On the Practical Exploitation of Scarsity

Andrew Lyons! Jean Utkel:?

LUniversity of Chicago

2Argonne National Laboratory

The 5th International Conference on Automatic Differentiation
(AD 2008)
August 14, 2008

Outline

Introduction and Motivation
Linearization
Vector Propagation
Preaccumulation

Context

Given program for y = F(x) : R” — R™

Context

Given program for y = F(x) : R” — R™

Want a program FT(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F'(x)%%, ..., F'(x)xP

Context

Given program for y = F(x) : R” — R™

Want a program FT(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F'(x)%%, ..., F'(x)xP
or a collection of p Jacobian-transpose-vector products

F'(x)T§' F/(x)T¥%, ..., F'(x)Ty"

Context

Given program for y = F(x) : R” — R™

Want a program FT(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F'(x)%%, ..., F'(x)xP
or a collection of p Jacobian-transpose-vector products

F'(x)T§' F/(x)T¥%, ..., F'(x)Ty"

As needed in Newton Krylov methods, etc.

Evaluation Procedures

‘y1:X1*X1*X2, y2:Sin(X1>l<X1*X2) ‘

V-1 = X1
Vo = X2

V1 = V-1*Vg

Vo V-1*V1

vy = Votl

vq = sin(vy)

yi= Vs
Yo = Vyu

Evaluation Procedures and Computational Graphs

‘y1:X1*X1*X2, y2:sin(xl>r<x1*x2) ‘

+1 sin() V-1 =X
Vo = X2

V1 = V-1*Vg

Vo = V-1*Vq

vy = Votl

vq = sin(vy)

yi= Vs
Yo = Vyu

Computational Graphs and Linearization

‘y1:X1*X1*X2, y2:Sin(X1>l<X1*X2) ‘

VA

€32

sin()W

V-1 = X1
Vo = X2

V1 = V-1*Vg
Ci-1 = Vo
Cilo = V1

Vo = V-1*Vq
Cr-1 = V1
Co1 = V-1

V3 = V2+1
C3p = 1

vy = sin(vy)
Cap = cos(vy)

yi= Vs
Yo = Vyu

Forward Propagation of Vectors

Associate a derivative vector v; € RP with each variable v;,

propagate through G by

\'Ij = E Cj,'\'li (BLAS level 1 axpy operation)
i<

Forward Propagation of Vectors

Associate a derivative vector v; € RP with each variable v;,

propagate through G by

\'Ij = E Cj,'\'li (BLAS level 1 axpy operation)
i<

Generated propagation code:

Forward Propagation of Vectors

Forward Propagation of Vectors

Vi = C1-1 * Vg
Vi += Cy0 * Vg

Forward Propagation of Vectors

Vi = Ci-1 * V-1
Vi += Cy0 * Vg
Vo = Co-1 * V-
Vo += Cp1 * Vi

Forward Propagation of Vectors

Vi = Ci-1 * V-1
Vi += Cy0 * Vg
Vo = Co-1 * V-
Vo += Cp1 * Vi

V3 = C3p * Vo = Vp

Forward Propagation of Vectors

Vo1 = Xq

\./0 =).(2

Vi = Ci1-1 ¥ Vo1

Vi += Cio * Vo

Vy = Cp-1 ¥ Vog

Vy t= Cp1 ¥ V3

V3 = C3pp * Vo =V
V4 = Ca2 ¥ V3

Forward Propagation of Vectors

Vo
W
Vo
2

<
N
]
O
it
-
x ¥ x ¥

5p mults

V4 = Ca2 ¥ V3

Y1 = V3

Reverse Vector Propagation

Propagates vectors y!,. .., yP backwards

Works symmetrically
(same mult. cost, possibly different number of adds)

Yields Jacobian-transpose-vector products

F)T8, F ()T, . F ()T

Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F'(x)

ovy:
Y-y 1w

pepl (kOeP

Preaccumulation
Cost is proportional to the number of nonunit edges = transform

the graph!

Baur's formula (from chain rule) yields the entries of F'(x)

ovy:
Y-y 1w

pepl (kOeP

applies transformations G — G’
Afterwards, Baur's formula still expresses the entries of J (we can
still propagate vectors through it)

Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F'(x)

ovy:
Y-y 1w

pepl (kOeP

applies transformations G — G’
Afterwards, Baur's formula still expresses the entries of J (we can
still propagate vectors through it)

Complete preaccumulation results in a bipartite graph, whose
edges correspond to the nonzero entries of F'(x)

(In general, complete preaccumulation with minimal ops (OJA) is
NP-hard)

Baur's Formula

F(x) = [

|

Y]«

PE'P){J.' (k,Z)EP

C2-1C32 + C1-1C21C32 C10C21C32
C2-1C42 + C1-1C21C42 C10C21C42

Co-1 + C1-1C21 C10C21
C2-1C42 + C1-1C21C42 C10C21C42

Front Edge Elimination

Front Edge Elimination

Generated preaccumulation code:

Cji * Ckj

Cji * Cij

Back Edge Elimination

Back Edge Elimination

W W (Code for F, linearization)

32 Ch2

Ci11 C10

Preaccumulation

V v (Code for F, linearization)

C32 Ca2

Co-1 = C1-1 * C21

e Cop = C10 * C21

&0

W W (Code for F, linearization)

32 Ch2

Ci-1 C21
C10 Co1

Preaccumulation

(Code for F, linearization)

Co-1 = C1-1 * Co21
Cop = C10 * Co1

C3-1 = Co-1 * C32
Ca-1 = Co-1 * Csg2

(Code for F, linearization)

Ci-1 C21
C10 Co1
* C32

Ca2

Preaccumulation

(Code for F, linearization)

Co-1 = C1-1 * Co21
Cop = C10 * Co1
C3-1 = Co-1 * C32
Ca-1 = Co-1 * Csg2
C3p = Cop * C32
Cap = Cop * Ca2

(Code for F, linearization)

Ci-1 C21
C10 C21
* C32
Ca2
* C32
Cq2

(Code for F, linearization)

Ci-1 C21
C10 Co1
* C32
4 mults
Ca2
* C32

Cq2

\./'3 = * \'/'_1
V3 += * Vo
4p mults

\./'4 = * \'/'_1
vy += * Vo

Costs

Fixed costs: Evaluation of F and linearization

Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications

Complete Preaccumulation + Propagation: 4 4+ 4p multiplications

VA V4

C32 (o)) (Code for F, linearization)
Ci1- C
-1 22 mults
€10 C21
\./'2 = * \'/'_1
vy += * Vo
3p mults

V3 = C32 * Vp = V3

Vg = Cq2 * V2

Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications
Complete Preaccumulation + Propagation: 4 4+ 4p multiplications
Partial Preaccumulation + Propagation: 2 + 3p multiplications

=- Assume p is large, so ignore preaccumulation cost and focus on
propagation cost.

Outline

Jacobian Scarsity
Structural Properties of Jacobians
Rerouting and Normalization

Jacobian Scarsity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarsity (Griewank)

Jacobian Scarsity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarsity (Griewank)

Scarsity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don't increase the number of nonunit
edges are said to be scarsity preserving.

Jacobian Scarsity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarsity (Griewank)

Scarsity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don't increase the number of nonunit

edges are said to be scarsity preserving.

= Exploiting Scarsity: finding minimal representation of G(F'(x))

Edge Prerouting

Edge Prerouting

Cj,'

Cyj

Cyrj

= Cki/Cyj

+= t

= cy * t
—-= Cyprj * t

Edge Normalization Forward

&%

Edge Normalization Forward

Do B

Cij /= Cki Cek *= Cgi
Cij /= Cki Crrk *= Ckj
cui = 1

Example

/

» Postroute (-2, 2)

Vi Vi
(X7 i,
0"6

/\ A\

Example

» Postroute (-2, 2)
> (1,2)
» Preroute (2,3)

Example

» Postroute (-2, 2)
> (1 2)

» Prerou te

N

(2 1)

Example

Postroute (-2,2)
(1,2)
Preroute (2, 3)
(2,1)
Normalize (-2,1)

Example

Postroute (-2,2)
(1,2)
Preroute (2, 3)
(2,1)
Normalize (-2,1)
Normalize (2, 4)

Example

Postroute (-2,2)
(1,2)
Preroute (2, 3)
(2,1)

Normalize (-2,1)
Normalize (2, 4)
= 8 nonunit edges

Outline

Practical Exploitation of Scarsity
Observations on the Problem
The Heuristic
Results

Scarsity in Practice

Edge Prerouting

Observations: Vertex vs. Edge Elimination

Vertex elimination is not fine-grained enough to get the minimal
representation

= Use edge elimination
(or perhaps face elimination is necessary. . .?)

Observations: Monotonicity

Pure edge elimination: we don't have monotonicity
(the count may have to go up before going down)

= Perform complete edge elimination sequence,
only generate code up to minimal count reached

Observations: Termination

Guaranteed for pure edge elimination. This is not the case when
we include reroutings and normalizations.

Observations: Termination

Guaranteed for pure edge elimination. This is not the case when
we include reroutings and normalizations.

The Heuristic: Concerns

Prefer edge eliminations (no divisions). Otherwise...

The Heuristic: Concerns

Prefer edge eliminations (no divisions). Otherwise...

The Heuristic: Concerns

Prefer (no divisions). Otherwise...

Reroutings:

Can reduce iff increment edge is present and nonunit
= In this case, there must be an that reduces count

Pair with subsequent for overall edge count reduction
Combine with restriction that no particular rerouting can be re-performed
= ensures termination

The Heuristic: Concerns

Prefer (no divisions). Otherwise...

Reroutings:

Can reduce iff increment edge is present and nonunit
= In this case, there must be an that reduces count

Pair with subsequent for overall edge count reduction
Combine with restriction that no particular rerouting can be re-performed
= ensures termination

Normalizations:

Can't lead to subsequent transformations that reduce count
= perform as post-processing step, once per intermediate vertex

The Heuristic: Refill Awareness

Refill: , then subsequently re-creating it as fill

“No free refill” conjecture (Naumann): There is an optimal
edge elimination sequence (ops) that produces no refill

The Heuristic: Refill Awareness

Refill: , then subsequently re-creating it as fill

“No free refill” conjecture (Naumann): There is an optimal
edge elimination sequence (ops) that produces no refill

Check whether e can be refilled: Is there an alternative path from

the source to the target?
Check in context of reroutings: Not entirely clear.

The Heuristic: Refill Awareness

Refill: , then subsequently re-creating it as fill

“No free refill” conjecture (Naumann): There is an optimal
edge elimination sequence (ops) that produces no refill

Check whether e can be refilled: Is there an alternative path from
the source to the target?
Check in context of reroutings: Not entirely clear.

Idea: If our heuristic creates refill, rerun the heuristic with this
extra information

The Heuristic

input : Linearized computational graph G

output: A sequence of transformations for turning G into the remainder
graph G’

while new refill information do

while 3 possible transformations do

if 3 that reduces count then

else if 4 -reroute that reduces count then
Prefer bigger reduction;
tiebreak (reverse);

else

end

end

end

Find minimal point
Perform normalizations

Choosing an Edge Elimination

Results

Generally: Reroutings don't help much, few performed

280 T T T T T T T
270 i
260
250
240
230
220
210
200
190
180

26 reroutings performed
Normalization: 8 intermediates with no incident unit edge

Results

Just for kicks: Allowing reroutings that can't be followed by an
that reduces nonunit edge count

450 T T T T T T T T T
400
350
300
250
200

150 ' | L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Performs 768 reroutings

Outline

Future Work
Connections to Optimal Jacobian Accumulation
Leveraging Face Elimination

Future Work

» Run-time check for divisions, with “safe” sequence as
alternative
» Complexity issues
» Minimum Jacobian representation by edge elimination?
» What about when we include reroutings and normalizations?
» Better heuristics

» Randomized heuristic (like simulated annealing)
>

Scarsity «<» Optimal Jacobian Accumulation

Scarsity «<» Optimal Jacobian Accumulation

N M AN

— Combined cost metric:

followed by forward vertex elim.

— Results for OJA apply (modulo the fact that p tends to infinity)
— Implication: divisions are useful for OJA (or not? face elim.?)

Exploiting Scarsity with Face Elimination

Exploiting Scarsity with Face Elimination
%2\()/(:3/V
C1-1 \1Q

c ca1 elim. face c ca1
21 (c1-1, 1) 21
» Cl-1*C21

1C1-1 C10 1 C1-1 C10 1

|
<

X

Exploiting Scarsity with Face Elimination
S T
C1—1|*C21

A/@\A Kﬁ%

e||m face
C1 1, C21

» Cl-1*C21

v

|
<

o—«
Q—»
.—>

H><

Co1 a3

C1-1 CIOI

p—

Vote Timel

“Scarsity”

or

“Scarcity”

?

Thanks!

Questions?

	Introduction and Motivation
	Linearization
	Vector Propagation
	Preaccumulation

	Jacobian Scarsity
	Structural Properties of Jacobians
	Rerouting and Normalization

	Practical Exploitation of Scarsity
	Observations on the Problem
	The Heuristic
	Results

	Future Work
	Connections to Optimal Jacobian Accumulation
	Leveraging Face Elimination

