8 OpenAD/F: User Manual

1.4. Deciding on OpenAD/F Usage Patterns

driver running for x = 0.500000000000000

yields y = 0.546302489843790 dy/dx = 1.29844641040952

1+tan(x)^2-dy/dx = 3.859759734048396E-017

Figure 1.12: Output from reverse mode driver shown in fig. ??.

1.4 Deciding on OpenAD/F Usage Patterns

The small example in sec. 1.3 already shows two variants of applying the OpenAD/F tool. In this section we step through a
number of decisions that will determine how one might use OpenAD/F for a given application. We will just give a cursory
explanation of the concepts involved and refer to the detailled explanation in other sections.

The following sections may not be very relevant for small-scale applications and one may skip to sec. 5 to see if any
of the examples discussed there is a good template for the application in question.

1.4.1 When is AD via source transformation appropriate?

AD via operator overloading is available through various tools such as AD02 [2], Rapsodia [33], and Adol-C [5] (for C and
C++).

Language Support Because operator overloading is not available within the Fortran standard prior to Fortran90 there is
no alternative for older Fortran programs unless they are migrated to the newer standards.

Type Change Another concern is the actual type change from Fortran built-in numerical types to the user defined type
that triggers the execution of the AD logic. As is the case in C++ the typechange affects also formatted I/O operations,
library calls, memory allocation. Consequently, additional changes other than just a global change of declarations may
be required to obtain a semantically correct program. Fortran lacks a template-like language construct to easily obtain
a type-changed version of the original Fortran source code while keeping the use of built-in types untouched. One can
workaround this problem by extensive use of the C preprocessor or a source transformation tool to perform the type
change.

Activity Analysis Unless source transformation is used, the type change will generally be applied globally to all floating
point variables. Source transformation tools like OpenAD/F are able to identify the subset of program variables for
which derivative computations have to be performed. This is known as activity analysis, see sec. 4.1.1. Identifying the
active variables and performing the type change only to these variables can save a substantial amount of computational
overhead.

Reverse Mode Operator overloading for reverse mode typically relies on tracing each call to an overloaded operation and
saving values required for the adjoint computations. The size of such naive traces severly limits the complexity of
computations for which an operator overloading based reverse mode is feasible. Source transformation tools can use
program context information and data flow analysis to significantly reduce the memory requirements.

Derivative Order For the computation of higher order derivatives operator overloading is often viewed as a reasonable
approach because the complexity encapsulated in each operator outweighs the overhead implied by making an extra
call to the overloaded operator. Unlike for gradients and Hessians there are no large practical applications where
conquering the technical difficulties of the reverse mode is justified. The first two issues may be tackled by applying a
source transformation tool to perform a selective and semantically correct type change.

OpenAD/F has a type change algorithm encapsulated as one step in its transformation chain, see also sec. 4.1.3.2. This
transformation step can be adapted to the use of a specific type that has overloaded operators defined, for instance as in [33].

1.4.2 When should the source code be split?

This and the following section typically apply only to models with a large code base. For small models one can
proceed to sec. 1.4.3.

Splitting the source is an option to be considered for numerical models that have large codes base and have extensive
debugging, I/O, monitoring, communication and other non-numerical logic. The source transformation use data dependency
information in the creation of the derivative code. The built-in analysis has to be conservatively correct and therefore will likely
have a conservative overestimate, for instance, of the set of active program variables for which derivative computations have
to be generated. The use of common buffers, e.g. in communication or I/O logic can significantly increase the overestimate.

OpenAD/F: User Manual 9 vers. hg:34a2b066dd68+:84+

CHAPTER 1. INTRODUCTION

Semantically complicated I/O constructs or other logic that is not numerical in nature may be something that is not or only
incompletely covered by the source transformation tool. One should keep in mind that for a tool like OpenAD/F that is
funded by research grants, there is little academic benefit to be had from covering esoteric language features as opposed to
concentrating on the efficiency of the code generated for the typical numerical computations. Consequently, filtering out logic
that is not part of the numerical core not only will increase the likelihood that the tool can transform the code but may also
increase the efficiency of the generated code by shrinking the conservative overestimates of the code analysis.

Often the natural way of splitting the code is to identify the source files that pertain to the numerical core and transform
only the code in these files. The analysis then optimistically assumes the calls to the “external” methods will not impact the
relevant data dependencies.

1.4.3 When Should One Use Reverse Mode Instead of Forward Mode?

The simplest rule of thumb is to use reverse mode when the number n of inputs is significantly larger than the number m
of outputs as is typically the case with gradients and Hessians. Because of the technical hurdles of the reverse mode one
should also consider if the model has characteristics such as sparsity or partial separability that would permit using the
forward mode even for a nominally large number of independents. For large scale models one can also consider to separate
the computation if the dimension of an intermediate interface is significantly smaller or larger than n and m and selectively
apply forward and reverse mode to the respective parts. For higher order derivative computations n is typically low and
consequently one will tend toward forward mode. While in principle a reverse mode sweep could be injected there too at any
order o the efficiency improvement remains at n while the memory requirements for the reverse sweep grow linearly with o.

1.4.4 When Should One Use Checkpointing?

This section applies only to reverse mode computations of models with a long runtime or large nonlinear parts;
otherwise proceed to sec. 2.

The memory requirements for the reverse mode depend on the extent of nonlinearity in the model and are roughly proportional
to the run time of the numerical core of the model computation. The memory is used to trace the forward computation
and retain values needed for the computation of the adjoints. For large computations the memory requirements for the
entire forward trace and all needed values are prohibitive and the common tradeoff is to restart the forward run from some
checkpoint and tracing only small sections with manageable memory requirements. Various checkpointing schemes have been
devised and examples can be found in sec. ?? and sec. 1.4.5.

1.4.5 When should make rules be used instead of the openad script?

The openad script is intended only as wrapper for the transformation tool chain of simple models. Complicated models
will have a predefined build process using makefiles and consequently it is more appropriate to integrate the stages of the
transformation tool chaine explicitly into that build process. This gives access to all the options at each transformation stage
and this extra flexibility will be needed for large models. An example for the setup with make is given in sec. ??.

vers. hg:34a2b066dd68+:84+ 10 OpenAD/F: User Manual

Chapter 2

Usage Details

This section will explain the tool usage in detail. following contains brief instructions how to obtain and use OpenAD/F. While
the principal approach will remain the same, future development may introduce slight changes. The reader is encouraged to
refer to the up to date instructions on the OpenAD/F website [29].

2.1 Download and Build

All components are open source and readily available for download as tar files or via version control checkout. The website

www.mcs.anl.gov/openad

provides details on downloading and building the tool chain. The build process essentially consists setting up the environment
as described in sec. 2.2 followed invoking

make

2.2 OpenAD/F Environment

Building and running the OpenAD/F tool chain as well as optional updates from version control repositories requires certain
environment variables to be set. This is done as follows.

1. change directory into the OpenAD/F source tree:
cd OpenAD

2. set the environment

• for shell/ksh/bash users with
source ./setenv.sh

• for csh/tcsh users with
source ./setenv.csh

From now on we assume the environment variables have been set and we will refer to them as needed.

2.3 Code Preparation with Pragmas

The tool chain recognizes pragmas of the format

$openad <pragma argument>

and the specific <pragma argument> options are listed below.

independent(<variable name>) At least one of these pragmas is required in the source code to be transformed to identify
program variables that are considered independent. The pragma is used to initialize the activity analysis (see also
sec. 4.1.1). The ¡variable name¿ must be a program variable visible in the context in which the pragma is placed. The
front-end and the subsequent tool chain components will parse ¡variable name¿ as a properly scoped variable. Index

11

www.mcs.anl.gov/openad

CHAPTER 2. USAGE DETAILS

expressions for ¡variable name¿ such as X[2] are currently not meaningful for the activity analysis. An example is
shown in fig. 1.2(right).

dependent(<variable name>) At least one of these pragmas is required in the source code to be transformed to identify
program variables that are considered dependent. The pragma functions similarly to the above mentioned independent

pragma. An example is shown in fig. 1.2(right).

xxx template <template file> This is an optional pragma. The postprocessor will recognize the procedure in which the
pragma occurs (or which immediately follows) as the target to which the template should be applied, see also sec. 4.2.4.
The ¡template file¿ needs to be a file either with an absolute path or a path relative to the working directory from
which the postprocesor is invoked. The tool chain has to parse and pass through the pragma to the postprocessor while
retaining the pragma location. Note that currently the Open64 front-end will within a module contains block move all
such pragmas into the beginning of the contains block and therefore placing the pragma inside the procedure to which
it should be applied.

xxx simple loop This is an optional pragma. The transformation recognizes the loop immediately following this declaration
and all loops nested within as simple loops, see also sec. ??.

2.4 Running the tool chain with the openad script

This section applies only to very simple models. For reasonably complicated computations proceed to sec. 2.5.

The components of OpenAD/F transform the code in a predetermined sequence of steps. Depending on the particular
problem there are certain variations to the tool chain execution that achieve a better performance of the generated code.
The most common setups are encapsulated in the Python script $OPENADROOT/bin/openad. The script is part of the skeleton
environment that is used to download and build OpenAD/F and relies on the same environment setup that also puts the
script into the PATH. Therefore user starts with steps 1 and 2 from sec. 2.1. Invoking the script with the -h option displays
the following command-line options.
Usage: openad [options] <fortran-file>

Options:
-h, --help show this help message and exit
-m MODE, --mode=MODE basic transformation mode with MODE being one of: rs =

reverse split; t = tracing; rj = reverse joint; f =
forward; (default is forward)

-d DEBUG, --debug=DEBUG
the debugging level

-i, --interactive requires to confirm each command
-k, --keepGoing keep going despite errors
-c, --copy copy run time support files instead of linking them
-n, --noAction display the pipeline commands, do not run them

The most important of these options is the mode specification. The default is the forward (or tangent-linear) mode, which is
described in sec. 4.1.3.4. The reverse (or adjoint) mode is described in sec. 4.1.3.9; the “split” and “joint” variants refer to
two different schemes for call graph reversal (see sec. 3.4).

As an example, assume we wish to create a tangent-linear version of a code in a file named head.f. Invoking the command
openad head.f will create the transformed file head.xb.x2w.w2f.pp.f, where the following messages appear as output during
the transformation process.
openad log: openad.2009-05-07_11:25:26.log~
parsing head.f
analyzing source code and translating to xaif
tangent linear transformation
getting runtime support file OAD_active.f90
getting runtime support file w2f__types.f90
getting runtime support file iaddr.c

translating transformed xaif to whirl
unparsing transformed whirl to fortran
postprocessing transformed fortran

The script also links (or copies with -c) a simple version of the necessary support files. As with the tool chain itself, a
computationally complex application will likely want to adapt the support files. For larger projects it is obviously appropriate
to customize the sequence by adding the steps outlined in sec. 2.5 to a Makefile. The steps performed by the openad script
can serve as an initial guideline for the manual invocations. The script dumps the commands without executing them when
the -n flag is passed. For the above example the output is shown in fig. 2.1.

vers. hg:34a2b066dd68+:84+ 12 OpenAD/F: User Manual

2.5. Explicitly invoking the tool chain elements

parsing head.f
/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/crayf90/sgi/mfef90 -z -F -N132 head.f
analyzing source code and translating to xaif
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/whirl2xaif -n -o head.xaif head.B
tangent linear transformation
/sandbox/utke/CronTest/OpenAD/xaifBooster/../xaifBooster/algorithms/BasicBlockPreaccumulation/driver/oadDriver -c

/sandbox/utke/CronTest/OpenAD/xaif/schema/examples/inlinable_intrinsics.xaif -s /sandbox/utke/CronTest/OpenAD/xaif/schema
-i head.xaif -o head.xb.xaif

getting runtime support file OAD_active.f90
ln -sf /sandbox/utke/CronTest/OpenAD/runTimeSupport/scalar/OAD_active.f90 ./
getting runtime support file w2f__types.f90
ln -sf /sandbox/utke/CronTest/OpenAD/runTimeSupport/all/w2f__types.f90 ./
getting runtime support file iaddr.c
ln -sf /sandbox/utke/CronTest/OpenAD/runTimeSupport/all/iaddr.c ./
translating transformed xaif to whirl
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/xaif2whirl --structured head.B head.xb.xaif
unparsing transformed whirl to fortran
/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/whirl2f/whirl2f -openad head.xb.x2w.B
postprocessing transformed fortran
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/tools/SourceProcessing/postProcess.py -m f -o head.xb.x2w.w2f.pp.f head.xb.x2w.w2f.f

Figure 2.1: Actions to be performed for the default invocation of the openad script; we folded long lines.

2.5 Explicitly invoking the tool chain elements

As explained in sec. 2.4, the steps performed by the openad script can serve as an initial guideline for the manual invocation
of the tool chain components. Rather than an abstract explanation of the steps we will just show the explicit make rules for
the examples in sects. 1.3.1,1.3.2 where we have a prepared source file named head.prepped.f90.

2.5.1 Forward Mode

For forward mode the rules are shown in fig. 2.2. By changing directory to $OPENADROOT/Examples/OneMinute and invoking

make driverE

one triggers the explicit rules shown in fig. 2.2 and the output including compile and link steps will look like the output
shown in fig. 2.3 and among various extra compiler invocation one will recognize the steps listed in fig. 2.1.

Regarding the individual steps, details may be found in the following references.

1. Canonicalization: The optional canonicalization step not considered in the rules in fig. 2.2 is discussed in sec. 4.2.1.

2. Parsing: The input source is parsed by the Open64 front-end, see also sec. 4.2.2 and one obtains a binary file with a
.B extension contain the representation in whirl.

3. Translating to XAIF: The whirl is analyzed and the results are translated into XAIF, see also sec. 4.2.3.

4. Transforming the XAIF: The XAIF representation is transformed by the tangent linear transformation algorithm.
The driver for the transformation is located at

$XAIFBOOSTERROOT/xaifBooster/algorithms/BasicBlockPreaccumulation/driver/oadDriver

see also sec. 4.1.3.4.

5. Back - translating the transformed XAIF: From the transformed XAIF a corresponding transformed whirl

representation is created, see also sec. 4.2.3.

6. Unparsing to transformed Fortran: From the transformed whirl we unparse to Fortran using the back-end uparser
provided by Open64, see also sec. 4.2.2.

7. Post processing: Various constructs that are ancillary to the transformation, such as the actual name of the value
and the derivative components are done at this stage, see also sec. 4.2.4. Note the command-line flag -f passed to the
post processor to indicate forward mode. This flag is required to be consistent with the chosen transformation.

8. Compiling/Linking: The transformed sources, the driver and the runtime support files need to be compiled and
linked. This is briefly discussed in sec. ?? but see also sec. 2.6.

OpenAD/F: User Manual 13 vers. hg:34a2b066dd68+:84+

CHAPTER 2. USAGE DETAILS

explicit make rules

fortran -> whirl
head.prepped.B: head.prepped.f90

${OPEN64ROOT}/crayf90/sgi/mfef90 -z -F -N132 $<
whirl -> xaif
head.prepped.xaif : head.prepped.B

${OPENADFORTTKROOT}/bin/whirl2xaif -n -o $@ $<
xaif -> xaif’
head.prepped.xb.xaif : head.prepped.xaif

${XAIFBOOSTERROOT}/xaifBooster/algorithms/BasicBlockPreaccumulation/driver/oadDriver \
-c ${XAIFSCHEMAROOT}/schema/examples/inlinable_intrinsics.xaif \
-s ${XAIFSCHEMAROOT}/schema -i $< -o $@

xaif’ -> whirl’
head.prepped.xb.x2w.B : head.prepped.xb.xaif

${OPENADFORTTKROOT}/bin/xaif2whirl --structured head.prepped.B $<
whirl’ -> fortran’
head.prepped.xb.x2w.w2f.f: head.prepped.xb.x2w.B

${OPEN64ROOT}/whirl2f/whirl2f -openad $<
postprocess
head.prepped.xb.x2w.w2f.pp.E.f: head.prepped.xb.x2w.w2f.f

${OPENADFORTTK_BASE}/tools/SourceProcessing/postProcess.py -m f -o $@ $<

we add the .E extension here to distinguish the targets from the
rules using the openad script
driverE: $(addsuffix .E.o, $(RTSUPP)) driver.o head.prepped.xb.x2w.w2f.pp.E.o

${F90C} -o $@ $^

w2f__types.E.f90: ${OPENADROOT}/runTimeSupport/all/w2f__types.f90
cp -f $< $@

OAD_active.E.f90: ${OPENADROOT}/runTimeSupport/scalar/OAD_active.f90
cp -f $< $@

Figure 2.2: Contents of $OPENADROOT/Examples/OneMinute/MakeExplRules.inc included in the example’s Makefile providing
explicit rules to replace the actions of the openad script for forward mode.

make[1]: Entering directory ‘/sandbox/utke/CronTest/OpenAD/Examples/OneMinute’
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/all/w2f__types.f90 w2f__types.E.f90
gfortran -o w2f__types.E.o -c w2f__types.E.f90
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/scalar/OAD_active.f90 OAD_active.E.f90
gfortran -o OAD_active.E.o -c OAD_active.E.f90
gfortran -o driver.o -c driver.f90
/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/crayf90/sgi/mfef90 -z -F -N132 head.prepped.f90
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/whirl2xaif -n -o head.prepped.xaif head.prepped.B
/sandbox/utke/CronTest/OpenAD/xaifBooster/../xaifBooster/algorithms/BasicBlockPreaccumulation/driver/oadDriver \

-c /sandbox/utke/CronTest/OpenAD/xaif/schema/examples/inlinable_intrinsics.xaif \
-s /sandbox/utke/CronTest/OpenAD/xaif/schema -i head.prepped.xaif -o head.prepped.xb.xaif

/sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/xaif2whirl --structured head.prepped.B head.prepped.xb.xaif
/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/whirl2f/whirl2f -openad head.prepped.xb.x2w.B
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/tools/SourceProcessing/postProcess.py -m f -o head.prepped.xb.x2w.w2f.pp.E.f

head.prepped.xb.x2w.w2f.f
gfortran -o head.prepped.xb.x2w.w2f.pp.E.o -c head.prepped.xb.x2w.w2f.pp.E.f
gfortran -o driverE w2f__types.E.o OAD_active.E.o driver.o head.prepped.xb.x2w.w2f.pp.E.o
make[1]: Leaving directory ‘/sandbox/utke/CronTest/OpenAD/Examples/OneMinute’

Figure 2.3: Output of invoking make driverE in $OPENADROOT/Examples/OneMinute .

vers. hg:34a2b066dd68+:84+ 14 OpenAD/F: User Manual

2.5. Explicitly invoking the tool chain elements

explicit make rules

fortran -> whirl
head.prepped.B: head.prepped.f90

${OPEN64ROOT}/crayf90/sgi/mfef90 -z -F -N132 $<
whirl -> xaif
head.prepped.xaif : head.prepped.B

${OPENADFORTTKROOT}/bin/whirl2xaif -n -o $@ $<
xaif -> xaif’
head.prepped.xb.xaif : head.prepped.xaif

${XAIFBOOSTERROOT}/xaifBooster/algorithms/BasicBlockPreaccumulationReverse/driver/oadDriver \
-c ${XAIFSCHEMAROOT}/schema/examples/inlinable_intrinsics.xaif \
-s ${XAIFSCHEMAROOT}/schema -i $< -o $@

xaif’ -> whirl’
head.prepped.xb.x2w.B : head.prepped.xb.xaif

${OPENADFORTTKROOT}/bin/xaif2whirl --structured head.prepped.B $<
whirl’ -> fortran’
head.prepped.xb.x2w.w2f.f: head.prepped.xb.x2w.B

${OPEN64ROOT}/whirl2f/whirl2f -openad $<
postprocess
head.prepped.xb.x2w.w2f.pp.E.f: head.prepped.xb.x2w.w2f.f

${OPENADFORTTK_BASE}/tools/SourceProcessing/postProcess.py -m r \
-i ${OPENADROOT}/runTimeSupport/simple/ad_inline.f \
-t ${OPENADROOT}/runTimeSupport/simple/ad_template.joint.f \
-o $@ $<

we add the .E extension here to distinguish the targets from the
rules using the openad script
driverE: $(addsuffix .E.o, $(RTSUPP)) driver.o head.prepped.xb.x2w.w2f.pp.E.o

${F90C} -o $@ $^

w2f__types.E.f90: ${OPENADROOT}/runTimeSupport/all/w2f__types.f90
cp -f $< $@

%.E.f90: ${OPENADROOT}/runTimeSupport/scalar/%.f90
cp -f $< $@

%.E.f90: ${OPENADROOT}/runTimeSupport/simple/%.f90
cp -f $< $@

ad_template.f: ${OPENADROOT}/runTimeSupport/simple/ad_template.joint.f
cp -f $< $@

Figure 2.4: Contents of $OPENADROOT/Examples/OneMinuteReverse/MakeExplRules.inc included in the example’s Makefile pro-
viding explicit rules to replace the actions of the openad script for reverse mode.

2.5.2 Reverse Mode

This section follows the same model as sec. 2.5.1, only for reverse mode. A more elaborate reverse mode example
can be found in sec. ?? and the experienced user may want to jump to that example.

For reverse mode the rules are shown in fig. 2.4. By changing directory to $OPENADROOT/Examples/OneMinuteReverse and
invoking

make driverE

one triggers the explicit rules shown in fig. 2.4 and the output including compile and link steps will look like the output
shown in fig. 2.5 and among various extra compiler invocation one will recognize the steps listed in fig. 2.1.

Regarding the individual steps, details may be found in the same references given in sec. 2.5.1. The following differences
are noteworthy.

4. Transforming the XAIF: The XAIF representation is transformed by the adjoint transformation algorithm. The
driver for the transformation is located at

$XAIFBOOSTERROOT/xaifBooster/algorithms/BasicBlockPreaccumulationReverse/driver/oadDriver

see also sec. 4.1.3.9.

7. Post processing: Various constructs that are ancillary to the transformation, such as the actual name of the value
and the derivative components are done at this stage, see also sec. 4.2.4. Note that unlike in forward mode the
command-line flag -f is not passed to the post processor.

8. Compiling/Linking: There are additional runtime support files need to be compiled and linked beyond the set of
files for forward mode. This is briefly discussed in sec. ?? but see also sec. 2.6.

OpenAD/F: User Manual 15 vers. hg:34a2b066dd68+:84+

CHAPTER 2. USAGE DETAILS

make[1]: Entering directory ‘/sandbox/utke/CronTest/OpenAD/Examples/OneMinuteReverse’
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/all/w2f__types.f90 w2f__types.E.f90
gfortran -o w2f__types.E.o -c w2f__types.E.f90
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/scalar/OAD_active.f90 OAD_active.E.f90
gfortran -o OAD_active.E.o -c OAD_active.E.f90
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/simple/OAD_cp.f90 OAD_cp.E.f90
gfortran -o OAD_cp.E.o -c OAD_cp.E.f90
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/simple/OAD_tape.f90 OAD_tape.E.f90
gfortran -o OAD_tape.E.o -c OAD_tape.E.f90
cp -f /sandbox/utke/CronTest/OpenAD/runTimeSupport/simple/OAD_rev.f90 OAD_rev.E.f90
gfortran -o OAD_rev.E.o -c OAD_rev.E.f90
gfortran -o driver.o -c driver.f90
/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/crayf90/sgi/mfef90 -z -F -N132 head.prepped.f90
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/whirl2xaif -n -o head.prepped.xaif head.prepped.B
/sandbox/utke/CronTest/OpenAD/xaifBooster/../xaifBooster/algorithms/BasicBlockPreaccumulationReverse/driver/oadDriver \

-c /sandbox/utke/CronTest/OpenAD/xaif/schema/examples/inlinable_intrinsics.xaif \
-s /sandbox/utke/CronTest/OpenAD/xaif/schema -i head.prepped.xaif -o head.prepped.xb.xaif

/sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/xaif2whirl --structured head.prepped.B head.prepped.xb.xaif
/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/whirl2f/whirl2f -openad head.prepped.xb.x2w.B
/sandbox/utke/CronTest/OpenAD/OpenADFortTk/tools/SourceProcessing/postProcess.py -m r \

-i /sandbox/utke/CronTest/OpenAD/runTimeSupport/simple/ad_inline.f \
-t /sandbox/utke/CronTest/OpenAD/runTimeSupport/simple/ad_template.joint.f \
-o head.prepped.xb.x2w.w2f.pp.E.f head.prepped.xb.x2w.w2f.f

gfortran -o head.prepped.xb.x2w.w2f.pp.E.o -c head.prepped.xb.x2w.w2f.pp.E.f
gfortran -o driverE w2f__types.E.o OAD_active.E.o OAD_cp.E.o OAD_tape.E.o OAD_rev.E.o driver.o head.prepped.xb.x2w.w2f.pp.E.o
rm OAD_rev.E.f90 OAD_active.E.f90 OAD_cp.E.f90 OAD_tape.E.f90
make[1]: Leaving directory ‘/sandbox/utke/CronTest/OpenAD/Examples/OneMinuteReverse’

Figure 2.5: Output of invoking make driverE in $OPENADROOT/Examples/OneMinuteReverse .

2.6 Compiling and Linking

Simple examples for compiling and linking can be found in sec. ??ompared to the original model build process the following
changes have to be accomodated.

• To facilitate the AD code analysis and comprehensive transformation one has to extract the numerical core into a single
file, transform that file and reintegrate the transformed source into the build process.

• At various stages in the tool chain temporary variables may be introduced and one has to be aware of assumptions
on the default precision of variables, typically specified during the compile step with flags such as -r8 or -i4. The
individual make rules mentioned in sects. 2.5.1,2.5.2 may have to be adjusted accordingly.

• There are simple implementations for runtime support files. These simple implementations for checkpointing and taping
etc. are properly working but may not be the most efficient solution for a given application or hardware. Consequently,
one should consider modifying or reimplementing the runtime support files for these aspects.

2.6.1 Runtime Support Files

All support files discussed in this section can be found in the subdirectories under

$OPENADROOT/runTimeSupport

and are the source for the examples used in this Manual.

2.6.1.1 Front-End Definitions

All Fortran produced by whirl2f, see sec. 4.2.2, needs definitions for values supplied as kind parameters. These values have
standard names within the whirl2f-generated code. The definitions can be found in

$OPENADROOT/runTimeSupport/all/w2f__types.f90

Modifications to this file should be done judiciously to avoid cases where identical kind values lead to duplicate definitions
of module routines for the OpenAD active type that differ only by that kind value.

2.6.1.2 Active Type

The active type definitions supplied here cover simple examples of active types. They can easily be extended for other
experiments, e.g. an on-demand allocation of derivative data at runtime, runtime activity flags etc. The definitions cover the
data type, conversion routines from active to passive, and propagation operations.

vers. hg:34a2b066dd68+:84+ 16 OpenAD/F: User Manual

2.6. Compiling and Linking

1 saxpy_d_a_a(a,x,y)

2 saxpy_i8_a_a(a,x,y)

3 saxpy_i4_a_a(a,x,y)

4 sax_d_a_a(a,x,y)

5 sax_i8_a_a(a,x,y)

6 sax_i4_a_a(a,x,y)

7 setderiv_a_a(y,x)

8 setderiv_av_av(y,x)

9 set_neg_deriv_a_a(y,x)

10 set_neg_deriv_av_av(y,x)

11 inc_deriv_a_a(y,x)

12 inc_deriv_av_av(y,x)

13 dec_deriv_a_a(y,x)

14 dec_deriv_av_av(y,x)

15 zero_deriv_a(x)

Figure 2.6: Propagation routines extracted from $OPENADROOT/runTimeSupport/scalar/OAD_active.f90

• conversion routines between active and passive data overloaded as module procedures for various precisions and shapes
with the following variations.

convert

a2sp
a2p
p2a
sp2a

scalar
vector
matrix

three tensor
four tensor
five tensor
six tensor
seven tensor

impl(convertTo, convertFrom)

• propagation routines overloaded as module procedures for various precisions and shapes listed in fig. 2.6

2.6.1.2.1 Scalar An active type for propagation of scalar derivative components is defined in

$OPENADROOT/runTimeSupport/scalar/OAD_active.f90

2.6.1.2.2 Vector An active type for propagation of a vector of length max_deriv_vec_len of derivative components is
defined in

$OPENADROOT/runTimeSupport/vector/OAD_active.f90

2.6.1.3 Taping

A simple implementation for tape storage can be found in

$OPENADROOT/runTimeSupport/simple/OAD_tape.f90

which goes together with the subroutines defined in

$OPENADROOT/runTimeSupport/simple/ad_inline.f

which are inlined by the post processor, see sec. 4.2.4. For dynamically allocated taping space see the respective files in the
cpToFile subdirectory.

2.6.1.4 Reversal State

A module containing global reversal scheme state definitions defined in

$OPENADROOT/runTimeSupport/simple/OAD_rev.f90

The split and joint reversal schemes using the state are enabled via the templates

$OPENADROOT/runTimeSupport/simple/ad_template.joint.f

and

$OPENADROOT/runTimeSupport/simple/ad_template.split.f

respectively.

OpenAD/F: User Manual 17 vers. hg:34a2b066dd68+:84+

CHAPTER 2. USAGE DETAILS

2.6.1.5 Checkpointing

2.6.1.6 PostProcessor - Inlining

2.6.1.7 PostProcessor - Templates

2.6.1.8 Trace

Because of the need to parse and unparse the model source code and link with runtime support files the following general
All Fortran produced by whirl2f needs definitions for kind variables that occur within the whirl2f-generated code. These
definitions can be found in runTimeSupport/all/w2f__types.f90. The code produced by transformation tool chain requires
implementations (OpenAD/F supplies samples) for the following aspects.

• active type (see runTimeSupport/simple/OpenAD_active.f90)

• checkpointing (only for adjoint models, see runTimeSupport/simple/OpenAD_checkpoints.f90)

• taping (only for adjoint models, see runTimeSupport/simple/OpenAD_tape.f90)

• state for call graph reversal (only for adjoint models, see runTimeSupport/simple/OpenAD_rev.f90)

The compilation order for these various modules follows exactly the order given here. The provided sample implementations
work with the subroutine inlining and templates found in the same directory.

Finally, we need a driver that invokes the transformed routines and seeds and retrieves the derivatives. Examples for such
drivers can be found in sec. 5.

vers. hg:34a2b066dd68+:84+ 18 OpenAD/F: User Manual

Chapter 3

AD Concepts

In this section we present the terminology and basic concepts that we will refer to throughout this paper. A detailed
introduction to AD can be found in [18]. The interested reader should also consider the proceedings of AD conferences
[16, 8, 12, 11, 9].

We present the concepts and resulting transformations with respect to the input source code in a bottom up fashion.
We first consider elemental numerical operations, then their control flow context within a subroutine and finally the entire
program consisting of several subroutines in a call graph.

We view a given numerical model as a vector valued function y = f(x) : IRn 7→ IRm that is implemented as a computer
program in a language such as Fortran, C, or C++ and the objective is to compute products of Jacobians with see matrices
S.

JS and JTS (3.1)

3.1 Computational Graphs

Without loss of generality we can simply assume that an evaluation of f(x) for a specific value of x can be represented by a
sequence of elemental operations vj = φj(. . . , vi, . . .). The vi represent the vertices ∈ V in the corresponding computational
graph G = (V,E). The edges (i, j) ∈ E in this graph are the direct dependencies vi ≺ vj implied by the elemental
vj = φj(. . . , vi, . . .). The elemental operations φ are differentiable on open subdomains. Each edge (i, j) ∈ E has an attached
local partial derivative cji = ∂vj

∂vi
. The central principle of AD is the application of the chain rule to the elemental φ, that is

multiplications and additions of the cji.
Like most of the AD literature we follow a specific numbering scheme for the vertices vi. We presume q intermediate

values vj = φj(. . . , vi, . . .), vj ∈ Z for j = 1, . . . , q+m and h, i = 1−n, . . . , q, j > h, i. The n independent variables x1, . . . , xn
correspond to v1−n, . . . , v0, vi ∈ X. We consider the computation of derivatives of the dependent variables y1, . . . , ym repre-
sented by m variables vq+1, . . . , vq+m, vj ∈ Y with respect to the independents. The dependency vi < vj implies i < j. The
forward mode of AD propagates directional derivatives as

v̇j =
∑
i

∂φj
∂vi

v̇i for j = 1, . . . , q +m. (3.2)

In reverse mode we compute adjoints of the arguments of the φj as a function of local partial derivatives and the adjoint of
the variable on the left-hand side

vi =
∑
j

∂φj
∂vi

vj for j = 1, . . . , q +m. (3.3)

In practice, the sum in (3.3) is often split into individual increments associated with each statement in which vi occurs as an
argument vi = vi + vj ∗ ∂φj

∂vi
.

Equations (3.2) and (3.3) can be used to accumulate the (local) Jacobian J(G) of G, see also sec. 3.2.
In a source transformation context we want to generate code for all f(x) in the domain and because the above construction

disregards control flow it is impractical here. Instead we simply consider the statements contained in a basicblock as a section
of code below the granularity of control flow and construct our computational (sub) graph for a basicblock.

19

CHAPTER 3. AD CONCEPTS

3.2 Elimination Methods

Let f represent a single basicblock that is subject to preaccumulation. For notational simplicity and without loss of generality
we assume that the dependent variables are mutually independent. This situation can always be reached by introducing
auxiliary assignments. Consider the small example in fig. 3.1. Reformulating the example in terms of results of elemental

t1 = x(1) + x(2)
t2 = t1 + sin(x(2)
y(1) = cos(t1 * t2)
y(2) = -sqrt(t2)

Figure 3.1: Example of code contained in a basicblock

operations φ assigned to unique intermediate variables v we have

v1 = v−1 + v0; v2 = sin(v0); v3 = v1 + v2; v4 = v1 ∗ v3;
v5 =

√
v3; v6 = cos(v4); v7 = −v5 .

(3.4)

In the tool this modified representation is created as part of the linearization transformation, see sec. 4.1.3.3. In fig. 3.2 (a)
we show the computational graph G for this representation. The edges (i, j) ∈ E are labeled with partial derivatives cji,
for instance, in the example we have c64 = − sin(v4). In the tool, this graph is generated as part of the algorithm described
in sec. 4.1.3.4. Jacobian preaccumulation can be interpreted as eliminations in G. The graph-based elimination steps are
categorized in vertex, edge, and face eliminations. In G a vertex j ∈ V is eliminated by connecting its predecessors with its
successors [17]. An edge (i, k) with i ≺ j and j ≺ k is labeled with cki + ckj · cji if it existed before the elimination of j. We
say that absorption takes place. Otherwise, (i, k) is generated as fill-in and labeled with ckj · cji The vertex j is removed
from G together with all incident edges. fig. 3.2 (b) shows the result of eliminating vertex 3 from the graph in fig. 3.2 (a).

An edge (i, j) is front eliminated by connecting i with all successors of j, followed by removing (i, j) [23]. The corresponding
structural modifications of the c-graph in fig. 3.2 (a) are shown in fig. 3.2 (c) for front elimination of (1, 3). The new edge
labels are given as well. Edge-front elimination eventually leads to intermediate vertices in G becoming isolated; that is,
these vertices no longer have predecessors. Isolated vertices are simply removed from G together with all incident edges.

Back elimination of an edge (i, j) ∈ E results in connecting all predecessors of i with j [23]. The edge (i, j) itself is
removed from G. The back elimination of (3, 4) from the graph in fig. 3.2 (a) is illustrated in fig. 3.2 (d). Again, vertices can
become isolated as a result of edge-back elimination because they no longer have successors. Such vertices are removed from
G.

Numerically the elimination is the application of the chain rule, that is, a sequence of fused-multiply-add (fma) operations

cki = cji ∗ ckj (+cki) (3.5)

where the additions in parenthesis take place only in the case of absorption or otherwise fill-in is created as described above.
Aside from special cases a single vertex or edge elimination will result in more than one fma. Face elimination was

introduced as the elimination operation with the finest granularity of exactly one multiplication1 per elimination step.
Vertex and edge elimination steps have an interpretation in terms of vertices and edges of G, whereas face elimination

is performed on the corresponding directed line graph G. Following [24], we define the directed line graph G = (V, E)
corresponding to G = (V,E) as follows:

V =
{
i, j : (i, j) ∈ E

}
∪
{
⊕, j : vj ∈ X

}
∪
{
i,	 : vi ∈ Y

}
and

E =
{(

i, j , j, k
)

: (i, j), (j, k) ∈ E
}

∪
{(
⊕, j , j, k

)
: vj ∈ X ∧ (j, k) ∈ E

}
∪
{(

i, j , j,	
)

: vj ∈ Y ∧ (i, j) ∈ E
}

.

That is, we add a source vertex ⊕ and a sink vertex 	 to G connecting all independents to ⊕ and all dependents to 	. G has
a vertex v ∈ V for each edge in the extended G, and G has an edge e ∈ E for each pair of adjacent edges in G. fig. 3.3 gives an
example of constructing the directed line graph in (b) from the graph in (a) which is the graph from fig. 3.2(a) extended by

1Additions are not necessarily directly coupled.

vers. hg:34a2b066dd68+:84+ 20 OpenAD/F: User Manual

3.3. Control Flow Reversal

c32

c
+
=

c
4
1

*c
4
3

3
1

c
+
=

c
4
1

*c
4
3

3
1

c
+
=

c
4
1

*c
4
3

3
1

41c
c53

c32

c31

c
=
c
*
c

5
3

5
2

3
2

c =c *c51

c
42

=c *c

c53

c51

c53

c32

43c

0

21

3

54

6 7

1−

(a) (b) (c) (d)

6 7 6 7 6

4 5 4 5

1 2 1 2

1− 0 1− 0

7

54

33

1 2

0−

31c

c
43

1

c42
53 31

43 32

Figure 3.2: (a) Computational graph G for (3.4), (b) eliminate vertex 3 from G, (c) front eliminate edge (1, 3) from G, (d)
back eliminate edge (3, 4) from G

the source and sink vertex. All intermediate vertices i, j ∈ V inherit the labels cji. In order to formalize face elimination, it
is advantageous to move away from the double-index notation and use one that is based on a topological enumeration of the
edges in G. Hence, G = (V, E) becomes a DAG with V ⊂ IN and E ⊂ IN × IN and certain special properties. The set of all
predecessors of j ∈ V is denoted as Pj . Similarly, Sj denotes the set of its successors in G. A vertex j ∈ V is called isolated if
either Pj = ∅ or Sj = ∅. Face elimination is defined in [24] between two incident intermediate vertices i and j in G as follows:

1. If there exists a vertex k ∈ V such that Pk = Pi and Sk = Sj , then set ck = ck + cjci (absorption); else V = V ∪ {k′}
with a new vertex k′ such that Pk′ = Pi and Sk′ = Sj (fill-in) and labeled with ck′ = cjci.

2. Remove (i, j) from E .

3. Remove i ∈ V if it is isolated. Otherwise, if there exists a vertex i′ ∈ V such that Pi′ = Pi and Si′ = Si, then

• set ci = ci + ci′ (merge);
• remove i′.

4. Repeat Step 3 for j ∈ V.
In fig. 3.3 (c) we show the elimination of (i, j) ∈ E , where i = 1, 3 and j = 3, 4 .

A complete face elimination sequence σf yields a tripartite directed line graph σf (G) that can be transformed back into
the bipartite graph representing the Jacobian f ′. We note that any G can be transformed into the corresponding G but that
a back transformation generally is not possible once face elimination steps have been applied. Therefore, face eliminations
can generally not precede vertex and edge eliminations. In OpenAD these eliminations are implemented in the algorithms
described in sec. 4.1.3.5 and sec. 4.1.3.6.

In a source transformation context of OpenAD/F the operations (3.5) are expressed as actual code, the Jacobian accu-
mulation code. For our example code from fig. 3.1 the code computing the local partials in conjunction with the function
value is shown in fig. 3.4. 2 In OpenAD/F the operations in fig. 3.4 are generated by the transformation algorithm discussed
in sec. 4.1.3.3. The operations induced by the eliminations on the graph can be expressed in terms of the auxiliary variables
cji. For our example, a forward vertex elimination in the order (1,2,3,4,5) in G (fig. 3.2), leads to the following Jacobian
accumulation code. In the tool the operations shown in fig. 3.5 are generated by the transformation algorithm discussed in
sec. 4.1.3.4.

3.3 Control Flow Reversal

Because the code for a f generally contains control flow constructs there is no single computational graph G that represents
the computation of f for all possible values of x. We explained in sec. 3.1 that OpenAD/F considers subgraphs constructed
from the contents of a basicblock. In the example shown in fig. 3.6 we put the basicblock code shown in fig. 3.1 into a control
flow context, see lines 06–09. The control flow graph (CFG) [6] resulting from the above code is depicted in fig. 3.7(a). The

2 For better readability we write the indices of the cji with commas.

OpenAD/F: User Manual 21 vers. hg:34a2b066dd68+:84+

CHAPTER 3. AD CONCEPTS

1− 1− 1−

4

3

21

5

41

c31

7

c
41
c

+
=

c
4
1
c

*c

0 0

21

3

54

6 7 6 7

54

3

21

0

6

c43
3
1

4
3

c

c
43

31
c

43

31

c

(c)(b)(a)

Figure 3.3: (a) G extended, (b) G overlaid, (c) face elimination

v1 = v−1 + v0;
v2 = sin(v0);
v3 = v1 + v2;
v4 = v1 ∗ v3;
v5 =

√
v3;

v6 = cos(v4);
v7 = −v5;

c1,−1 = 1;
c2,0 = cos(v0);
c3,1 = 1;
c4,1 = v3;

c5,3 = (2
√
v3)−1;

c6,4 = − sin(v4);
c7,5 = −1;

c1,0 = 1;

c3,2 = 1;
c4,3 = v1;

Figure 3.4: Pseudo code for (3.4) and the computation of the cji

vers. hg:34a2b066dd68+:84+ 22 OpenAD/F: User Manual

3.3. Control Flow Reversal

1: c3,−1= c3,1 ∗ c1,−1; c3,0 = c3,1 ∗ c1,0; c4,−1 = c4,1 ∗ c1,−1;
c4,0= c4,1 ∗ c1,0;

2: c3,0= c3,2 ∗ c2,0 + c3,0;
3: c4,−1= c4,3 ∗ c3,−1 + c4,−1; c4,0 = c4,3 ∗ c3,0 + c4,0; c5,−1 = c5,3 ∗ c3,−1;

c5,0= c5,3 ∗ c3,0;
4: c6,−1= c6,4 ∗ c4,−1; c6,0 = c6,4 ∗ c4,0;
5: c7,−1= c7,5 ∗ c5,−1; c7,0 = c7,5 ∗ c5,0;

Figure 3.5: Pseudo code for vertex eliminations for (3.4)

00 y(k)= sin(x(1)*x(2))

01 k = k+1

02 if (mod(k,2).eq. 1)then

03 y(k)= 2*y(k-1)

04 else

05 do i=1,k

06 t1 = x(1)+x(2)

07 t2 = t1+sin(x(1))

08 x(1)= cos(t1*t2)

09 x(2)= -sqrt(t2)

10 end do

11 end if

12 y(k)= y(k)+x(1)*x(2)

Figure 3.6: Toy example code with control flow

assignment statements are contained in the basicblocks B(2,4,6,9). For instance, the statements from fig. 3.1 now in lines
06–09 form the loop body, basicblock B(6). As B(6) is executed k times it may be worth putting additional effort into the
optimization of the derivative code generated for B(6) by optimizing the elimination sequence as illustrated in sec. 3.2. For
B(6) the corresponding computational graph G see fig. 3.2(a).

For a sequence of l basicblocks that are part of a path through the CFG for a particular value of x the equations (3.2)
and (3.3) can be generalized as follows:

ẏj = Jj ẋj for j = 1, . . . , l (3.6)

and
x̄j = JTj ȳj for j = l, . . . , 1 , (3.7)

where xj = (xji ∈ V : i = 1, . . . , nj) and yj = (yji ∈ V : i = 1, . . . ,mj) are the inputs and outputs of the basicblocks
respectively. In forward mode a sequence of products of the local Jacobians Jj with the directions ẋj are propagated forward
in the direction of the flow of control, for instance simultaneously to the computation of f. In our example basicblock B(6)
is the third basicblock (j = 3) and we have x3 = yj = (x(1),x(2)) and consequently have the operations for the Jacobian
vector product shown in fig. 3.8. Note that the code overwrites x(1) and x(2) and therefore we have to preserve the original
derivatives in temporaries t1 and t2.

In reverse mode products of the transposed Jacobians JTj with adjoint vectors yj are propagated reverse to the direction of
the flow of control. The JTj can be computed by augmenting the original code with linearization and Jacobian accumulation
statements, see sec. 3.2. The preaccumulated JTj are stored during the forward execution which is commonly called the
tape, see fig. 3.9(a) for an example. They are retrieved from the tape for computing (3.7) during the reverse execution, see
fig. 3.9(b) for an example. It is always possible to organize the store and retrieve such that the tape can be implemented as
a stack.

In order to find the corresponding path to the reversed control flow graph we also have to generate a trace which is done
with an augmented CFG, for our toy example see fig. 3.7(b). This augmented CFG keeps track of which branch was taken
and counts how often a loop was executed. This information is pushed on a stack and popped from that stack during the
reverse sweep see also [36]. Because the control flow trace adheres to the stack model it often is also considered part of the
tape. In the example in fig. 3.7(b) the extra basicblocks pBT and pBF push a boolean (T or F) onto the stack depending on
the branch. In iLc we initialize a loop counter, increment the loop counter in +Lc, and push the final count in pLc.

fig. 3.7(c) shows the reversed CFG for our toy example. The parenthesized numbers in the node labels align the node
transformation to fig. 3.7(a). The exit node becomes the entry, loop becomes endloop, branch becomes endbranch, and vice

OpenAD/F: User Manual 23 vers. hg:34a2b066dd68+:84+

CHAPTER 3. AD CONCEPTS

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(1)

B(2)

Branch(3)

B(4)

T

iLc

 F

pB T

EndBranch(8)

B(9)

Exit(10)

Loop(5)

B(6)

T

pLc

F

+Lc

EndLoop(7)

pB F

Entry(10)

B’(9)

pB

Branch(8)

B’(4)

 T

pLc

 F

Loop(7)

B’(6)

 T

EndBranch(3)

F

EndLoop(5)B’(2)

Exit(1)

(a) (b) (c)

Figure 3.7: CFG of fig. 3.6 (a) original, (b) trace generating, (c) reversed

versa. Each basicblock B is replaced with its reversed version B’. Finally, to find the proper path through this reversed CFG
we need to retrieve the information recorded in fig. 3.7(b). The extra nodes pB and pLc pop the branch information and the
loop counter respectively. We enter the branch and execute the loop as indicated by the recorded information. The process
of the control flow reversal is described in detail in [36].

3.4 Call Graph Reversal

Generally, the computer program induces a call graph (CG) [6] whose vertices are subroutines and whose edges represent
calls potentially made during the computation of y for all values of x in the domain of f.

For a large number of problems it is possible to statically predetermine either split or joint reversal [18] for any subroutine
in the call graph . These concepts are easier understood with the help of the dynamic call tree, see also [26]. where each
vertex represents an actual invocation of a subroutine for a given execution of the program, see fig. 3.10 and table 3.1 for an
explanation of the symbols. The order of calls is implied by following the edges in left to right order. Using split reversal for
all subroutines in the program means that first the tape for the entire program is written. Then we follow with the reverse
steps that read the tape, see fig. 3.11.

Using joint reversal for all subroutines in a program means that the tape, see sec. 3.3 for a each subroutine invocation is
written immediately before the reverse execution for that invocation. In our example this implies that we have to generate
a tape for C2 while the caller B2 is being reversed, i.e. this is not the proper context to simply reexecute C2. We can either
reexecute the entire program up to the C2 call and then start taping, or (preferably) we store the arguments while running
forward and restore them before starting the taping. The ensuing dynamic call tree for our example is shown in fig. 3.12.

vers. hg:34a2b066dd68+:84+ 24 OpenAD/F: User Manual

3.4. Call Graph Reversal

t1 = ẋ(1);
t2 = ẋ(2);

ẋ(1) = c6,−1 ∗ t1;
ẋ(1) = ẋ(1) + c6,0 ∗ t2;
ẋ(2) = c7,−1 ∗ t1;
ẋ(2) = ẋ(2) + c7,0 ∗ t2;

Figure 3.8: Pseudo code for J3ẋ3 for the loop body in fig. 3.6

push(c6,−1);

push(c6,0);
push(c7,−1);

push(c7,0);

(a)

t2 = pop() ∗ x̄(2);

t1 = pop() ∗ x̄(2);

t2 = t2 + pop() ∗ x̄(1);

t1 = t1 + pop() ∗ x̄(1);

x̄(2) = t2;

x̄(1) = t1;

(a)

Figure 3.9: Pseudo code for writing the tape (a) and consuming the tape for JT3 ȳ3 (b) for the loop body in fig. 3.6

For many applications neither an all split nor all joint reversal is efficient. Often a mix of split and joint reversals statically
applied to subtrees of the call tree is suitable.

subroutine A()

call B(); call D(); call B();

end subroutine A

subroutine B()

call C()

end subroutine B

subroutine C()

call E()

end subroutine C

B D B

CEC

A
1

1 1 2

211

Figure 3.10: Dynamic call tree of a simple calling hierarchy

OpenAD/F: User Manual 25 vers. hg:34a2b066dd68+:84+

CHAPTER 3. AD CONCEPTS

S
n

n-th invocation of subroutine S
subroutine call

run forward order of execution

store checkpoint restore checkpoint

run forward and tape run adjoint

Table 3.1: Symbols for call tree reversal

A A

D B B D B

CECCEC

B

1

1 1

1 1

1

1

1

1

1

2 2

22

Figure 3.11: Dynamic call tree for split reversal

1

C

B

A

D

E C

B

A

B

C C

B

C E

D D

E E

B

C C

B

C

1

2

1

1 1 2 2

1 1 2 2 2 2 1

1 1

1 1

1 1

1 1

Figure 3.12: DCT of adjoint obtained by joint reversal mode

vers. hg:34a2b066dd68+:84+ 26 OpenAD/F: User Manual

Chapter 4

Components of OpenAD/F

OpenAD/F is built on components that belong to a framework designed for code transformation of numerical programs.
The components are tied together either via programmatic interfaces or by communication using the XAIF language. The
transformation of the source code follows the tool chain shown in fig. 1.1. In sec. 4.1 we describe the language-independent
components of OpenAD framework and sec. 4.2 provides details in the Fortran front-end. The regular setup procedure for
OpenAD/F, see also sec. 2.1, will retrieve all components into an OpenAD/ directory to which we refer from here on.

4.1 Language Independent Components (OpenAD)

The component design of the tool aims for reuse of the different components for different types of source transformation of
numerical codes, for different programming languages in which these tools are written and finally also for the reuse of the
individual components in different contexts. A second, equally important concern is the flexibility of the tool. This section
covers the language independent components that make up the core OpenAD framework.

4.1.1 Static Code Analyses (OpenAnalysis)

The OpenAnalysis toolkit, see [30], separates program analysis from language-specific or front-end specific intermediate
representations. This separation enables a single implementation of domain-specific analyses such as activity analysis, to-be-
recorded analysis, and linearity analysis in OpenAD/F. Standard analyses implemented within OpenAnalysis such as CFG
construction, call graph construction, alias analysis, reaching definitions, ud- and du-chains, and side-effect analysis are also
available via OpenADFortTk.

OpenADFortTk interfaces with OpenAnalysis as a producer and a consumer. A description of Alias analysis illustrates
this interaction. XAIF requires an alias map data structure, in which each variable reference is mapped to a set of virtual
locations that it may or must reference. For example, if a global variable g is passed into subroutine foo through the
reference parameter p, variable references g and p will reference the same location within the subroutine foo and therefore
be aliases. OpenAnalysis determines the aliasing relationships by querying an abstract interface called the alias IR interface,
which is a language-independent interface between OpenAnalysis and any intermediate representation for an imperative
programming language. An implementation of the alias IR interface for the Fortran 90 intermediate representation is part of
OpenADFortTk. The interface includes queries for an iterator over all the procedures, statements in those procedures, memory
references in each statement, and memory reference expression and location abstractions that provide further information
about memory references and symbols. The results of the alias analysis are then provided back to OpenADFortTk through
an alias results interface.

Using language-independent interfaces between OpenAnalysis and the intermediate representation will enable alias anal-
ysis for multiple language front-ends without requiring XAIF to include the union of all language features that affect aliasing
(ie. pointer arithmetic and casting in C/C++ and equivalence in Fortran 90). Instead OpenAnalysis has analysis-specific
interfaces for querying language-specific intermediate representations.

OpenAnalysis also performs activity analysis. For activity analysis the independent and dependent variables of interest
are communicated to the front-end through the use of pragmas, see sec. 4.2.2. The results of the analysis are then encoded by
the Fortran 90 front-end into XAIF. The analysis indicates which variables are active at any time, which memory references
are active, and which statements are active.

The activity analysis itself is based on the formulation in [19]. The main difference is that the data-flow framework
in OpenAnalysis does not yet take advantage of the structured data-flow equations. Activity analysis is implemented in a
context-insensitive, flow-sensitive interprocedural fashion.

27

CHAPTER 4. COMPONENTS OF OPENAD/F

All sources for OpenAnalysis can be found under OpenAD/OpenAnalysis/.

4.1.2 Representing the Numerical Core (XAIF)

To obtain a language independent representation of programs across multiple programming languages one might choose the
union of all language features. On the other hand one can observe that the majority of differences between languages does not
lie with the elemental numerical operations that are at the heart of AD transformations. This more narrow representation
is a compromise permitting just enough coverage to achieve language independence for the numerical core across languages.
Consequently, certain program features are not represented and have to be retained by the language specific front-end to
reassemble the complete program from the (transformed) numerical core. Among the generic language features not considered
part of the numerical core are:

• user type definitions and member access, see also sec. 4.2.1
• pointer arithmetic
• I/O operations
• memory management, see also sec. 6
• preprocessor directives

For a more general discussion regarding this compromise see also [38]. It is apparent that certain aspects of the adjoint code
such as checkpointing, see sec. 3.4, and taping, see sec. 3.3, can involve memory allocation and various I/O schemes and
therefore are not amenable to representation in the XAIF. At the same time it is also clear that the way one has to handle
the memory and I/O for taping and checkpointing is primarily determined by the problem size at runtime and not primarily
by the code we transform. Therefore in OpenAD such transformation results are handled by specific code expansion for
subroutine specific templates and inlinable subroutine calls in the post processor, see sec. 4.2.4. This not only avoids the
typically language specific I/O and memory management aspects, it also affords additional flexibility.

The format of choice in OpenAD is an XML-based [14] hierarchy of directed graphs, referred to as XAIF[21]. Using XML
is motivated by the existence of XML parsers and the ability to specify the XAIF specific XML contents with a schema which
the parser can use to validate a given XAIF representation. The current XAIF schema is documented at [40]. The basic
building blocks are the same data structures commonly found in compilers from top down call graph with scopes and symbol
tables, control flow graphs as call graph vertices, basic blocks as control flow graph vertices, statement lists contained in basic
blocks, assignments as a statement with expression graphs, and variable references and intrinsic operations as expression
graph vertices. The role of the respective elements in the XAIF schema is fairly self evident. Elements are associated by
containment. In the graph structures edges refer to source and target vertices by vertex ids. Variable references contain
references to symbols which in turn are associated to symbol table elements via a scope and a symbol id.

An snipppet of the XAIF representation of a part of the example code from fig. 1.2(right) can be found in fig. 4.1. When
make is invoked in $OPENDADROOT/Examples/OneMinute/the full XAIF is written to a file called $OPENDADROOT/Examples/OneMinute

/head.preppef.xaif.
Further documentation for individual elements can be found directly in the schema annotations.
The XAIF also contains the results of the code analyses provided by OpenAnalysis, see sec. 4.1.1. Some are expressed

either as additional attributes on certain XAIF elements, e.g. for activity information. Side-effect analysis provides lists of
variable references per subroutine, i.e. a call graph vertex element. DuUd chains are expressed as list of ids found in the
assignment XAIF element. Alias information is expressed as set of virtual addresses. DuUd chains and alias information is
collected in maps indexed by keys associated with the call graph. References to individual entries held in these maps are
expressed via foreign key attributes in the elements.

The source transformation at the code of OpenAD potentially changes and augments all elements of the XAIF. While
it would in principle be possible to express the result entirely in the plain XAIF format we already mentioned the code
expansion approach. Therefore the transformed XAIF adheres to a schema that is extended by a construct to represent
inlinable subroutine calls and a specific list of control flow graphs that the post processor places in predefined locations in
the subroutine template.

The XAIF schema and examples can be found under OpenAD/xaif/.

4.1.3 Transforming the Numerical Core (xaifBooster)

The transformation engine that differentiates the XAIF representation of f is called xaifBooster. It is implemented in C++
based on a data structure that represents all information supplied in the XAIF input together with collection of algorithms
that operate on this data structure, modify it and produce transformed XAIF output as the result. All sources for xaifBooster
can be found under OpenAD/xaifBooster/. The principal setup of the source tree is shown in table 7.1. The xaifBooster data
structure closely resembles the information one would find in a compiler’s high level internal representation. the boost graph

vers. hg:34a2b066dd68+:84+ 28 OpenAD/F: User Manual

4.1. Language Independent Components (OpenAD)

102 <xaif:Entry vertex_id="1"/>

103

104 <xaif:BasicBlock vertex_id="2" scope_id="2">

105 <xaif:Marker statement_id="9" annotation="{WHIRL_Id#9} [passive: OPR_PRAGMA]"/>

106 <xaif:Assignment statement_id="10" lineNumber="5" do_chain="1">

107 <xaif:AssignmentLHS du_ud="2" alias="2">

108 <xaif:SymbolReference vertex_id="1" scope_id="2" symbol_id="Y_2"/>

109 </xaif:AssignmentLHS>
110 <xaif:AssignmentRHS>
111 <xaif:Intrinsic vertex_id="1" name="tan_scal" type="***" annotation="{IntrinsicKey#0_TAN}"/>

112 <xaif:VariableReference vertex_id="2" du_ud="2" alias="3">

113 <xaif:SymbolReference vertex_id="1" scope_id="2" symbol_id="X_1"/>

114 </xaif:VariableReference>
115 <xaif:ExpressionEdge edge_id="1" source="2" target="1" position="1"/>

116 </xaif:AssignmentRHS>
117 </xaif:Assignment>
118 </xaif:BasicBlock>
119

120 <xaif:Exit vertex_id="3"/>

121

122 <xaif:ControlFlowEdge edge_id="1" source="1" target="2"/>

123 <xaif:ControlFlowEdge edge_id="2" source="2" target="3"/>

Figure 4.1: Snippet of XAIF representation for lines 4–6 of fig. 1.2(right)

library [10] and the Standard C++ Library[15]. Figure4.2 and fig. 4.3 show simplified subsets of the classes occurring in the
xaifBooster data structure in the inheritance as well as the composition hierarchy. A doxygen generated documentation of
the entire data structure can be found on the OpenAD website [29]. The class hierarchy is organized top down with a single
CallGraph instance as the top element. The top down structure is also imposed on the ownership of dynamically allocated
elements. Wherever possible, the class interfaces encapsulate dynamic allocation of members. Only in cases of containment
of polymorphic elements is explicit dynamic allocation outside of the owning class’ members appropriate. In these cases
the container class interface naming and documentation indicates the assumption of ownership of the dynamically allocated
elements being supplied to the container class. An example is the graph class Expression accepting vertex instances that can
be Constant, Intrinsic , etc.

The transformation algorithms are modularized to enable reuse in different contexts. fig. 4.4 shows some implemented
algorithms with dependencies. To avoid conflicts the transformation algorithms the data structure representing the input
code is never directly modified. Instead, any data representing modifications or augmentations of the original representation
element in a class <name> are held in algorithm specific instances of class <name>Alg. The association is done via mutual
references accessible through get<name>AlgBase() and getContaining<name>() respectively. The instantiation of the algorithm
specific classes follows the factory design pattern. The factory instances in turn are controlled by a transformation algorithm
specific AlgFactoryManager classes. Further details can be found in [37], however, the code code for this mechanism is fairly
self-explanatory.

In the following sections we want to concentrate on the transformation the algorithms execute while deferring to the
generated code documentation for most technical details.

Each algorithm has a driver t.pp (compiled into a binary t) found in algorithms/<the_algorithm_name>/test/ that en-
capsulates the algorithm in a stand-alone binary which provides the functionality described in the following sections. For
details on the invocation and command line options refer to sec. 2.5.

4.1.3.1 Reading and Writing XAIF

Reading and Writing the XAIF is part of basic infrastructure found in the sources in system/. Parsing is done through the
Xerces C++ XML parser [41] such that the XML element handler implementations, see system/src/XAIFBaseParserHandlers

.cpp, build the xaifBooster data structure from the top down. As an additional consistency check all components that read
XAIF data have the validation according to the schema enabled. Beyond the schema validation these components perform
validity checks. Therefore, manual modifications of XAIF data , while possible, should be done judiciously.

The unparsing of the transformed data structure into XAIF is performed through a series of that traverses the data
structure and the respective algorithm specific data. For information of the files containing the XAIF representation refer to
sec. 2.5.

OpenAD/F: User Manual 29 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

Figure 4.2: Simplified class inheritance in xaifBooster

vers. hg:34a2b066dd68+:84+ 30 OpenAD/F: User Manual

4.1. Language Independent Components (OpenAD)

Figure 4.3: Simplified class composition in xaifBooster

Figure 4.4: xaifBooster algorithms

Aside from the parsing of the actual input XAIF there is also the so called catalog of inlinable intrinsics supplied as an
XML following a specialized schema in XAIF, see sec. 4.1.3.3 and sec. 4.2.3. There is also a driver at this level found in
system/test/t.cpp used to verify reading and writing functionality. It can be used to establish that the tool chain preserves
the semantics of the original program when no transformation is involved.

4.1.3.2 Type Change

4.1.3.3 Linearization

sec. 3 explained the computation of the local partial derivatives cji that can be thought of as edge labels in the computational
graph G. Per canonicalization (see sec. 4.2.1) all elemental φ occur only in the right-hand side of an assignment. For each φ
we look up the definition of the respective partials in the intrinsics catalog. [not sure how much detail is necessary] The
partials are defined in terms of positional arguments, see fig. 4.5.

Because of this, the right-hand-side expression may have to be split up into subexpressions to assign intermediate values
to ancillary variables that can be referenced in the partial computation, for an example see the code shown in fig. 3.4. In
cases of the left-hand-side variable occurring on the right-hand-side (or being may-aliased to a right-hand-side variable, see

1

1 2

1 2

2
1

2

division

square unary minus

2

division

1

1

1

division

n d

division

2

"1"

Intrinsics Catalogue

integer literal

Figure 4.5: Partial expressions for the division operator

OpenAD/F: User Manual 31 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

sec. 4.1.1) we also require an extra assignment to delay the (potential) overwrite until after the partials depending on the
original variable value have been computed. The result of the Linearization is a representation for code containing the
potentially split assignments along with assignments for each non-zero edge label cji. These representations are contained in
the xaifBoosterLinearization::AssignmentAlg instances associated with each assignment in the XAIF. The generated code
after unparsing to Fortran is compilable but does by itself not compute useful derivative information at the level for the
target function f. The transformation driver is used to verify the results of the linearization transformation.

4.1.3.4 Basic Block Preaccumulation

This transformation generates a code representation that can be used to compute derivatives in forward mode. It builds
upon the Linearization done in sec. 4.1.3.3. The first step constructs the computational graphs G for contiguous assignment
sequences in a given basicblock. To ensure semantic correctness of the graph being constructed in the presence of aliasing
it relies on alias analysis and define-use/use-define chains supplied by OpenAnalysis, see sec. 4.1.1. The algorithm itself is
described in detail in [35]. Because the analysis results supplied by OpenAnalysis are always conservatively correct it may
not be possible to flatten all assignments into a single computational graph. In such cases a sequence of graphs is created.
Likewise, the occurrence of a subroutine call leads to a split in the graph construction. In the context of sec. 3 one may
think of the sets of assignments forming each of these graphs as a separate basicblock. The driver for the algorithm allows to
disable the graph construction across assignments and restrict it to single right-hand sides by adding the -S command line
flag.

Based on the constructed G an elimination sequence has to be determined. To allow a choice for the computation of
the elimination sequence the code uses the interface coded in algorithms/CrossCountryInterface/ and by default calls the
angel library [1, 7, 25]. angel determines an elimination sequence and returns it as fused multiply add expressions in terms
of the edge references. There are several heuristics implemented within angel that control the selection of elimination steps
and thereby the preaccumulation code that is generated. The algorithm code calls a default set of heuristics. However, all
heuristics use the CrossCountryInterface and therefore different heuristics can be selected with minimal changes in algorithm
code.

The second step in this transformation is the generation of preaccumulation code. First it turns the abstract expression
graphs returned by angel into assignments and resolves the edge references into the labels cji. The resulting code resembles
what we show in fig. 3.5. Then it generates the code that eventually performs the saxpy operations shown in (3.6). Considering
the input and output variables xj and yj of a basicblock the code generation also ensures proper propagation of ẋji of variables
xji ∈ xj ∩ yj by saving the ẋji in temporaries. The example in fig. 3.8 illustrates this case. The detection of the intersection
elements relies on the alias analysis provided by OpenAnalysis. To reduce overhead the generated saxpy operations we
generate saxpy calls following the interface specified in algorithms/DerivativePropagator/ for the following four cases:

(a): ẏ =
∂y

∂x
· ẋ, (b): ẏ =

∂y

∂x
· ẋ+ ẏ, (c): ẏ = ẋ, (d): ẏ = 0 . (4.1)

The generated code is executable and represents an overall forward mode according to (3.6) with basicblocklocal preaccumu-
lation in cross-country fashion.

4.1.3.5 Memory/Operations Tradeoff

This algorithm can be seen as an alternative to the angel library. Like angel it uses the CrossCountryInterface. In its
implementation it replaces the call to angel with one to its own internal routines that determine an elimination sequence
according to a selectable set of heuristics. In difference to the angel heuristics they aim for a tradeoff between the number
of operations required to complete an elimination sequence on the one hand and the temporal locality of the cji in memory
on the other hand. The rationale for these heuristics is the observation that in many modern computer architectures the
performance is memory bound, i.e. a few additional operations can easily be absorbed if we keep all the necessary data in
cache. All heuristics take as an input a set Θ 6= ∅ of target elements, that is a set of vertices or edges from G, or faces from G.
The heuristic selects a nonempty subset Θ′ ⊆ Θ from this set. In order to determine a single elimination target a sequence
of heuristics may be applied that successively shrink the target set concluding with a tie breaker such as selecting the next
target that would be eliminated in forward or reverse mode. table 4.1 describes the selection criterion of a heuristics with
respect to an elimination technique. If the selection criterion is not met by any target in Θ, then Θ′ = Θ. The driver allows
a sequence of heuristics to be selected via string supplied as an argument to the commandline switch -H. The string needs
to contain the target selection, one of Vertex, EDGE, or FACE followed by a sequence of heuristics that should include at least
on of the tie breakers FORWARD or REVERSE. Obviously the data locality criteria still are rather simplistic but the code is easily
extensible for more elaborate strategies.

The generated code is executable and represents an overall forward mode according to (3.6) with basicblocklocal preac-
cumulation in cross-country fashion.

vers. hg:34a2b066dd68+:84+ 32 OpenAD/F: User Manual

4.1. Language Independent Components (OpenAD)

VERTEX EDGE FACE

SIBLING
select vertices that share at least one predecessor and suc-
cessor with the most recently eliminated vertex.

N/A N/A

SIBLING2
select vertices with the maximal product of the number of
predecessors and the number of successors shared with the
most recently eliminated vertex

select edges with the same
source / target and the max-
imal number of successors /
predecessors shared with the
successors / predecessors of
the most recently front / back
eliminated edge

N/A

SUCCPRED
select vertices that were either predecessors or successors
of the most recently eliminated vertex

N/A N/A

ABSORB N/A N /A select faces that are ab-
sorbed

MARKOWITZ select vertices with the lowest Markowitz degree
select edges with the lowest
Markowitz degree

N/A
FORWARD select the target next in forward mode
REVERSE select the target next in reverse mode

Table 4.1: Heuristics selection criteria

4.1.3.6 Using the ANGEL Library

[JU: This was a placeholder to talk about the angel lib but I think I will remove this unless somebody strongly objects]

4.1.3.7 CFG Reversal

sec. 3.3 explains the principal approach to the reversal of the CFG. The CFG reversal as implemented in this transformation is
by itself not useful as unparsed code other than for checking the correctness without interference from other transformations.
It is a major building block for the adjoint code generator described in sec. 4.1.3.9. The loop counters and branch identifiers
are stored the same stack data structure that is used for the tape (introduced in sec. 3.3 and also used in sec. 4.1.3.8.
The reversal of loops and branches as detailed in [36] assumes CFGs to be well-structured, that is, essentially to be free
of arbitrary jump instructions such as GOTO or CONTINUE. It is of course possible to reverse such graphs, for instance by
enumerating all basicblocks, recording the execution sequence and invoking them according to their recorded identifier in
large SWITCH statement in reverse order. Such a reversal is obviously less efficient than a code that, by employing proper
control flow constructs, aids compiler optimization. For the same reason well tuned codes implementing the target function
f will avoid arbitrary jumps and therefore we have not seen sufficient demand to implement a CFG reversal for arbitrary
jumps.

The reversal of loop constructs such as do i=1,10 replaces the loop variable i with a generated variable name, say t and
we loop up to the stored execution count which we will call c here. Then the reversed loop is do t=1,c. Quite often the loop
body contains array dereferences such as a(i) but i is no longer available in the reversed loop. We call this kind of loop
reversal anonymous. To access the proper memory location i will have to be stored along with the loop counters and branch
identifiers in the tape stack. To avoid this overhead the loop reversal may be declared explicit by prepending !\$openad xxx

simple loop to the loop in question. With this directive the original loop variable will be preserved, the reversed loop in our
example constructed as do i=10,1,-1 and no index values for the array references in the loop body are stored. In general
the decision when an array index needs to be stored is better answered with a code analysis similar to TBR analysis [19].
Currently we do not have such analysis available and instead as a compromise define the simple loop which can reversed
explicitly as follows.

• loop variables are not updated within the loop,
• the loop condition does not use .ne.,
• the loop condition’s left-hand side consists only of the loop variable,
• the stride in the update expression is fixed,
• the stride is the right-hand side of the top level + or - operator,
• the loop body contains no index expression with variables that are modified within the loop body.

While these conditions can be relaxed in theory, in practice the effort to implement the transformation will rise sharply.
Therefore they represent a workable compromise for the current implementation. Because often multidimensional arrays are
accessed with nested loops the loop directive when specified for the outermost loop will assume the validity of the above
conditions for everything within the loop body including nested loop and branch constructs. More details on this aspect can
be found in [36].

OpenAD/F: User Manual 33 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

forward adjoint
(a): ẏ = ∂y

∂x · ẋ x = ∂y
∂x · y + x, y = 0

(b): ẏ = ∂y
∂x · ẋ+ ẏ x = ∂y

∂x · y + x
(c): ẏ = ẋ x = y, y = 0
(d): ẏ = 0 y = 0

Table 4.2: saxpy operations from (4.1) and their corresponding adjoints

4.1.3.8 Writing and Consuming the Tape

sec. 3 explains the need to store the ∂φj

∂vi
on the tape. The writing transformation1 stores the nonzero elements of local

Jacobians Jj . It is implemented as an extension of the preaccumulation in sec. 4.1.3.4 but instead of using the Jacobian
elements in the forward saxpy operations as in (3.6) we store them on a stack as shown for the example code in fig. 3.8(a). The
tape consuming transformation algorithm2 reinterprets the saxpy operations generated in sec. 4.1.3.4 according to table 4.2.
The tape writing and consumption implemented in these transformations are by themselves not useful as unparsed code other
than for checking the correctness without interference from other transformations. They are, however, major building blocks
for the adjoint code generator described in sec. 4.1.3.9.

4.1.3.9 Basic Block Preaccumulation Reverse

This transformation3 represents the combination of the various transformation into a coherent representation that, unparsed
into code and post-processed, compiles as an adjoint model. For the postprocessing steps refer to sec. 4.2.4. Additional
functionality is the generation of code that is able write and read checkpoints at a subroutine level, see also sec. 3.4. This
part of the transformation relies heavily on the results of side-effect analysis, see sec. 4.1.1 and the inlinable subroutine call
mechanism of the postprocessor, see sec. 4.2.4.2, to accomplish the checkpointing. The driver offers command line options

• to change subroutine argument intents such that checkpointing can take place; while checkpointing will generally be
needed this option is useful for certain application scenarios where the intent change can be avoided.

• to validate the XAIF input against the schema; the validation takes considerable time for large XAIF files

• to specify a list of subroutines that have a wrappers which should be called in its place

• to force the renaming of all non-external subroutines which may be necessary for applications which expose only portions
of the code to OpenAD/F.

4.2 Language Dependent Components (OpenADFortTk)

For simplicity we consider all language dependent components part of the OpenAD Fortran Tool Kit (OpenADFortTk). The
following sections provide details for the various subcomponents that are used in transformation tool chain in the following
sequence.

1. The canonicalizer converts programming constructs into a canonical form described in sec. 4.2.1.

2. The compiler front-end mfef90 parses Fortran and generates an intermediate representation (IR) in the whirl format,
see sec. 4.2.2

3. whirl2xaif is a bridge component that

• drives the various program analyses (see sec. 4.1.1),

• translates the numerical core of the program and the results of the program analyses from whirl to XAIF.

see also sec. 4.2.3

4. xaif2whirl is bridge component that translates the differentiated numerical core represented in XAIF into the whirl
format. see sec. 4.2.3.

1 see algorithms/BasicBlockPreaccumulationTape/
2 see algorithms/BasicBlockPreaccumulationTapeAdjoint/
3 see algorithms/BasicBlockPreaccumulationReverse

vers. hg:34a2b066dd68+:84+ 34 OpenAD/F: User Manual

4.2. Language Dependent Components (OpenADFortTk)

1 real function foo(a,b)
2 real a,b
3 foo = a∗b
4 end
5

6 program func
7 real x,y,a,b
8 x=1.0; a=2.0; b=3.0
9 y = x ∗ foo(a,b)

10 end program

1 real function foo(a,b)
2 real a,b
3 foo = a∗b
4 end
5

6 program func
7 real x,y,a,b
8 real :: oad ctmp0
9 x=1.0; a=2.0; b=3.0

10 call oad s foo(a,b,oad ctmp0)
11 y = x∗oad ctmp0
12 end program

Figure 4.6: Canonicalizing a function (left, see see file $OPENADROOT/Examples/SRCanonical/func.f90), to a subroutine (right,
see file $OPENADROOT/Examples/SRCanonical/func.pre.f90 after running make)

5. whirl2f is the “unparser” that converts whirl to Fortran, see sec. 4.2

6. The postprocessor is the final part of the transformation that performs template expansion as well as inlining substitu-
tions, see sec. 4.2.4

4.2.1 Canonicalization

In sec. 4.1.2 we explain how the restriction to the numerical core contributes to the language independence of the transforma-
tion engine. Still, even for a single programming language, the numerical core often exhibits a large variability in expressing
semantically identical constructs. To streamline the transformation engine we reduce this variability by canonicalizing the
numerical core. This is done using the following Python script.

$OPENADFORTTK_BASE/tools/SourceProcessing/preProcess.py

Invoking the script with the -h option displays the following command-line options.
Usage: preProcess.py [options] <input_file>

Options:
-h, --help show this help message and exit
--free input source is free format
-m MODE, --mode=MODE set default options for transformation mode with MODE

being one of: r = reverse; f = forward; reverse mode
implies -H but not -S; specific settings override the
mode defaults.

-n, --noCleanup do not remove the output file if an error was
encountered (defaults to False)

--r8 set default size of REAL to 8 bytes
-H, --hoistNonStringConstants

enable the hoisting of non-string constant arguments
to subroutine calls (defaults to False)

-S, --hoistStringConstants
enable the hoisting of string constant arguments to
subroutine calls (defaults to False)

-o <output_file>, --output=<output_file>
set output file (defaults to stdout)

-v, --verbose turns on verbose debugging output

Because it is done automatically, the canonicalization does not restrict the expressiveness of the input programs supplied by
the user. Rather it is a means to reduce the development effort of the transformation engine. In the following we describe
the canonical form.

Canonicalization 1 All function calls are canonicalized into subroutine calls, see fig. 4.6. For the transformations, in
particular the basicblock level preaccumulation we want to ensure that an assignment effects a single variable on the left-hand
side. Therefore the right-hand-side expression ought to be side-effect free. While often not enforced by compilers, this is
a syntactic requirement for Fortran programs. Rather than determining which user-defined functions have side effects, we
pragmatically hoist all user-defined functions. Consequently the right-hand-side expression of an assignment consists only of
elemental operations φ typically defined in a programming language as built-in operators and intrinsics. TODO: FIX THIS

The canonicalizer also performs the accompanying transformation of the function definition table 4.3(a) into a subroutine
definition table 4.3(b). A particular canonicalization of calls without canonicalization of definitions is applied to the max and

OpenAD/F: User Manual 35 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

TODO: FIX THIS

real function foo(a,b)
! declarations, body etc...

foo = ...
end

subroutine oad_s_foo(a,b,oad_ctmp0)
! type matches foo return

real oad_ctmp0
! old declarations, body etc...

oad_ctmp0 =...
end

(a) (b)

Table 4.3: Canonicalizing a function(a) to a subroutine(b) definition

call foo(x*y)

real ad_ctmp0
! ...
ad_ctmp0 = x*y
call foo(ad_ctmp0)

(a) (b)

Table 4.4: Before(a) and after(b) hoisting a non-variable parameter

min intrinsics because in Fortran they do not have closed form expressions for the partials. OpenAD/F provides a run time
library containing definitions for the respective subroutines called instead.

Canonicalization 2 Non-variable actual parameters are hoisted to temporaries. Any value passed to a routine could con-
ceivably need augmentation. Furthermore, only variables can be augmented. Consequently, OpenAD hoists all non-variable
actual parameters into temporaries.

In the Fortran context there is also the need to canonicalize certain constructs to support the implementation with a specific
active type.

Canonicalization 3 Common blocks are converted to modules. The purpose of this canonicalization is to ensure proper
initialization of active global variables. The method of conversion is to simply declare the elements of the common block as
module variables. Care must be taken to privatize and declare any symbolic size parameters for elements of the common block.
See table 4.5 for an example.

Because none of the above canonicalizations are intended to produce manually maintainable code we prefer simplicity over
more sophisticated transformations e.g. a module generator which abstracts dimension information shared between common
blocks.

4.2.2 Compiler Front-End Components (from Open64)

The choice of Open64 for some of the programming-language-dependent components ensures some initial robustness of the
tool that is afforded by an industrial-strength compiler. The Center for High Performance Software Research (HiPerSoft) at
Rice University develops Open64 [28] as a multi-platform version of the SGI Pro64/Open64 compiler suite, originally based
on SGI’s commercial MIPSPro compiler.

OpenAD/F uses the parser, an internal representation and the unparser of the Open64 project. The classical compiler
parser mfef90 produces a representation of the Fortran input in a format known as very high level or source level whirl .
The whirl representation can unparsed into Fortran using the tool whirl2f. The source level whirl representation resembles
a typical abstract syntax tree with the addition of machine type deductions. The original design of whirl in particular the
descent to lower levels closer to machine code enables good optimization for high performance computing in Fortran, C, and
C++. HiPerSoft’s main contribution to the Open64 community has been the source level extension to whirl which is geared
towards supporting source-to-source transformations and it has invested significant effort in the whirl2f unparser.

For the purpose of AD, user-supplied hints and required input is typically not directly representable in programming
languages such as Fortran and therefore represented by pragmas. For example, an AD tool must know which variables in the

integer,paramter :: n=10
real :: a,b
common /foo/ a(n),b

module oad_m_foo
private n
integer,paramter :: n=10
real :: a(n),b
end module

(a) (b)

Table 4.5: Converting a common block (a) to a module (b)

vers. hg:34a2b066dd68+:84+ 36 OpenAD/F: User Manual

4.2. Language Dependent Components (OpenADFortTk)

USAGE: in EBNF notation, where ’|’ indicates choice and ’[’
indicates an optional item:

/sandbox/utke/CronTest/OpenAD/Open64/osprey1.0/targ_ia32_ia64_linux/whirl2f/whirl2f [-FLIST:<opts>] [-TARG:<t>] [-TENV:<e>]
[-openad] [-openadType <name>] <inp_files>

<inp_files> ::= [-fB,<Whirl_File_Name>] <File_Name>
<opts> ::= <single_opt>[:<opts>]

We recommend always using the common option -TARG:abi=[32|64].

The <File_Name> is a mandatory command-line argument, which may
denote either a (Fortran) source filename or a WHIRL file.
In the abscense of a -fB option, the <Whirl_File_Name> will be
derived from the <File_Name>
-openad required within the OpenAD tool, see

http://www.mcs.anl.gov/OpenAD .
-openadType <name> unparses a specially named active type <name>; default is ’oadactive’

<name> cannot be longer than 26 characters; requires the -openad flag

Each -FLIST:<single_opt> is described below:

-FLIST:show
Indicate the input/output file-names to stderr.

-FLIST:linelength=<n>
Specifies an upper limit on the number of characters we allow
on each line in the output file. For tab-formatting, a tab
is counted as one character

-FLIST:old_f77
Prevents emission of calls to intrinsic functions that are not
in compilers earlier than version v7.00. The generated source
will include <whirl2f.h>

-FLIST:ansi_format
Format the output according to Fortran 77 rules, with at most
72 columns per line. Without this option, tab formatting is
employed without any limit on the line-length.

-FLIST:src_file=<Src_File_Name>
The name of the original source program. When not given,
the <Src_File_Name> is derived from the <Whirl_File_Name>.

-FLIST:ftn_file=<Ftn_OutFile_Name>
The file into which program units will be emitted. When not
given, <Ftn_OutFile_Name> is derived from <Src_File_Name>.

Figure 4.7: Subset of whirl2f options that are relevant for OpenAD/F.

code for f are independent and which are dependent, see also sec. 2.3. For OpenAD/F we extended the Open64 components
to generate and unparse these pragma nodes represented in whirl. The behavior is similar to many other special-purpose
Fortran pragma systems such as OpenMP [31].

4.2.2.1 Parser

The parser binary can be found in the following file.

$OPEN64ROOT/crayf90/sgi/mfef90

The full set of options can be retrieved with the command line flag -h. The options of interest for the OpenAD/F context
are the following.
The following options are available in the Open64 frontend:
-f: souce format (-ffree or -ffixed)
-z: clean up whirl (required for use with OpenAD/OpenAnalysis)
-F: fortran macro expansion
-N: fixed line size

As indicated above, the flag -z has to be specified. The majority of the other options are not useful in the OpenAD
context. There are however some debugging and tracing options that can be specified with the -u flag.

4.2.2.2 Unparser

The unparser binary can be found in the following file.

$OPEN64ROOT/whirl2f/whirl2f

and the full set of options can be retrieved by invoking it without any arguments. The options of interest in shown in fig. 4.7.
As indicated, the flag -openad has to be specified. The name for the abstract active type that can be supplied with the
-openadType flag must be identical to the name passed to the post processor with the -a flag, see sec. 4.2.4.

OpenAD/F: User Manual 37 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

4.2.3 Translating between whirl and XAIF

Two features of XAIF shape the contours of whirl2xaif (translate whirl to XAIF) and xaif2whirl (translate XAIF to whirl).
Both are located in the following directory.

$OPENADFORTTKROOT/bin/

Invoking the respective component with the -h option displays command-line options. The options of the whirl2xaif and
xaif2whirl component are shown in fig. 4.8 and fig. 4.9, respectively.

Usage: /sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/whirl2xaif [options] <whirl-file>

Given a WHIRL file, translates the ’numerical core’ into XAIF. By default,
output is sent to stdout.

Options:
-h, --help print this help and exit
-n, --noFilter do not filter ud/du chains by current basic block
-N, --noTimeStamp do not print a time stamp into the output
-o, --output <file> send output to <file> instead of stdout

--prefix <pfx> Set the temporary variable prefix to <pfx>. Default
is ’OpenAD_’

-s, --simpleLoop force simple loop property on all loop constructs
-v, --variedOnly do not require active data to also be ’usefull’

--debug [lvl] debug mode at level ‘lvl’

Figure 4.8: Options of whirl2xaif.

Usage: /sandbox/utke/CronTest/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux/bin/xaif2whirl [options] <whirl-file> <xaif-file>

Given a WHIRL file and a *corresponding* XAIF file, generates new WHIRL.
By default, the output is sent to the filename formed by replacing the
extension of <xaif-file> with ’x2w.B’.

Algorithms:
-m, --mode=<mode> forward, reverse. By default, assumes reverse.
--structured-cf Generate structured control-flow
--unstructured-cf Generate unstructured control-flow [Default]
--bb-patching TEMPORARY: use basic-block patch algorithm

Options:
-o, --output <file> send output to <file> instead of default file

--i4 make integers 4 byte where not specified
(default 8 bytes)

--u4 make unsigned integers 4 byte where not specified
(default 8 bytes)

--r4 make reals 4 byte where not specified (default 8 bytes)
-t, --type <name> abstract active type name (default oadactive), no longer

than 26 characters
-V, --version print version information and exit
-v, --validate validate agains schema
-h, --help print this help and exit

--debug [lvl] debug mode at level ‘lvl’

Figure 4.9: Options of xaif2whirl.

Because XAIF represents only the numerical core of a program, a number of whirl statements and expressions are not
translated into XAIFḞor instance, XAIF does not represent dereferences for user-defined types because numerical operations
simply will not involve the user defined type as such but instead always the numerical field that eventually is a member of
the user defined type (hierarchy). Derived type references are therefore scalarized. This consists of converting the derived
type reference into a canonically named scalar variable. To ensure correctness, this scalarization must be undone upon
backtranslating to whirl. The effect can be observed in the generated XAIF for v\%f where the dereference shows up
for example as <xaif:SymbolReference vertex_id="1" scope_id="4" symbol_id="scalarizedref0"\/> and in the XAIF symbol
table we would find scalarizedref0 as a scalar variable with a type that matches that of f. However, variable references
of user defined type can still show up in the XAIF for instance as subroutine parameters. Such references are listed with
an opaque type. Statements in the original code that do not have an explicit representation in the XAIF, such as I/O
statements, take the form of annotated markers that retain their position in the representation during the transformation of
the XAIF. Given the original whirl and the differentiated XAIF (with the scalarized objects, opaque types and annotated
markers intact), xaif2whirl is able generates new whirl representing the differentiated code while restoring the statements
and types not shown in the XAIF.

vers. hg:34a2b066dd68+:84+ 38 OpenAD/F: User Manual

4.2. Language Dependent Components (OpenADFortTk)

Furthermore, XAIF provides a way to represent the results of common compiler analyses. To provide these to the
transformation engine whirl2xaif acts as a driver for the analyses provided by the OpenAnalysis package, see sec. 4.1.1. In
particular it implements the abstract OpenAnalysis interface to the whirl IR. The results returned by OpenAnalysis are then
translated into a form consistent with XAIF.

The companion tool xaif2whirl backtranslates XAIF into whirl. As indicated above it has to take care of restoring filtered
out statements and type information. Because the differentiated XAIF relies on postprocessing, see sec. 4.2.4, its other major
challenge is the creation of whirl that contains the postprocessor directives related to three tasks to be accomplished by the
postprocessor.

• The declaration and use of the active variables;

• The placement of inlinable subroutine calls;

• The demarcation of the various alternative subroutine bodies used in the subroutine template replacements.

4.2.4 Postprocessing

The postprocessor performs the three tasks outlined at the end of sec. 4.2.3. This is done using the following Python script.

$OPENADFORTTK_BASE/tools/SourceProcessing/postProcess.py

Invoking the script with the -h option displays the command-line options shown in fig. 4.10.

Usage: postProcess.py [options] <input_file>

Options:
-h, --help show this help message and exit
-d, --deriv appends %d to deriv types instead of removing

__deriv__
-i INLINE, --inline=INLINE

file with definitions for inlinable routines for
reverse mode post processing (defaults to
ad_inline.f); requires reverse mode (-m r)

-m MODE, --mode=MODE set default options for transformation mode with MODE
being one of: r = reverse; f = forward; (default is
’f’)

-o OUTPUT, --output=OUTPUT
redirect output to file OUTPUT (default output is
stdout); cannot be specified together with --width

-t TEMPLATE, --template=TEMPLATE
file with subroutine template for reverse mode post
processing (defaults to ad_template.f) for subroutines
that do not have a template file specified via the
template pragma; requires reverse mode (-m r)

-v, --verbose verbose output to stdout
--abstractType=ABSTRACTTYPE

change the abstract active type name to be replaced
(see also --concreteType) to ABSTRACTTYPE; defaults
to ’oadactive’)

--concreteType=CONCRETETYPE
replace abstract active string (see also
--abstractType) with concrete active type
CONCRETETYPE; defaults to ’active’

--free <input_file> is in free format
--noCleanup do not remove the output file(s) if an error was

encountered (defaults to False)
--noInline no inlining; overrides the defaults of the reverse

mode settings; (defaults to False)
--width=WIDTH write one compile unit per output file with WIDTH

digits prepended to the extension of <input_file>,
e.g. for -n 2 and three compile units in an input file
named ’a.f’ we create ’a.00.f’, a.01.f’, ’a.02.f’;
also creates a file named ’postProcess.make’ for
reference within a makefile; cannot be specified
together with -o

--whitespace inserts whitespaces between tokens

Figure 4.10: Options of the post processor

4.2.4.1 Use of the Active Type

The simplest postprocessing task is the concretization of the active variable declarations and uses. The main rationale for
postponing the concretization of the active type is flexibility with respect to the actual active type implementation. This is

OpenAD/F: User Manual 39 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

done via the -t flag. Using the text replacement in the postprocessor it is much easier to adapt to a changing active type
implementation than to find find the proper whirl representation and modify xaif2whirl to create it. However, it should be
noted, that the ease of adaptation is clearly correlated to the simplicity and in particular the locality of the transformation.
The advantage disappears with increased complexity of the transformation. For an active variable, for example v, the
representation created by xaif2whirl in whirl and then unparsed to Fortran, shows up by default as TYPE (oadactive)v.4 In
whirl the type remains abstract because the accesses to the conceptual value and derivative components are represented
as function calls __value__(v) and __deriv__(v) respectively. The concretized versions created by the postprocessor for
the current active type implementation, see runTimeSupport/scalar/OAD_active.f90 are by default type(active)v for the
declaration and simply v\%v for the value v\%d for the derivative component respectively and each subroutine will also receive
an additional USE statement which makes the type definition in OAD_active known. The abstract active type name can be
changed with the --abstractType option and the concrete active type name can be changed with the --concreteType option,
respectively.

4.2.4.2 Inlinable Subroutine Calls

The second task, the expansion of inlinable subroutine calls, is more complex because any call expansion has now the scope
of a subroutine body. The calls unparsed from whirl to Fortran are regular subroutine call statements. They are however
preceded by an inline pragma !\$openad inline <name(parameters)> that directs the postprocessor to expand the following
call according to a definition found in an input file5, see also runTimeSupport/simple/ad_inline.f. For example, pushing a
preaccumulated sub-Jacobian value as in fig. 3.9(a) might appear in the code as

C$openad inline push(subst)
CALL push(OpenAD_Symbol_5)

for which we have a definition in ad_inline.f as
subroutine push(x)
C$openad$ inline DECLS

use OpenAD_tape
implicit none
double precision :: x

C$openad$ end DECLS
double_tape(double_tape_pointer)=x
double_tape_pointer=double_tape_pointer+1

end subroutine
The postprocessor ignores the DECLS section and expands this to

double_tape(double_tape_pointer) = OpenAD_Symbol_5
double_tape_pointer = double_tape_pointer+1

Note, that for flexibility any calls with inline directives for which the postprocessor cannot find an inline definition remain
unchanged. For example we may instead compile the above definition for Push and link it instead.

4.2.4.3 Subroutine Templates

The third task, the subroutine template expansion is somewhat related the inlining. In our example above, the tape storage
referred to in the Push need to be defined and in the design the subroutine template is the intended place for these definitions,
in our example achieved through including the use statement in the template code, see fig. 4.12. The main purpose of the
subroutine template expansion however is to orchestrate the call graph reversal. The reversal schemes introduced in sec. 3.4
can be realized by carrying state through the call tree.

The basic building blocks from the transformations in sec. 4.1.3 are variants Si of the body of an original subroutine body
S0, each accomplishing one of the tasks shown as one of the squares with arrows in table 3.1. For instance, the taping variant
is created by the transformation in sec. 4.1.3.8 or the checkpointing by the transformation in sec. 4.1.3.9. To integrate the Si
into a particular reversal scheme, we need to be able to make all subroutine calls in the same fashion as in the original code
and, at the same time, control which task each subroutine call accomplishes. We replace the original subroutine body with
a branch structure in which each branch contains one Si. The execution of each branch is determined by a global control
structure whose members represent the state of execution in the reversal scheme. The branches contain code for pre- and post-
state transitions enclosing the respective Si. This ensures that the transformations producing the Si do not depend on any
particular reversal scheme. The postprocessor inserts the Si into a subroutine template, schematically shown in fig. 4.11(a).
The template is written in Fortran. Each subroutine in the postprocessor Fortran input is transformed according to either
a default subroutine template found in a ad_template.f file or in a file specified in a !\$openad XXX Template <file name>

pragma to be located in the subroutine body. The input Fortran also contains !\$openad begin replacement <i> paired with
pragmas !\$openad end replacement. Each such pair delimits a code variant Si and the postprocessor matched the respective
identifier i (an integer) with the identifier given in the template PLACEHOLDER_PRAGMA.

4See also the -t flag in sec. 4.2.3 to change the name of the abstract active type.
5 specified with command line option -i which defaults to ad_inline.f

vers. hg:34a2b066dd68+:84+ 40 OpenAD/F: User Manual

4.3. Ancillary Tools

(a)
template variables

subroutine variables

setup

state indicates task 2

state indicates task 1

pre state change for task 2

post state change for task 2

wrapup

pre state change for task 1

post state change for task 1

S

S1

2

(b) subroutine template()
use OpenAD_tape ! tape storage
use OpenAD_rev ! state structure

!$TEMPLATE_PRAGMA_DECLARATIONS

if (rev_mode%tape) then
! the state component
! ’taping’ is true
!$PLACEHOLDER_PRAGMA$ id=2

end if

if (rev_mode%adjoint) then
! the state component
! ’adjoint’ run is true
!$PLACEHOLDER_PRAGMA$ id=3

end if

end subroutine template

Figure 4.11: Subroutine template components (a), split-mode Fortran90 template (b)

Split reversal is the simplest static call graph reversal. We first execute the entire computation with the augmented
forward code (S2) and then follow with the adjoint (S3). From the task pattern shown in fig. 3.11 it is apparent that, aside
from the top-level routine, there is no change to the state structure within the call tree. Therefore, there is no need for
state changes within the template. Since no checkpointing is needed either, we have only two tasks: producing the tape
and the adjoint run. fig. 4.11(b) shows a simple split-mode template, see also runTimeSupport/simple/ad_template.split.f.
The state is contained in rev_mode, a static Fortran90 variable, see runTimeSupport/simple/OpenAD_rev.f90 of type modeType

also defined in this module. In order to perform a split-mode reversal for the entire computation, a driver routine calls the
top-level subroutine first in taping mode and then in adjoint mode.

fig. 3.12 illustrates the task pattern for a joint reversal scheme that requires state changes in the template and requires
more code alternatives. fig. 4.12 shows a simplified joint mode template, see also runTimeSupport/simple/ad_template.joint

.f. The state transitions in the template directly relate to the pattern shown in fig. 3.12. Each prestate change applies to
the callees of the current subroutine. Since the argument store (S4) and restore (S6) do not contain any subroutine calls
they do not need state changes. Looking at fig. 3.12, one realizes that the callees of any subroutine executed in plain forward
mode (S1) never store the arguments (only callees of subroutines in taping mode do). This explains lines 18, 25, and 30.
Furthermore, all callees of a routine currently in taping mode are not to be taped but instead run in plain forward mode, as
reflected in lines 27 and 28. Joint mode in particular means that a subroutine called in taping mode (S2) has its adjoint (S3)
executed immediately after S2. This is facilitated by line 33, which makes the condition in line 35 true, and we execute S3

without leaving the subroutine. Any subroutine executed in adjoint mode has its direct callees called in taping mode, which
in turn triggers their respective adjoint run. This is done in lines 37–39. Finally, we have to account for sequence of callees
in a subroutine; that is, when we are done with this subroutine, the next subroutine (in reverse order) needs to be adjoined.
This process is triggered by calling the subroutine in taping mode, as done in lines 41–43. The respective top-level routine
is called by the driver with the state structure having both tape and adjoint set to true.

4.3 Ancillary Tools

We provide a number of helper scripts to manage the OpenAD/F installation.

4.3.1 The openadUpdate and openadStatus Scripts

This section is useful only for OpenAD/F installation made from source code repositories. The binary distribution does not
include the scripts and source tar ball does not include the repository data. To get OpenAD components and update the
revision from the source code repositories it is easiest to use the openadUpdate script which is written in Python [32] and can
be found at

$OPENDADROOT/bin/openadUpdate

It provides the following command line flags.

OpenAD/F: User Manual 41 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

1:subroutine template()
2: use OpenAD_tape
3: use OpenAD_rev
4: use OpenAD_checkpoints
5: !$TEMPLATE_PRAGMA_DECLARATIONS
6: type(modeType) :: orig_mode
7:
8: if (rev_mode%arg_store) then
9: ! store arguments

10: !$PLACEHOLDER_PRAGMA$ id=4
11: end if
12: if (rev_mode%arg_restore) then
13: ! restore arguments
14: !$PLACEHOLDER_PRAGMA$ id=6
15: end if
16: if (rev_mode%plain) then
17: orig_mode=rev_mode
18: rev_mode%arg_store=.FALSE.
19: ! run the original code
20: !$PLACEHOLDER_PRAGMA$ id=1
21: rev_mode=orig_mode
22: end if
23: if (rev_mode%tape) then
24: ! run augmented forward code
25: rev_mode%arg_store=.TRUE.
26: rev_mode%arg_restore=.FALSE.
27: rev_mode%plain=.TRUE.
28: rev_mode%tape=.FALSE.
29: !$PLACEHOLDER_PRAGMA$ id=2
30: rev_mode%arg_store=.FALSE.
31: rev_mode%arg_restore=.FALSE.
32: rev_mode%plain=.FALSE.
33: rev_mode%adjoint=.TRUE.
34: end if
35: if (rev_mode%adjoint) then
36: ! run the adjoint code
37: rev_mode%arg_restore=.TRUE.
38: rev_mode%tape=.TRUE.
39: rev_mode%adjoint=.FALSE.
40: !$PLACEHOLDER_PRAGMA$ id=3
41: rev_mode%plain=.FALSE.
42: rev_mode%tape=.TRUE.
43: rev_mode%adjoint=.FALSE.
44: end if
45:end subroutine template

Figure 4.12: Joint mode Fortran90 template with argument checkpointing

vers. hg:34a2b066dd68+:84+ 42 OpenAD/F: User Manual

4.3. Ancillary Tools

Usage: openadUpdate [options]
get or update OpenAD repositories

Options:
-h, --help show this help message and exit
-e, --extras include repositories for revolve and examples referenced

in the User Manual (requires Mercurial)
-f, --force do all actions, no confirmations (even when repositories

are deleted), implies -k
-i, --interactive requires to confirm each command
-k, --keepGoing keep going despite errors
-t, --tests include repositories for test cases (requires Mercurial)
-v, --verbose extra output
-d, --development only for developers!: adjust updates for Mercurial

development repositories

Typically it will be invoked without any flags. To obtain the examples for this manual one will, however, need the Mercurial
tool [22] and use the -t flag; see also sec. 7.3. The openadUpdate script uses the default locations for the component repositories
given in $OPENADROOT/openad_config.py. A log named openadUpdate.timestamp.log~ will contain output and potential error
messages.

The openadStatus script is primarily for development purposes to obtain an overview of the status of the various reposi-
tories. It can also be used to see if an update from the source repositories is ready. That would be indicated by an I in the
Remote column of openadStatus output such as the following.
local directory |Kind|R/W|Loc.|Rem.|URL
--
../OpenAD | svn| R | | |http://hpc.svn.rice.edu/r/OpenAD
Open64 | svn| R | | |http://hpc.svn.rice.edu/r/open64
OpenADFortTk | svn| R | | |http://hpc.svn.rice.edu/r/OpenADFortTk
OpenAnalysis | svn| R | | |http://hpc.svn.rice.edu/r/open-analysis
xercesc | svn| R | | |http://hpc.svn.rice.edu/r/xercesc
xaifBooster | svn| R | | |http://hpc.svn.rice.edu/r/xaifBooster
xaif | svn| R | | |http://hpc.svn.rice.edu/r/xaif
angel | cvs| R | | |:pserver:anonymous@angellib.cvs.sourceforge.net:/cvsroot/angellib
boost/boost | svn| R | | |http://svn.boost.org/svn/boost
Regression | hg| R | | |http://mercurial.mcs.anl.gov//ad/RegressionOpenAD
OpenADFortTk/Regression | hg| R | | |http://mercurial.mcs.anl.gov//ad/RegressionOpenADFortTk
OpenADFortTk/tools/SourceProcessing/Regression| hg| R | | |http://mercurial.mcs.anl.gov//ad/RegressionSourceProcessing
RevolveF9X | hg| R | | |http://mercurial.mcs.anl.gov//ad/RevolveF9X
Examples | hg| R | | |http://mercurial.mcs.anl.gov//ad/OpenADExamples

The script provides the following command line flags.
Usage: openadStatus [options]

displays OpenAD repository status
Kind: hg, svn or cvs
R/W: R=read-only, W=writeable, L=symbolic link
Local: C=locally changed , U=locally pending updates (hg only)
Remote: O=outgoing changes , I=incoming changes
A ’?’ is shown when the network/server takes too long.

Options:
-h, --help show this help message and exit
-l, --localTag inlcude the local revision tag where applicable (implies

-t)
-q, --quick don’t check for uncommited changes or pending pushes
-t, --tagsOnly only list the repository and a version tag
-v, --verbose extra output
-d, --development only for developers!: consider SourceProcessing as a

separate repository

Unlike openadUpdate, the openadStatus script determines the repository type and URL not based on the defaults in $OPENADROOT

/openad_config.py but instead uses the actual data found in the respective directories.

OpenAD/F: User Manual 43 vers. hg:34a2b066dd68+:84+

CHAPTER 4. COMPONENTS OF OPENAD/F

vers. hg:34a2b066dd68+:84+ 44 OpenAD/F: User Manual

Chapter 5

Application

This applications section intends to augment the explanations given so far. First we use a toy example to show how to embed
the transformed code into a driver. The following sections illustrate practical concerns for real life applications.

5.1 Toy Example

Consider a toy example code fig. 5.1(a) where we already inserted the dependent and independent declarartions, see sec. 4.2.2.
Transformed into a tangent linear model head turns into a subroutine that has active parameters and the calling code, i.e.
the driver, is written to seed (x\%d) and extract (y\%d) the derivatives according to (3.1). A very simple driver for the
tangent-linear model is Due to the simplicity of the example, the adjoint model version does not provide much insight other
than the reversal of seeding (y\%d) and extraction (x\%d)of the derivatives, see fig. 5.3.

5.2 Shallow Water Model

In this section we will use a practical application to highlight advanced aspects arising for more complicated applications.
The model is a time stepping scheme which eventually computes a scalar valued cost function. We generate an adjoint model
to compute the gradient.

5.2.1 Collect and Prepare Source Files

The entire model consists of many subroutines distributed over various source files and the existing build sequence involves
C preprocessing. To perform the static code analysis as explained in sec. 4.1.1 all code that takes part in computation of the
model has to be visible to the tool which means it has to be concatenated into a single file. It is possible to do this for all
source files of the model but in many cases this will include code for ancillary tasks such as diagnostics and data processing
not directly related to the model computation. Often it is better to filter out such ancillary code.

• The static code analysis and subsequently the code transformation has to make conservative assumptions to ensure
correctness, e.g. for alias analysis this means an overestimate of the memory locations that can alias each other. One
of the effects of these potential aliases are additional assignments in the generated code which lead to a less efficient

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

c$openad INDEPENDENT(x)
y=sin(x*x)

c$openad DEPENDENT(y)
end subroutine

SUBROUTINE head(X, Y)
use w2f__types
use OpenAD_active
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y

! function body etc...

END SUBROUTINE
(a) (b)

Figure 5.1: A toy example(a) and the modified signature for the tangent-linear model(b)

45

CHAPTER 5. APPLICATION

program driver
use OpenAD_active
external head
type(active):: x, y
read *, x%v
x%d=1.0
call head(x,y)
write (*,*) "J(1,1)=",y%d

end program driver

prompt> ./a.out
1.0
J(1,1)= 1.0806046117362795

prompt> ./a.out
2.0
J(1,1)= -2.6145744834544478

prompt>

(a) (b)

Figure 5.2: A toy example tangent-linear driver(a) and output(b)

program driver
use OpenAD_active
use OpenAD_rev
external head
type(active):: x, y
read *, x%v
y%d=1.0
our_rev_mode%tape=.TRUE.
our_rev_mode%adjoint=.TRUE.
call head(x,y)
write (*,*) "J(1,1)=",x%d

end program driver

prompt> ./a.out
1.0
J(1,1)= 1.0806046117362795

prompt> ./a.out
2.0
J(1,1)= -2.6145744834544478

prompt>

(a) (b)

Figure 5.3: A toy example adjoint driver(a) and output(b)

adjoint. Including ancillary sources may cause more conservative assumptions to be made and therefore lead to an
unnecessary loss in efficiency.

• While the numerical portions frequently have been tuned and made platform neutral the ancillary portions often are
platform dependent and may contain Fortran constructs that the language dependent components handle improperly
or not at all. While all tools in principle strive for complete language coverage the limited development resources can
often not be spared to cover infrequently used language aspects and rather need to be focused on features that actually
benefit capabilities and efficiency for a wide range of applications.

As for all AD tools in existence today the above concerns also apply to OpenAD/F and users are kindly asked to keep them
in mind when preparing the source code.

sec. 5.1 indicates the need for a modification to the code that drives the model computation to at least preform the seeding
and extraction of the derivatives. The easiest approach to organize the driver is to identify (or create) a top level subroutine
that computes the model with a single call. This routine and all code it requires to compute the model become the contents
of the single file to be processed by the tool chain. The independent and dependent variables should be identified in the top
level routine.

5.2.2 Orchestrate a Reversal and Checkpointing Scheme

Joint and split reversal, see sec. 3.4 are two special cases of a large variety of reversal schemes. The model here involved a
time stepping scheme controlled by a main loop. OpenAD/F supports automatic detection of the data set to be checkpointed
at a subroutine level. To use this feature the loop body is encapsulated into a inner loop subroutine I. To realize a nested
checkpointing scheme we select a number i for the inner checkpoints, divide the original loop bound t by i and encapsulate
the inner loop into an outer loop subroutine O schematically shown in fig. 5.4 which is invoked o times1 Now we can describe
the reversal scheme with the call tree shown in fig. 5.5. The state changes can be encapsulated in four templates, one
joint mode template for top and all its callees except O, one for all callees of I and one each for O and I. The collection of
downloadable test problems contains the model and the four subroutine templates. fig. 5.4(b) shows the cost subroutine
called from I as well as from top. However, according to fig. 5.4 we would need two versions of cost, one that as callee of top
is reversed in joint mode and one as callee of I is reversed in split mode. In order to maintain the static reversal approach2

one needs to duplicate cost.

1 for simplicity disregarding remainders o=t/i.
2 A dynamic reversal scheme is forthcoming.

vers. hg:34a2b066dd68+:84+ 46 OpenAD/F: User Manual

5.3. A Second Order Example

subroutine init

subroutine cost

subroutine top

call init

call cost

do i=1,t

call newState

call cost

end do

call finalCost

end subroutine

subroutine top

call init

call cost

subroutine init

subroutine cost

call newState

call cost

end subroutine

call finalCost

end subroutine

end do

end subroutine

end do

call O

do i=1,o
do i=1,i

subroutine O

call I
subroutine I

(a) (b)

Figure 5.4: Modification of the original code (a) to allow 2 checkpointing levels (b)

adjoin
o

toptop

O O O
o

O

I I I

I I
i

1

1 o

I

O1

I I

I I

1* 1* i* i*

i* i* 1* 1*

in joint model2

all callees except

all callees in split mode

level 1

level 2

all callees in plain mode

Figure 5.5: Checkpointing scheme, the .* indicating .+(o-1)i

5.2.3 File I/O and Simple Loops

The model code uses both the NetCDF library as well as the built in Fortran I/O during the initialization and output
of results. Because in the model computation no intermediate values are written and read during the model computation
there is no loss of dependency information. However, the I/O can lead to problems, for instance when an activated array
is initialized. The prevalent lack of type checking in Fortran may lead to setting the first half of the \%v and \%d values
instead of setting all of the \%v values. This is a well known consequence of the active type implementation. While one could
argue that the code should be generated to avoid reading or writing the derivative information this is not always the actually
desired behavior, in particular not if one reads or writes active intermediate variables. A simple and effective measure to
circumvent this problem is let the initialization remain an external routine in which case OpenAD/F will insert conversion
routines for external subroutine parameters that are active at the call site. It should be noted that this approach does not
work when instead of passing a parameter the external routine refers to active global variables.

Early tests showed a considerable amount of runtime and memory spent on taping array indices used in loops. The simple
loop concept introduced in sec. 4.1.3.7 is designed to eliminate much of this overhead. Not all loops within the given model
code satisfy the conditions so as an additional step throughout the model code we identified the conformant loop constructs
to the tool using the simple loop pragma. The resulting efficiency gain was about a factor 4 in run time and more than a
factor 10 in memory use.

5.2.4 Results

fig. 5.6 shows as an example output a map of sensitivities of zonal volume transport through the Drake Passage to changes
in bottom topography everywhere in a barotropic ocean model computed from the shallow water code by P. Heimbach. The
adjoint model generated with the current version of OpenAD/F applied to the shallow water code achieves a run time that
is only about 8 times that of plain model computation. We expect the ongoing development of OpenAD/F, see also sec. 6 to
yield further efficiency gains.

5.3 A Second Order Example

OpenAD/F: User Manual 47 vers. hg:34a2b066dd68+:84+

CHAPTER 5. APPLICATION

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

Longitude

La
tit

ud
e

res
o
penad

2
.addepth

8
00000.bin.0000000095.2x2.lev1 min/max=0.00101 / 18.6

Figure 5.6: Sensitivity (gradient) map for 2× 2 degree resolution

candidate for removal, unless I get the fix in for the structure stuff

vers. hg:34a2b066dd68+:84+ 48 OpenAD/F: User Manual

Chapter 6

Modifying OpenAD/F

OpenAD/F is an AD tool built on a language independent infrastructure with well-separated components. It allows developers
to focus on various aspects of source-to-source transformation AD, including parsing and unparsing of different programming
languages, data and control flow analysis, and (semantic) transformation algorithms. The components have well defined
interfaces and intermediate stages are retained as either Fortran or XML sources.

OpenAD/F allows users a great amount of flexibility in the use of the code transformation and permits interventions
at various stages of the transformation process. We would like to emphasize the fact that for large scale applications the
efficiency of checkpointing and taping can be improved merely by modifying the implementation of the run time support,
the template and inlining code. They are not conceived to be just static deliverables of OpenAD/F but rather are part of
the interface accessible to the user. It is not the intention to stop with a few prepackaged solutions as one would expect
from a monolithic, black-box tool. True to the nature of an open source design, the interface is instead conceived as a wide
playground for experimentation and improvement. Expanding on the schematic depiction of the tool workings in fig. 1.1
we want to highlight the options to modify the transformation and the tool itself in fig. 6.1 at different levels of complexity
reaching from the casual user to actual coding work in the tool’s components. As part of using OpenAD/F for different
applications we see a growing number of variations to the transformation and run time support implementations available to
the user.

Aside from the plain AD tool aspect the intention of the underlying OpenAD framework is to provide the AD community
with an open, extensible, and easy-to-use platform for research and development that can be applied across programming
languages. Tools that have a closer coupling with a language-specific, internal representation have the potential to make
the exploitation of certain language features easier. Consequently we do not expect OpenAD/F to obsolete existing source
transformation tools such as the differentiation-enabled NAG Fortran 95 compiler, 1 TAF,2 or TAPENADE.3 Rather it is
to complement these tools by providing well-defined APIs to an open internal representation that can be used by a large
number of AD developers. Users of AD technology will benefit from the expected variety of combinations of front-ends and
algorithms that is made possible by OpenAD/F.

As with any software project there is ample room for improvement. The robustness of the tool, in particular the coverage
of some specific language features, often is of concern to first time users. While robustness is not to be disregarded, it is clearly
not a research subject and as such cannot be made the major objective of a development project in an academic setting.
Robustness issues affect mostly the language dependent components and the contributing parties undertake a considerable
effort to address concerns common to many applications. Many issues specific to a particular input code can be addressed
by minor adjustments which often happen to reflect good coding practices anyway. Take for example a change away from
goto - label to a well structured control flow. While we plan to implement code that handles unstructured control flow at
some point, the corresponding adjoint will always be less efficient than the respective structured equivalent and an automatic
transformation to structured control flow is somewhat beyond the scope of an AD tool.

We are concerned with changes that affect many applications and yield improved efficiency of the adjoint code. Currently
the most important items on the development list are the support for vector intrinsics and the handling of allocation/deal-
location cycles during the model computation for the generation of an adjoint model. Because the tool provides a variety of
options to the user we are also working on collecting data for efficiency estimates that permit an informed choice between the
code transformation options. Ongoing research in AD algorithms, in particular dynamic call graph reversal, more efficient
control flow reversal and improved elimination techniques in the computational graphs will be incorporated into OpenAD.

1http://www.nag.co.uk/nagware/research/ad_overview.asp
2http://www.FastOpt.de
3http://tapenade.inria.fr:8080/tapenade/index.jsp

49

http://www.nag.co.uk/nagware/research/ad_overview.asp
http://www.FastOpt.de
http://tapenade.inria.fr:8080/tapenade/index.jsp

CHAPTER 6. MODIFYING OPENAD/F

Open64

Fortran

Fortrancanonicalizer mfef90 whirl2f Fortran postprocessor

whirl

OpenAnalysis whirl2xaif

xaif xaifBooster xaif

xaif2whirl

Fortran

xml schema
Fortran

Fortranwhirl

run time support

compile / link

taping / checkpointing

inline definitions/ template files

Figure 6.1: Levels of complexity for modifications

vers. hg:34a2b066dd68+:84+ 50 OpenAD/F: User Manual

Chapter 7

Miscellaneous

7.1 Changes relative to the ACM TOMS paper

Because of continued development since [39] was finalized we maintain the following list of significant changes.

Renamed files and directories In a number of cases the names and locations of files and tool components turned out to
be inappropriate or misleading. Consequently a number of changes have been introduced to rectify the situation.

• The binaries in test/t under $OPENADROOT/xaifBooster/system and the algorithm directories have been renamed
to driver/oadDriver and the underlying source files from t.cpp to oadDriver.cpp.

• the script to get the components has been renamed from goad to openadUpdate and command line flags have been
added.

Changed command line flags • the replacement for the goad script which is called openadUpdate has command line
flags that were not present for goad. Details can be found in sec. 4.3.

Refactorized Algorithms

7.2 Regression Tests

All regression tests can be added to the OpenAD source tree using the -t flag with the openadUpdate script, see sec. 4.3.1.
The test setups are in the following locations.

• $OPENAD/Regression/which exercises the entire tool chain (requires gnuplot 1)

• $OPENAD/OpenADFortTk/Regression/which exercises the translation between whirl and XAIF, see sec. 4.2.3

• $OPENAD/OpenADFortTk/tools/SourceProcessing/Regression/which exercises the Fortran parser that is used in the pre
and post processing, see sects. 4.2.1,4.2.4

• $OPENAD/Open64/osprey1.0/tests/which is included in the Open64 repository and exercises the Fortran frontend, see
sec. 4.2.2

In each directory is a main driver script called testAll.py. The -h option shows all available options which are self explanatory.
Note that the test sets include test cases that have been included to illustrate certain problems with the tool and not all of
these problems have been fixed. The expected outcome is kept in the respective reference outputs and the latest update is
listed in tables on the OpenAD website. With the -i option the testAll.py script will skip test cases expected to fail and
otherwise prompt for execution. All test sets except for the first one have a simple boolean outcome. Exercising the entire tool
chain permits a consistency check against finite differences. We use a default tolerance to accomodate variations in hardware,
compilers and compiler optimization but for some problems because of cancellations etc the tolerance is exceeded either for
the absolute or relative discrepancy. To facilitate maximal use of the test cases we compare the intermediate stages of the
transformation in the tool chain are kept as references for forward and reverse mode (joint and split) setup. To illustrate the
numerical comparison we use a test called boxmodel that can in the $OPENAD/OpenADFortTk/Regression/invoke like this

./testAll.py boxmodel

1 see http://www.gnuplot.info/

51

http://www.gnuplot.info/

CHAPTER 7. MISCELLANEOUS

boxmodel n=6,m=6

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

absDiscrADDD

 1e-17

 1e-16

 1e-15

absDiscrCvR_AD

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

absDiscrCvR_DD

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

relDiscrADDD

 1e-17

 1e-16

 1e-15

relDiscrCvR_AD

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

relDiscrCvR_DD

Figure 7.1: Example for numerical discrepancy shown for test case boxmodel for forward mode.

Hitting enter on all subsequent prompts will execute the test case with the default settings (forward mode using the ifort

compiler without optimization but extra checking enabled). The numerical discrepancies are shown using gnuplot with output
similar to the the one shown in fig. 7.1.

7.3 Compiling and Contributing to this Manual

The LATEX sources of this manual are kept under mercurial revision control. Details how to download the manual can be
found on the OpenAD/F website under “How to Contribute”. In addition to LATEX(in particular pdflatex) one also needs
dot, fig2dev, and dia for the conversion of figures. The manual’s Makefile requires a source installation of OpenAD/F from
the source code repository with all extra tests and examples using

openadUpdate -et

including the prerequisites to run regression tests, see sec. 7.2. The environment must be setup as described in sec. 2.2. The
manual refers to a set of code examples which are linked from the OpenAD/F installation by the Makefile. It can be
build in one step as follows.

cd OpenADF_Manual/Manual

make

vers. hg:34a2b066dd68+:84+ 52 OpenAD/F: User Manual

Appendix

Makefile the top level Makefile

utils/ utility classes (debugging, generic traversal, etc.)
tools/ code generator supporting XAIF parser
boostWrapper/ wrapper classes for the boost graph library
system/ all basic data structures, XAIF (un)parsing, sec. 4.1.3.1
algorithms/ see the subdirectories below

CodeReplacement support library for subroutine templates
CrossCountryInterface support library for elimination strategies, sec. 4.1.3.4
DerivativePropagator support library for Jacobian vector products
InlinableXMLRepresentation support library for inlinable subroutine calls
Linearization Linearization transformation, sec. 4.1.3.3
BasicBlockPreaccumulation elimination with angel and

preaccumulation at the basicblock level, sec. 4.1.3.4
MemOpsTradeoffPreaccumulation as above but with different heuristics than angel
ControlFlowReversal control flow graph reversal
BasicBlockPreaccumulationReverse adjoint code
BasicBlockPreaccumulationTape taping code supporting adjoint, sec. 4.1.3.8
BasicBlockPreaccumulationTapeAdjoint reverse sweep portion supporting adjoint,sec. 4.1.3.8

Table 7.1: Directory structure in xaifBooster

53

CHAPTER 7. MISCELLANEOUS

vers. hg:34a2b066dd68+:84+ 54 OpenAD/F: User Manual

Bibliography

[1] AD Nested Graph Elimination Library (angel). http://angellib.sourceforge.net.

[2] AD02 (part of the Harwell Subroutine Library). ftp://ftp.numerical.rl.ac.uk/pub/oldhsl/hsl2002.pdf.

[3] ADIC. http://www.mcs.anl.gov/adicserver.

[4] Adjoint Compiler Technology & Standards (ACTS). http://www.autodiff.org/ACTS.

[5] ADOL-C. http://www.math.tu-dresden.de/~adol-c/.

[6] A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

[7] Andreas Albrecht, Peter Gottschling, and Uwe Naumann. Markowitz-type heuristics for computing Jacobian matrices
efficiently. In Computational Science – ICCS 2003, volume 2658 of LNCS, pages 575–584. Springer, 2003.

[8] Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors. Computational Differentiation: Tech-
niques, Applications and Tools, Philadelphia, PA, 1996. SIAM.

[9] Christian H. Bischof, H. Martin Bücker, Paul D. Hovland, Uwe Naumann, and Jean Utke, editors. Advances in Automatic
Differentiation, volume 64 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, 2008.

[10] Boost. http://www.boost.org.

[11] H. Martin Bücker, George F. Corliss, Paul D. Hovland, Uwe Naumann, and Boyana Norris, editors. Automatic Dif-
ferentiation: Applications, Theory, and Implementations, volume 50 of Lecture Notes in Computational Science and
Engineering. Springer, New York, NY, 2005.

[12] George Corliss, Christèle Faure, Andreas Griewank, Laurent Hascoët, and Uwe Naumann, editors. Automatic Differ-
entiation of Algorithms: From Simulation to Optimization, Computer and Information Science, New York, NY, 2002.
Springer.

[13] Edison Design Group (EDG). http://www.edg.com.

[14] Extensible Markup Language (XML). http://www.w3.org/XML.

[15] GNU C++ Standard Library. http://gcc.gnu.org/libstdc++.

[16] Andreas Griewank and George F. Corliss, editors. Automatic Differentiation of Algorithms: Theory, Implementation,
and Application. SIAM, Philadelphia, PA, 1991.

[17] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the Markowitz rule. In Griewank and
Corliss [16], pages 126–135.

[18] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA, 2nd edition, 2008.

[19] Laurent Hascoët, Uwe Naumann, and Valérie Pascual. “To be recorded” analysis in reverse-mode automatic differenti-
ation. Future Generation Computer Systems, 21(8):1401–1417, 2005.

[20] P. Hovland and B. Norris. Users’ guide to ADIC 1.1. Technical Memorandum ANL/MCS-TM-225, Mathematical and
Computer Science Division, Argonne National Laboratory, 2001.

55

http://angellib.sourceforge.net
ftp://ftp.numerical.rl.ac.uk/pub/oldhsl/hsl2002.pdf
http://www.mcs.anl.gov/adicserver
http://www.autodiff.org/ACTS
http://www.math.tu-dresden.de/~adol-c/
http://www.boost.org
http://www.edg.com
http://www.w3.org/XML
http://gcc.gnu.org/libstdc++

BIBLIOGRAPHY

[21] Paul D. Hovland, Uwe Naumann, and Boyana Norris. An XML-based platform for semantic transformation of numerical
programs. In M. Hamza, editor, Software Engineering and Applications, pages 530–538, Anaheim, CA, 2002. ACTA
Press.

[22] Mercurial. http://www.selenic.com/mercurial/.

[23] Uwe Naumann. Elimination techniques for cheap Jacobians. In Corliss et al. [12], chapter 29, pages 247–253.

[24] Uwe Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the dual computational graph.
Mathematical Programming, Ser. A, 99(3):399–421, 2004.

[25] Uwe Naumann and Peter Gottschling. Simulated annealing for optimal pivot selection in Jacobian accumulation. In
A. Albrecht and K. Steinhöfel, editors, Stochastic Algorithms: Foundations and Applications, volume 2827 of Lecture
Notes in Computer Science, pages 83–97. Springer, 2003.

[26] Uwe Naumann and Jean Utke. Source templates for the automatic generation of adjoint code through static call graph
reversal. In V. Sunderam, G. van Albada, P. Sloot, and J. Dongarra, editors, Computational Science - ICCS 2005,
Proceedings of the International Conference on Computational Science, Atlanta, GA, USA, May 22-25, 2005, Part I,
volume 3514 of Lecture Notes in Computer Science, pages 338–346, Berlin, 2005. Springer. also as ANL preprint
ANL/MCS-P1226-0205.

[27] Network Enhance Optimization Server (NEOS). http://www-neos.mcs.anl.gov/.

[28] Open64. http://www.hipersoft.rice.edu/open64.

[29] OpenAD. http://www.mcs.anl.gov/OpenAD.

[30] OpenAnalysis. http://www-unix.mcs.anl.gov/OpenAnalysisWiki/moin.cgi.

[31] OpenMP. http://www.openmp.org.

[32] Python. http://www.python.org/.

[33] Rapsodia. http://www.mcs.anl.gov/Rapsodia/.

[34] ROSE. http://www.llnl.gov/CASC/rose/.

[35] Jean Utke. Flattening basic blocks. In Bücker et al. [11], pages 121–133.

[36] Jean Utke, Andrew Lyons, and Uwe Naumann. Efficient reversal of the interprocedural flow of control in adjoint
computations. Journal of Systems and Software, 79:1280–1294, 2006.

[37] Jean Utke and Uwe Naumann. Software technological issues in automating the semantic transformation of numerical pro-
grams. In M. Hamza, editor, Software Engineering and Applications, Proceedings of the Seventh IASTED International
Conference, pages 417–422. ACTA Press, 2003.

[38] Jean Utke and Uwe Naumann. Separating language dependent and independent tasks for the semantic transformation of
numerical programs. In M. Hamza, editor, Software Engineering and Applications (SEA 2004), pages 552–558, Anaheim,
Calgary, Zurich, 2004. ACTA Press.

[39] Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout, Patrick Heimbach, Chris Hill, and Carl
Wunsch. OpenAD/F: A modular, open-source tool for automatic differentiation of Fortran codes. ACM Transactions
on Mathematical Software, 34(4), 2008.

[40] XAIF. http://www.mcs.anl.gov/xaif.

[41] Xerces C++ XML parser. http://xml.apache.org/xerces-c.

vers. hg:34a2b066dd68+:84+ 56 OpenAD/F: User Manual

http://www.selenic.com/mercurial/
http://www-neos.mcs.anl.gov/
http://www.hipersoft.rice.edu/open64
http://www.mcs.anl.gov/OpenAD
http://www-unix.mcs.anl.gov/OpenAnalysisWiki/moin.cgi
http://www.openmp.org
http://www.python.org/
http://www.mcs.anl.gov/Rapsodia/
http://www.llnl.gov/CASC/rose/
http://www.mcs.anl.gov/xaif
http://xml.apache.org/xerces-c

	Contents
	1 Introduction
	1.1 Motivation for the OpenAD/F Design
	1.2 Overview
	1.3 A One-Minute Example
	1.3.1 Forward Mode
	1.3.2 Reverse Mode

	1.4 Deciding on OpenAD/F Usage Patterns
	1.4.1 When is AD via source transformation appropriate?
	1.4.2 When should the source code be split?
	1.4.3 When Should One Use Reverse Mode Instead of Forward Mode?
	1.4.4 When Should One Use Checkpointing?
	1.4.5 When should make rules be used instead of the openad script?

	2 Usage Details
	2.1 Download and Build
	2.2 OpenAD/F Environment
	2.3 Code Preparation with Pragmas
	2.4 Running the tool chain with the openad script
	2.5 Explicitly invoking the tool chain elements
	2.5.1 Forward Mode
	2.5.2 Reverse Mode

	2.6 Compiling and Linking
	2.6.1 Runtime Support Files
	2.6.1.1 Front-End Definitions
	2.6.1.2 Active Type
	2.6.1.2.1 Scalar
	2.6.1.2.2 Vector

	2.6.1.3 Taping
	2.6.1.4 Reversal State
	2.6.1.5 Checkpointing
	2.6.1.6 PostProcessor - Inlining
	2.6.1.7 PostProcessor - Templates
	2.6.1.8 Trace

	3 AD Concepts
	3.1 Computational Graphs
	3.2 Elimination Methods
	3.3 Control Flow Reversal
	3.4 Call Graph Reversal

	4 Components of OpenAD/F
	4.1 Language Independent Components (OpenAD)
	4.1.1 Static Code Analyses (OpenAnalysis)
	4.1.2 Representing the Numerical Core (XAIF)
	4.1.3 Transforming the Numerical Core (xaifBooster)
	4.1.3.1 Reading and Writing XAIF
	4.1.3.2 Type Change
	4.1.3.3 Linearization
	4.1.3.4 Basic Block Preaccumulation
	4.1.3.5 Memory/Operations Tradeoff
	4.1.3.6 Using the ANGEL Library
	4.1.3.7 CFG Reversal
	4.1.3.8 Writing and Consuming the Tape
	4.1.3.9 Basic Block Preaccumulation Reverse

	4.2 Language Dependent Components (OpenADFortTk)
	4.2.1 Canonicalization
	4.2.2 Compiler Front-End Components (from Open64)
	4.2.2.1 Parser
	4.2.2.2 Unparser

	4.2.3 Translating between whirl and XAIF
	4.2.4 Postprocessing
	4.2.4.1 Use of the Active Type
	4.2.4.2 Inlinable Subroutine Calls
	4.2.4.3 Subroutine Templates

	4.3 Ancillary Tools
	4.3.1 The openadUpdate and openadStatus Scripts

	5 Application
	5.1 Toy Example
	5.2 Shallow Water Model
	5.2.1 Collect and Prepare Source Files
	5.2.2 Orchestrate a Reversal and Checkpointing Scheme
	5.2.3 File I/O and Simple Loops
	5.2.4 Results

	5.3 A Second Order Example

	6 Modifying OpenAD/F
	7 Miscellaneous
	7.1 Changes relative to the ACM TOMS paper
	7.2 Regression Tests
	7.3 Compiling and Contributing to this Manual

