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Context

Given program for y = F(x) : R” — R™

Want a program FT(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F'(x)%%, ..., F'(x)xP
or a collection of p Jacobian-transpose-vector products

F'(x)T§' F/(x)T¥%, ..., F'(x)Ty"

As needed in Newton Krylov methods, etc.



Evaluation Procedures

‘y1:X1*X1*X2, y2:Sin(X1>l<X1*X2) ‘

V-1 = X1
Vo = X2

V1 = V-1*Vg

Vo V-1*V1

vy = Votl

vq = sin(vy)

yi= Vs
Yo = Vyu



Evaluation Procedures and Computational Graphs

‘y1:X1*X1*X2, y2:sin(xl>r<x1*x2) ‘

+1 sin() V-1 =X
Vo = X2

V1 = V-1*Vg

Vo = V-1*Vq

vy = Votl

vq = sin(vy)

yi= Vs
Yo = Vyu



Computational Graphs and Linearization

‘y1:X1*X1*X2, y2:Sin(X1>l<X1*X2) ‘

VA

€32

sin()W

V-1 = X1
Vo = X2

V1 = V-1*Vg
Ci-1 = Vo
Cilo = V1

Vo = V-1*Vq
Cr-1 = V1
Co1 = V-1

V3 = V2+1
C3p = 1

vy = sin(vy)
Cap = cos(vy)

yi= Vs
Yo = Vyu
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Forward Propagation of Vectors

Associate a derivative vector v; € RP with each variable v;,

propagate through G by

\'Ij = E Cj,'\'li (BLAS level 1 axpy operation)
i<

Generated propagation code:
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Forward Propagation of Vectors

Vi = Ci-1 * V-1
Vi += Cy0 * Vg
Vo = Co-1 * V-
Vo += Cp1 * Vi

V3 = C3p * Vo = Vp




Forward Propagation of Vectors

Vo1 = Xq

\./0 = ).(2

Vi = Ci1-1 ¥ Vo1

Vi += Cio * Vo

Vy = Cp-1 ¥ Vog

Vy t= Cp1 ¥ V3

V3 = C3pp * Vo =V
V4 = Ca2 ¥ V3



Forward Propagation of Vectors
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5p mults

V4 = Ca2 ¥ V3

Y1 = V3




Reverse Vector Propagation

Propagates vectors y!,. .., yP backwards

Works symmetrically
(same mult. cost, possibly different number of adds)

Yields Jacobian-transpose-vector products

F)T8, F ()T, . F ()T
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Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F'(x)

ovy:
Y-y 1w

pepl (kOeP

applies transformations G — G’
Afterwards, Baur's formula still expresses the entries of J (we can
still propagate vectors through it)

Complete preaccumulation results in a bipartite graph, whose
edges correspond to the nonzero entries of F'(x)

(In general, complete preaccumulation with minimal ops (OJA) is
NP-hard)



Baur's Formula

F(x) = [

|

Y ]«

PE'P){J.' (k,Z)EP

C2-1C32 + C1-1C21C32  C10C21C32
C2-1C42 + C1-1C21C42  C10C21C42

Co-1 + C1-1C21 C10C21
C2-1C42 + C1-1C21C42  C10C21C42



Front Edge Elimination




Front Edge Elimination

Generated preaccumulation code:

Cji * Ckj

Cji * Cij




Back Edge Elimination




Back Edge Elimination




W W (Code for F, linearization)

32 Ch2

Ci11 C10



Preaccumulation

V v (Code for F, linearization)

C32 Ca2

Co-1 = C1-1 * C21

e Cop = C10 * C21

&0



W W (Code for F, linearization)

32 Ch2

Ci-1 C21
C10 Co1



Preaccumulation

(Code for F, linearization)

Co-1 = C1-1 * Co21
Cop = C10 * Co1

C3-1 = Co-1 * C32
Ca-1 = Co-1 * Csg2




(Code for F, linearization)

Ci-1 C21
C10 Co1
* C32

Ca2



Preaccumulation

(Code for F, linearization)

Co-1 = C1-1 * Co21
Cop = C10 * Co1
C3-1 = Co-1 * C32
Ca-1 = Co-1 * Csg2
C3p = Cop * C32
Cap = Cop * Ca2




(Code for F, linearization)

Ci-1 C21
C10 C21
* C32
Ca2
* C32
Cq2




(Code for F, linearization)

Ci-1 C21
C10 Co1
* C32
4 mults
Ca2
* C32

Cq2

\./'3 = * \'/'_1
V3 += * Vo
4p mults

\./'4 = * \'/'_1
vy += * Vo
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VA V4

C32 (o)) (Code for F, linearization)
Ci1- C
-1 22 mults
€10 C21
\./'2 = * \'/'_1
vy += * Vo
3p mults

V3 = C32 * Vp = V3

Vg = Cq2 * V2



Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications
Complete Preaccumulation + Propagation: 4 4+ 4p multiplications
Partial Preaccumulation + Propagation: 2 + 3p multiplications

=- Assume p is large, so ignore preaccumulation cost and focus on
propagation cost.
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Jacobian Scarsity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarsity (Griewank)

Scarsity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don't increase the number of nonunit

edges are said to be scarsity preserving.

= Exploiting Scarsity: finding minimal representation of G(F'(x))



Edge Prerouting




Edge Prerouting

Cj,'

Cyj

Cyrj

= Cki/Cyj

+= t

= cy * t
—-= Cyprj * t




Edge Normalization Forward

&%



Edge Normalization Forward

Do B

Cij /= Cki Cek *= Cgi
Cij /= Cki Crrk *= Ckj
cui = 1










Example

/

» Postroute (-2, 2)

Vi Vi
(X7 i,
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Example

» Postroute (-2, 2)
> (1,2)
» Preroute (2,3)




Example

» Postroute (-2, 2)
> (1 2)

» Prerou te

N

(2 1)



Example

Postroute (-2,2)
(1,2)
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(2,1)
Normalize (-2,1)
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Example

Postroute (-2,2)
(1,2)
Preroute (2, 3)
(2,1)

Normalize (-2,1)
Normalize (2, 4)
= 8 nonunit edges
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Scarsity in Practice




Edge Prerouting




Observations: Vertex vs. Edge Elimination

Vertex elimination is not fine-grained enough to get the minimal
representation

= Use edge elimination
(or perhaps face elimination is necessary. . .?)



Observations: Monotonicity

Pure edge elimination: we don't have monotonicity
(the count may have to go up before going down)

= Perform complete edge elimination sequence,
only generate code up to minimal count reached



Observations: Termination
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we include reroutings and normalizations.
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The Heuristic: Concerns

Prefer (no divisions). Otherwise...

Reroutings:

Can reduce iff increment edge is present and nonunit
= In this case, there must be an that reduces count

Pair with subsequent for overall edge count reduction
Combine with restriction that no particular rerouting can be re-performed
= ensures termination



The Heuristic: Concerns

Prefer (no divisions). Otherwise...

Reroutings:

Can reduce iff increment edge is present and nonunit
= In this case, there must be an that reduces count

Pair with subsequent for overall edge count reduction
Combine with restriction that no particular rerouting can be re-performed
= ensures termination

Normalizations:

Can't lead to subsequent transformations that reduce count
= perform as post-processing step, once per intermediate vertex
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“No free refill” conjecture (Naumann): There is an optimal
edge elimination sequence (ops) that produces no refill
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The Heuristic: Refill Awareness

Refill: , then subsequently re-creating it as fill

“No free refill” conjecture (Naumann): There is an optimal
edge elimination sequence (ops) that produces no refill

Check whether e can be refilled: Is there an alternative path from
the source to the target?
Check in context of reroutings: Not entirely clear.

Idea: If our heuristic creates refill, rerun the heuristic with this
extra information



The Heuristic

input : Linearized computational graph G

output: A sequence of transformations for turning G into the remainder
graph G’

while new refill information do

while 3 possible transformations do

if 3 that reduces count then

else if 4 -reroute that reduces count then
Prefer bigger reduction;
tiebreak (reverse);

else

end

end

end

Find minimal point
Perform normalizations




Choosing an Edge Elimination




Results

Generally: Reroutings don't help much, few performed

280 T T T T T T T
270 i
260
250
240
230
220
210
200
190
180

26 reroutings performed
Normalization: 8 intermediates with no incident unit edge



Results

Just for kicks: Allowing reroutings that can't be followed by an
that reduces nonunit edge count

450 T T T T T T T T T
400
350
300
250
200

150 ' | L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Performs 768 reroutings
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Future Work

» Run-time check for divisions, with “safe” sequence as
alternative
» Complexity issues
» Minimum Jacobian representation by edge elimination?
» What about when we include reroutings and normalizations?
» Better heuristics

» Randomized heuristic (like simulated annealing)
>



Scarsity «<» Optimal Jacobian Accumulation




Scarsity «<» Optimal Jacobian Accumulation

N M AN

— Combined cost metric:

followed by forward vertex elim.

— Results for OJA apply (modulo the fact that p tends to infinity)
— Implication: divisions are useful for OJA (or not? face elim.?)



Exploiting Scarsity with Face Elimination




Exploiting Scarsity with Face Elimination
%2\()/(:3/V
C1-1 \1Q
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Exploiting Scarsity with Face Elimination
S T
C1—1|*C21

A/@\A Kﬁ%

e||m face
C1 1, C21
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Vote Timel

“Scarsity”

or

“Scarcity”

?



Thanks!

Questions?
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