
Practical Target Applications of OpenAD in
Chemical Engineering

Derya B. Özyurt and Paul I. Barton

Department of Chemical Engineering
Massachusetts Institute of Technology

Thursday, 20th January 2005



Overview

A. Overview

B. Current Status

C. OpenAD - ChE Applications: Preparation

D. OpenAD - ChE Applications: Experience

E. dSOA-OpenAD



Update

• directional Second Order Adjoint (dSOA) method for stiff ODE
embedded functionals

• dSOA for large-scale dynamic optimization

• dSOA for differential-algebraic equations (DAE) embedded
functionals



dSOA for stiff ODEs

• h(x(tf , p), p), G(p) =
∫ tf

t0
g(x(t, p), p) dt

where x(t, p) is defined by

ẋ + F (t, x, p) = 0, x(t0) = x0(p)

Directional second order derivatives: ∂2h
∂p2u, ∂2G

∂p2 u

• parameter interactions, uncertainty estimation, second order
optimization methods



dSOA

State equations

ẋ + F (t, x, p) = 0, x(t0) = x0(p)

Directional first order sensitivities

ẋpu + Fx(xpu) + Fpu = 0, xpu|t=0 = xp(t0)u

First order adjoint system

λ̇− FT
x λ = −gT

x

λ|t=tf
= 0



dSOA

Directional second order adjoint system

λ̇pu− FT
x λpu = (λT ⊗ Inx)(Fxpu + Fxx(xpu))

− gxx(xpu)− gxpu

(λpu)|t=tf
= 0

Second order directional derivatives

∂2G

∂p2
u =

∫ tf

t0

{gpp u + gpx (xpu)

−
[
FT

p (λpu) + (λT ⊗ Inp)(Fpp u + Fpx (xpu))
]
}dt

+
[
(λT ⊗ Inp)xpp u + xT

p (λpu)
]
|t=t0.



dSOA-ODE: Summary

• “differentiate then discretize” strategy

• The method is implemented by modification of DASPKADJOINT

• Several problems are solved with different structure and size

• In general: dSOA cost is approaching to approx. 50-60% of the
FDM cost

• Subsequent directions are even “cheaper”



dSOA and large-scale dynamic optimization

Dynamic optimization (DO) problems have non-sparse Hessians
probably ill-conditioned.
Truncated Newton (TN) methods can use Hessian-vector information.
dSOA: an efficient and accurate Hessian-vector product evaluator.

min
p

J(p) = h(x(tf , p), p) +
∫ tf

t0

g(t, x(t, p), p) dt

subject to
f(t, x, ẋ, p) = 0

f0(t0, x(t0), ẋ(t0), p) = 0
pL ≤ p ≤ pU ,



Vector parameterization based solution
procedure for DO



“dSOA powered” TN

local min.? 

Line search (FOA)

(FOA)

Yes

No

STOP

Solve (modified Lanczos)

Inner Iteration

Outer Iteration

p(k)

p(k)
k = 0

J(p(k)), ∇J(p(k))

J(p(k)), ∇J(p(k))

(dSOA)

∇
2J(p(k))u

∇
2J(p(k))u = −∇J(p(k))

k = k + 1
p(k+1) = p(k) + αu

u



dSOA-DO: Summary

• Incorporation of dSOA to calculate accurate directional second order
derivatives effectively into TN to solve large-scale DO problems

• dSOA-TN increases the robustness of the TN and potentially
improves the optimization time by reducing the total number of
iterations

• Improvements:

– Better interaction of dSOA and TN
– Efficient code construction with AD
– Two directional methods
– Incorporation of the (in)equality constraints



dSOA and DAE

Consider a general parameter dependent index-1 DAE system

F (t, ẋ, x, p) = 0,

x(t0) = x0(p)

where x ∈ Rnx and p ∈ Rnp. Its corresponding first order sensitivity
equations can be stated as

Fẋẋp + Fxxp + Fp = 0,

xp(t0) = xp0(p).

Proposition: Suppose that Fẋ has constant rank. Then the
differentiation index of the DAE is 1 if and only if its local index
is 1. The local index is defined as the index of the pencil
cFẋ(t̂, ˆ̇x, x̂, p̂) + Fx(t̂, ˆ̇x, x̂, p̂).

First order sensitivity equations for a general index-1 DAE system are
linear time varying index-1 DAEs.



First Order Adjoint Equations

Now using any factorization for Fẋ = A(t, p) D(t, p) with well matched
A(t, p) and D(t, p), we can write sensitivity equations as

A(t, p) (D(t, p)xp(t))′ + B(t, p) xp(t) + Fp(t, p) = 0

D(t0, p)xp(t0) ∈ im D(t0, p),

where B(t, p) = Fx(t, p) − A(t, p) D′(t, p). The initial condition
D(t0, p)xp(t0) ∈ im D(t0, p) can be replaced by

D(t0, p)(xp(t0)− xp0(p)) = 0, xp0(p) ∈ Rnx.

The derivative of an integral-form functional with respect to parameters,
p,

∂G

∂p
=

∫ tf

t0

(gp−λTFp)dt−
∫ tf

t0

(−gx+λTB−(λTA)′D) xp dt−(λTADxp)|
t=tf
t=t0

.



First Order Adjoint Equations

By the inclusion of the first order adjoint equations

DT (ATλ)′ −BTλ = −gT
x ,

ATλ|t=tf
= 0,

the first order derivatives of an integral-form functional become

∂G

∂p
=

∫ tf

t0

(gp − λTFp)dt + (λTADxp)|t=t0.



Second Order Equations

To obtain the second order derivatives with respect to the parameters,
we simply differentiate

∂2G

∂p2
=

∫ tf

t0

{gpp + gpxxp −
[
FT

p λp + (λT ⊗ Inp)(Fpp + Fpxxp + Fpẋẋp)
]
}dt

+
{[

(λTAD)⊗ Inp

]
xpp + xT

p

[
(AD)Tλp

+ (Inx ⊗ λT )(((AD)T )p + ((AD)T )xxp) + ((AD)T )ẋẋp)
]}
|t=t0

.

Here, the equations for the second order adjoints, λp, are derived by
first differentiating the first order adjoint equations:

DT (ATλ)′p +
[
Inx ⊗ (λTA)′

] [
(DT )ẋẋp + (DT )xxp + (DT )p

]
− BTλp − (Inx ⊗ λT )(BT )p

= −gT
xp − gT

xxxp

(ATλ)p|t=tf
= 0.



dSOA-DAE: Summary

• Challenge: Factorization of Fẋ and obtaining generalized reflexive
inverses.

• Challenge: The complicating terms can be eliminated by augmented
formulation

• Challenge: Numerical solution procedure. Modification of the k-step
BDF applied to the DAE can be necessary:

A(tn)
1
h

k∑
j=0

αjD(tn−j)xn−j + B(tn) xn = q(tn).

• Challenge: Reformulation when not numerically qualified.



dSOA - AD process

A list of derivatives required by dSOA

First Order: h̃x, h̃p, µTFp (λTFx), Fxs, Fpu, λTFx (µTFx)

Second Order: h̃xxs + h̃xpu, h̃pxs + h̃ppu,
(λT ⊗ Inp)(Fpp u + Fpx s),
(λT ⊗ Inx)(Fxp u + Fxx s)

Why not “direct AD”?

• Non-stiff ODE system with an explicit solver: “direct AD”

• Stiff ODE or DAE

– solvers are more complex; corrector iteration ⇒ Applying AD
directly is not reasonable

– Exploiting the structure of the state and sensitivity system (e.g.
staggered corrector method)

⇒ “targeted AD”



Automatic Fortran Code generation for ChE
Application examples

• For several simulation/parameter estimation examples FORTRAN 77
codes are automatically generated by Jacobian software.

Gas and Oil (5.7 KB), Bubble Point Calculation (3.9 KB), Ethyl
Acetate Reactor (25 KB), Ethyl Acetate Reactor (Variation 1) (25
KB), Lorenz Equations (3.4 KB), Orthogonal Collocation Example
(4.4 KB), Phase Shift Oscillator (9 KB), Series Reactions (3.8
KB), Dynamic Estimation Example (3.1 KB), Simple Parameter
Estimation Example (3.3 KB), EGF Activation Model (9.6 KB), A
Continuous Distillation Column (105 KB), A Batch Rectifier (55 KB),
A Simple Reactor Simulation (5.8 KB), Another Reactor Simulation
(13 KB), A Binary Distillation Example (49 KB)

• Dependent variables: f
Independent variables: xdot, x, rpar
Single file with several subroutines



The main subroutine

subroutine m_gasoil(ne,f,ni,g,t,x,xdot,ix,pix,isel,is,pis,
+ ipar,ii,pii,rpar,ir,pir,iu1,iu2)
implicit double precision(d)
implicit integer(i-n)
integer ne,ni,ipar(*),isel(*)
...
common /validate/ lvalidate
parameter(maxlocals=100)
double precision dlocal(maxlocals)

! set unit pointers
l_u=1

! call procedures for subunits
pis0=pis
...

! >>> procedure call for unit u
pis=pis+1
...
call m_gasoilkinetics(ne,f,ni,g,t,x(p_x),xdot(p_x),

+ ix(pix-pix0+1),pix,isel(p_s),is(pis-pis0+1),pis,
+ ipar(p_i),ii(pii-pii0+1),pii,rpar(p_r),ir(pir-pir0+1),pir,
+ iu1(iu1(l_u)),iu2(iu1(l_u)))
return
end ! subroutine m_gasoil



Using OpenAD

• Derivative code (forward) generated using OpenAD for these 16
examples

Gas and Oil’ (16 KB), Bubble Point Calculation’ (17 KB), Ethyl
Acetate Reactor’ (85 KB), Ethyl Acetate Reactor’ (Variation 1) (85
KB), Lorenz Equations’ (13 KB), Orthogonal Collocation Example’
(19 KB), Phase Shift Oscillator (23 KB), Series Reactions’ (12
KB), Dynamic Estimation Example’ (7.5 KB), Simple Parameter
Estimation Example’ (8.4 KB), EGF Activation Model’ (140 KB),
A Continuous Distillation Column (416 KB)’, A Batch Rectifier’
(255 KB), A Simple Reactor Simulation’ (52 KB), Another Reactor
Simulation’ (58 KB), A Binary Distillation Example’ (244 KB)

• Several of them compiled and derivatives compared.

• Derivative codes via reverse mode generated.



Incorporating OpenAD with dSOA

• Second order derivatives: forward over reverse

• Generated code in FORTRAN 90
rest of the code in FORTRAN 77

• Testing with existing dSOA-(TN) examples

• Stand-alone vs. integrated


