
AD 2004 Flattening of Basic Blocks/Preaccumulation 1'

&

$

%

Flattening of Basic Blocks for Preaccumulation

J. Utke

given a sequence of statements: “How can I get

and use a DAG for preaccumulation?”

• where is this needed

• why doesn’t somebody else do it for me

• how is it done

• what makes it ambiguous

• which choices do we have

ACTS project and implementation in OpenAD

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 2'

&

$

%

where do we need it?

cross country elimination

• vertex/edge/face elimination

• scope beyond single statement

• pre-accumulate Jacobian entries jyx

• and propagate forward saxpy(jyx, ẋ, ẏ)

• or stack them, then reverse through the stack

• storing cheaper than recomputes

• fewer Jacobian entries than intermediate values, etc.

• or scarcity preserving elimination

• concentrate on basic blocks (loop body, low level routine with straight line code)

• need a DAG

• note, can extend beyond basic block scope (resolve side effects)

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 3'

&

$

%

Shouldn’t the compiler do it?

YES!

• code optimization

• register allocation

• code generation, etc.

BUT, we do high level source to source transformation

• transformation starts after parsing/canonicalizing/filtering

• compiler code optimization happens at a later stage

• → not available

• unless we go to low level transformation or elevate compiler optimization

We have to do it ourselves.

We can do what we want ,.

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 4'

&

$

%

simple flattening

simple case:

a1 : z=-(z*x)

a2 : y=z/x

1

z

y

/

−

*

z

x

x

*

/

−

z

2
Ga1

a2

• sequence of assignments in a basic block

• front end provides rhs expressions as graphs

• algorithm to flatten them into a single graph G:

– iterate through all assignments in sequence order

– replicate the rhss in G

– identify variables

∗ within a rhs, if the front-end hasn’t already done that (size↓)

∗ across rhss (size↓)

∗ between rhss and lhss, preserves semantics!

– track the most recent assignment to a v

• variable identification is easy for plain scalar values (syntactic

equivalence)

• otherwise through (flow-sensitive) must alias analysis, i.e. identi-

fication by unique (virtual) address.

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 5'

&

$

%

why (virtual) addresses?

with aliasing:

a1 : *z=-(*z*x)

a2 : y=*z/x

y

/

−

*

x

x

*

−

/

*z

*z

*z

(V, E ∪ A)a1

a2

we have vectors, pointers, etc. → likely only have may alias

• simple algorithm creates new vertex if not uniquely

identifiable

• G is incomplete (missing edges)

• may-aliases establish virtual edges ∈ A indicating pos-

sible identification (only want references of rhs vertex

to preceding lhss)

• G′ = (V, E ∪ A) is a set of possible dags, only one

element preserves semantics

• resolve ambiguities by splitting

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 6'

&

$

%

edge subgraphs

edge split: • define edge subgraph Gs = (Vs, Es) of G = (V, E) with

Vs ⊆ V and Es ⊆ E such that if (v, w) ∈ Es then

v, w ∈ Vs and if (t, u), (v, w) ∈ Es ∧ (u, v) ∈ E then

(u, v) ∈ Es

• define split of G into edge subgraphs Gi = (Vi, Ei) such

that E =
⋃

Ei ∧ Ei ∩ Ej = ∅ (reverse of flatten;

example: E1, E2)

• split (V, E ∪ A) into edge subgraphs Gi that

– have Ai = ∅, i.e. locally unambiguous dependency

information

– are (partially) ordered with ’≺’ such that ∀(v, w) ∈

A : v ∈ Gj then w ∈ Gk, Gj ≺ Gk and

– ∀(t, u) ∈ A : u ∈ Gj then t ∈ Gi, Gi ≺ Gj

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 7'

&

$

%

split choices

splitting

• criteria define a minimal number of splits

• ∃ movable edges → split itself isn’t fully defined

in the example:

• A = {(v, w), (v′, w)}

• movable edges (t, u) if ∃| Pu,v, Pu,v′ , Pw,t

• space for optimization, e.g.
∑

nimip + ops(Gi); gains ?

• array ops

• minimal cost doesn’t imply minimal split count

(scarcity)

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 8'

&

$

%

in practice I

Gi+1

Gi

Gi−1

w/o array ops

• pick splits along assignment borders

• preserves semantics

determining Jacobian entries ?

• sequence of Gi leads to sequence of Jacobians Ji, J =
Q

Ji

• Ji = P
(r)
i CiP

(c)
i where Ci =

2

4

JGi
0

0 I

3

5

• I ∈ IRsi×si , si = |{(v, w) ∈ I, v ∈ Vj , w ∈ Vk j < i < k}|

• I are identities between vertices, P
(r)
i , P

(c)
i permute rows /

columns

• I, P
(r)
i , P

(c)
i only known at runtime

• inputs are minimal vertices in Gi (easy)

• maximal vertices ⊆ out(Gi) ⊆ final lhss

• assuming out(Gi) ≡final lhss complicates the graph

→ basic block elimination looses potential

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 9'

&

$

%

in practice II
{

{

G1

G2

G3

G4

alias++ :

• scalar replacement of pointer/array derefs & alias analysis block

local

• ≡ ud -chain information (possible definitions for vertex v)

• we need:

– reference r(udv) to most recent definition (i.e. assignment) in

this basic block

– determine if definitions are

∗ ambiguous (inside,both sides, outside), or

∗ unique (inside, outside)

Jacobian rows:

• du -chain information (possible use of this lhs v)

r(duv) referencing the last use in this basic block, if ∃

• v output in Gi ?: ∃r(duv) ∧ r(duv) /∈ Vi ∨ ∃| r(duv)

missing information forces splits/Jacobian rows (conservative default)

can degenerate to statement level pre-accumulation

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 10'

&

$

%

weird cases

−

+ +

−

1

non-maximal dependent :

• vertex elimination requires vertex/edge

duplication

• edge elimination has constraints to back

elimination steps

• face elimination not affected

y = x:

• standalone vertex → filtered out

• independent/dependent merge → insert

trivial edge → constant folding

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 11'

&

$

%

subroutine calls, extending scope

SR call treatment:

• side effect free?

• user defined black box?

extending the scope:

• no restrictions on du/ud chains

• looking at loops !

• handling branches and inlining ?

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 12'

&

$

%

example, 131 vertices

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 13'

&

$

%

Summary

implemented and used in OpenAD

• front-end parses code and provides intermediate represen-

tation

• OpenAnalysis component provides alias, ud/du chain in-

cluded in IR

• algorithm builds DAGs

• heuristic approximates optimal elimination sequence

• algorithm generates partial calculation and elimination

steps code to IR

• algorithm adds saxpy calls to IR

• front-end unparses IR → ad code

Higher level approaches depend on coding style

Utke U of C / ANL

