AD short course - MIT January 2009 Practical use of AD 1

4)

b

Practical use of AD,
concepts, and relevant methods

Argonne

NATIONAL
LABORATORY

Jean Utke

e basic decisions

e coding discipline and AD tool usage

e OpenAD overview and simple example

e nonsmooth models (overview, tool support in Adol-C and OpenAD)

e adjoints, taping & checkpointing (aka reversal) schemes (OpenAD, revolve)
e sparsity,scarcity, and partial separability

e fast higher order derivatives

UChicago » P75 Office of
A rgO n n e LLC U.S. DEPAHTMEﬁ?F’gE’:G?e

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 2

4 N
what to pick... I

i.e. matching application requirements with AD tools and techniques

the maJOI‘ advantages Of AD ar€ ... no need to repeat again

e knowing AD tool “internal” algorithms is of interest to the user

(compare to compiler vector optimization)

e except for simple models and low computational complexity

— can get away with “something”
e complicated models — worry about tool applicability

e high computational complexity — worry about efficiency of derivative
computations

e tool availability (e.g. source transformation for C++ 7)

\ _/

Utke Argonne

AD short course - MIT January 2009

Practical use of AD

3

-

‘Source Transformation vs. Operator Overloadingl

complicated implementation of tools
especially for reverse mode
full front end, back end, analysis

efficiency gains from

— compile time optimizations

— activity analysis

— explicit control flow reversal for reverse

mode

source transformation based type change &
overloaded operators appropriate for
higher-order derivatives.

benefits from external information

efficiency depends on analysis accuracy

simple tool implementation

reverse mode (generating and reinterpreting
an execution trace — inefficient)

implemented as some library

impact on efficiency:
— library implementation (narrow scope)

— compiler inlining capabilities (for low
order)

— use external information (sparsity etc.)

— can do only runtime optimizations

manual type change for operator overloading

— complicated for formatted 1/0,
allocation

— need matching signatures in Fortran

— helped by use of templates

~

For higher-order derivatives combining source transformation based type

\Change with overloaded operators is appropriate.

_/

Utke

Argonn

(§

AD short course - MIT January 2009 Practical use of AD 4

/ Forward vs. Reverse' \

e simplest rule: given y = f(x) : R" — R" use reverse if n > m (gradient)

e what if n ~ m and large
— want only projections, e.g. Jx
— sparsity (e.g. of the Jacobian)
— partial separability (e.g. f(x) =) (fi(z;)),x; € D; € D > x)
— intermediate interfaces of different size

e the above may make forward mode feasible (projection ¢! J requires

reverse)

e higher order tensors (practically feasible for small n) — forward mode

(reverse mode saves factor n in effort only once)

e this determines overall propagation direction, not necessarily the local

preaccumulation (combinatorial problem)

_/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD

-

Use of checkpointing'

have model with high computational complexity and need adjoints

e have model with high computational complexity and need adjoints

spatial requirements (NP complete DAG /call tree reversal)
in theory: no distinction between checkpoints and trace
limited automatic support

in practice: well defined location for argument checkpoints
— fix checkpoint location and spacing (trace fits into memory)
— tool determines checkpoint elements

— use hierarchical checkpointing (to limit number of checkpoints)

optimize scheme e.g. with revolve (uniform steps)

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 6

/ ‘is the model f smooth?. \

examples:

e y=abs(x); gives a kink

o y=(x>0)73*x:2*x+2; gives a discontinuity

y=sqrt(@a“*4+b**4)

e y=floor(x); same

e Y=REAL(Z); what about IMAG(Z)

0a
o if (a == 1.0) 02
y = b; 03
else if (a == 0.0) then §Zf
y =0;
else
y = a*b;
intended: j=axb+bxa

o y = sqrt(a*x*x4d + b*x4);
AD does not perform algebraic simplification,

i.e. for a,b — 0 it does()t_)+0 +00.

AD computes derivatives of programs(!)

\I{D.OW 'yOUI‘ apphCatIOIl e.g. fix point iteration, self adjoint, step size computation, convergence criteria/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 7

‘model coding standard & AD tool capabilities II

obvious (by now) recommendations regarding smoothness:

e avoid introducing numerical special cases

e pathological cases at domain boundaries, initial conditions

o filter out computations outside of the actual domain (e.g. v/0)

e consider explicit logic to smooth (e.g. C! ?) kinks and discontinuities
alternative (unimplemented) approaches:

e slopes (interval based)

e Laurent series (w different rules regarding +INF and NaN

more details later

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD

-

. precise compile-time data flow analysis (activity, side effect, etc...)
have: conservative overestimate of aliasing, MOD sets, ...
reducing the overestimate:

model coding standard & AD tool capabilities 11

e extract the numerical core (!)

encapsulate ancillary logic (monitoring, debugging, timing, 1/0,...)

small classes, routines, source files (good coding practice anyway)
extraction via source file selection

filtered-out routines treated as “black box”, with optimistic(!) assumptions
provide stubs when optimistic assumptions are inappropriate
transformation shielded from dealing with non-numeric language features

note: the top level model driver needs to be manually adjusted

e avoid semantic ambiguities (void*, union, equivalence)

e avoid unstructured control flow (analysis, control flow reversal)

e beware of non-contiguous data, e.g. linked lists (checkpointing, reverse access)
e beware of indirection, e.g. a[h[i]] vs. a[i] (data dependence)

\o implicit F77 style reshaping (overwrite detection)

8\

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 9

/ model coding standard & AD tool capabilities IIII \

: to use nice feature N
have: a tool that has no clue how to deal with N/

e dynamic resource handling in reverse mode, some examples:
— dynamic memory (when locally released)
— file handles (same)
— MPI communicators (same)
— garbage collectors ...

no generic tool support, requires extensive bookkeeping

e concerns when dealing with third party libraries
— availability of the source code
— numerical core extraction
— smoothness
— analysis overhead (e.g. MPI ?)
research underway for blas, lapack, MPI, openMP

\o beware of out-of-core data dependencies (data transfer via files) /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 10

/ sidebar: OpenAD overview' \

e www.mcs.anl.gov/OpenAD —

e forward and reverse Openss| front — ends(epg/
whirl ﬁgeS

. \ i
e source transformation |

: Openap/| | Open l ‘SageT
e modular design FortTk Analysis = | XAIF

e large problems -
e language independent transformation (Angel \ |

:{ xaifBooster ;
(n

e researching combinatorial problems (xerces~ | (AD source transformatio
e current Fortran front-end Open64 Fortran pipeline:

(Open64/SL branch at Rice U)

e migration to Rose (already used for
C/C++ with EDG)

T~

OpenAnalysis I XaifZWhirI]

e uses association by address as opposed <ai{Booster

\ to association by name /

Utke Argonne

e Rapsodia for higher-order derivatives Whirl2xaif

via type change transformation

AD short course - MIT January 2009 Practical use of AD 11

/Sidebar: example I \
SUBROUTINE head(X, Y)

use w2f__types

subroutine head(x,y) use 0AD_active
double precision,intent(in) :: x IMPLICIT NONE
double precision,intent(out) :: y ||REAL(w2f__8) OpenAD_Symbol_0O
!$openad INDEPENDENT (x) ce
y=sin (x*x) REAL (w2f__8) OpenAD_Symbol_5

!$openad DEPENDENT (y) type(active) :: X

end subroutine INTENT(IN) X

result of pushing it through the pipeline — type(active) :: ¥

INTENT(OUT) Y

program driver OpenAD_Symbol_0 = (X)kv*X)%v)
use OAD_active Y/v = SIN(OpenAD_Symbol_0)
implicit none OpenAD_Symbol_2 = XJv
external head OpenAD_Symbol_3 = X%v
type(active):: x, y OpenAD_Symbol_1 = COS(OpenAD_Symbol_0)
x/v=.5D0 OpenAD_Symbol_5 = ((OpenAD_Symbol_3 +
x%d=1.0 OpenAD_Symbol_2) * OpenAD_Symbol_1)
call head(x,y) CALL sax(OpenAD_Symbol_5,X,Y)
print *, "F(1,1)=",y%d RETURN

\\\fnd program driver END SUBROUTINE 4,///

Utke Argonne

AD short

course - MIT January 2009 Practical use of AD

12

openad
Usage:

output:

sidebar: simple scripted pipeline

is Python script to invoke pipeline components for simple(!) settings

> openad -h

Usage: openad [options] <fortran-file>

Options:
-h, --help

-m MODE, --mode=MODE basic transformation mode with MODE being one of: rs =

—-d DEBUG, --debug=DEBUG

-i, —-—-interactive requires to confirm each command
-k, --keepGoing keep going despite errors
-c, —-copy copy run time support files instead of linking them

-n, --noAction display the pipeline commands, do not run them

show this help message and exit

reverse split; t = tracing; rj = reverse joint; f =

forward;

the debugging level

> openad -c¢ -m f head.prepped.f90

openad log: openad.2009-01-27_14:21:07.log"
parsing head.prepped.f90

analyzing source code and translating to xaif
tangent linear transformation

getting runtime support file OAD_active.f90
getting runtime support file w2f__types.f90
getting runtime support file iaddr.c
translating transformed xaif to whirl
unparsing transformed whirl to fortran

postprocessing transformed fortran

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 13

“> openad -n -c¢c -m f head.prepped.f90
parsing head.prepped.f90
${0PENADROOT}/0Open64/ospreyl.0/targ_ia32_ia64_linux/crayf90/sgi/mfef90 -z -F -N132 head.prepped.f90
analyzing source code and translating to xaif
${0PENADROOT?}/0OpenADFortTk/OpenADFortTk-x86-Linux/bin/whirl2xaif -n -o head.prepped.xaif head.prepped.B
tangent linear transformation
${0PENADROOT}/xaifBooster/../xaifBooster/algorithms/BasicBlockPreaccumulation/driver/oadDriver \\
-c ${0PENADROOT}/xaif/schema/examples/inlinable_intrinsics.xaif \\
-s ${0PENADROOT}/xaif/schema -i head.prepped.xaif -o head.prepped.xb.xaif
getting runtime support file OAD_active.f90
cp -f ${0OPENADROOT}/runTimeSupport/scalar/0AD_active.f90 ./
getting runtime support file w2f__types.f90
cp -f ${0OPENADROOT}/runTimeSupport/all/w2f__types.f90 ./
getting runtime support file iaddr.c
cp -f ${0OPENADROOT}/runTimeSupport/all/iaddr.c ./
translating transformed xaif to whirl
${0PENADROQT}/0penADFortTk/OpenADFortTk-x86-Linux/bin/xaif2whirl --structured head.prepped.B head.prepped.xb.xaif
unparsing transformed whirl to fortran
${0PENADROOT}/0Open64/ospreyl.0/targ_ia32_ia64_linux/whirl2f/whirl2f -openad head.prepped.xb.x2w.B
postprocessing transformed fortran
perl ${0PENADROOT}/OpenADFortTk/0OpenADFortTk-x86-Linux/bin/multi-pp.pl -f head.prepped.xb.x2w.w2f.f

[whirl2xaif |=e={ openanalysis|] xaif2whirl

xaifBooster

Utke Argonne

AD short course - MIT January 2009

Practical use of AD 14

-

e generally caused by:

— intrinsics (max, ceil, sqrt, tan,...)

— other examples mentioned earlier

growing out of bounds

4 T(0)

del ta

non-smooth models '

— branches if (x<2.5) y=f1(x); else y=f2(x);

e observed: oscillating derivatives (may be glossed over by FD) or derivatives

/f 1
/2. updF2
1 updFl

Utke

AD short course - MIT January 2009 Practical use of AD 15

4 A
non-smooth models III

e blame AD tool - verification problem

— forward vs reverse
— compare to FD
— compare to other AD tool

e blame code, model’s built-in numerical approximations, external

optimization scheme or inherent in the physics?

e higher order models in mech. engineering, beam physics, AtomFT explicit
g-stop facility for ODEs, DAESs

e what to do about first order
— Adifor: optionally catches intrinsic problems via exception handling

— Adol-C: tape verification and intrinsic handling

— OpenAD (comparative tracing)

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 16

4 N
‘ differentiability I

piecewise differentiable function:

abs(x**2 -sin(abs(y)))

2% — sin(|y|)]

o000
oNhO DR
AN

is (locally) Lipschitz continuous; almost
everywhere differentiable (except on the
6 critical paths)

e Gateaux: if 3 df(z,z) = lim f(erTﬁ)_f(x) for all directions &

T—0

e Bouligand: Lipschitz continuous and Gateaux
e Fréchet: df(.,2) continuous for every fixed & ... not generally

e in practice: often benign behavior, directional derivative exists and is an

element of the generalized gradient.

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 17

/ ‘ case distinction ' \

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or

discontinuity (ceil,...) [for source transformation: also different control flow]
1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) — potentially

discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value than

before (tape invalid — sparsity pattern may be changed,...)]

reference point

Utke Argonne

AD short course - MIT January 2009

Practical use of AD

18

///”

sidebar: Adol-C - general'

e www.math.tu-dresden.de/~adol-c

Speelpenning example y = [x;

e operator overloading creates an execution trace (also called 'tape’)

e cxecution trace is the function representation for all drivers

double *x = new doublel[n];
double t = 1;

double y;

for(i=0; i<n; i++) {
x[i] = (i+1.0)/(2.0+1i);

t x= x[i];

}
y = t;
delete[] x;

adouble *x = new adouble[n];

adouble t =1

double y;

trace_on(1) ;

for(i=0; i<n; i++) {
x[1] <<= (i+1.0)/(2.0+i);
t x= x[i];

}

t >>= y;

delete[] x;

trace_off();

Utke

Argonne

AD short course - MIT January 2009

Practical use of AD

sidebar: simple overloaded operators for a*b'

in Fortran:

19

a

module ATypes
public :: Areal

type Areal
sequence
real :: v
iIl (:j—+-—+-' real :: d
° end type
struct Afloat{float v; float d;};

end module ATypes
Afloat operator *(Afloat a, Afloat b) {

module Amult
Afloat r; int i;

use ATypes
// value

interface operator (*)
. . module procedure multArealAreal
r.d=a.d*b.v+a.v*b.d; // derivative ute p ure ma
return r;

r.v=a.v*b.v;

};

end interface

contains

function multArealAreal(a,b) result(r)
type(Areal) ,intent(in)::a,b
type(Areal)::r

rv=al,vxblv ! value
rid=aldxb¥v+al,vxb¥%v ! derivative

end function multArealAreal

end module Amult
Operator Overloading =

A simple, relatively unintrusive way to augment semantics via a type change!

Utke

Argonne

AD short course - MIT January 2009

Practical use of AD 20

-

N

sidebar: Adol-C drivers'

running the example produces a tape;

driver logic interprets the tape;

drivers use tag as tape identifier;

gradient (tag, n, xp[n], g[n])

xp can be some point in R";

double* g = new double[n];
gradient(1l,n,xp,g); // gradient

doublex* H = (doublexx)
malloc(n*sizeof (doublex)) ;
for(i=0; i<n; i++)
H[i] = (doublex)
malloc((i+1)*sizeof (double));

hessian(1l,n,xp,H); // Hessian

and similar for:
hessian(tag, n, xp[n], H[n][n])

need only H’s lower triangle

e various drivers use combinations of

forward and reverse sweeps

e tapeless forward with slightly dif-

ferent usage patterns

see examples/speelpenning.

o

Cpp

_/

Utke

Argonne

21

~

Practical use of AD

consider y=max (a(x) ,b(x))

at the tie
y
b

A
a

\ /

2

consider y = v/z and 9],—10 = <

identified by maxloc

\

AD short course - MIT January 2009

/ Should AD make educated guesses?'
pick direction from Taylor coefficients

?

of first non-tied max(a;, b;)
consistency for unresolved ties:

take & or b
and compare that to an adjoint split:
a+ = % and b+ = %
0 it =0
+INF if >0
it =<0

NaN

consider maxloc: tie-breaking argument maxval may differ from argument

_/

Argonne

o

Utke

AD short course - MIT January 2009 Practical use of AD 22

‘Adol-C directional derivatives & exceptions'

tape at 1.0 and rerun at

e 0.5, xdot=1.0 — ydot=3 adouble foo(adouble x) {

adouble y;
e 0.0, xdot=1.0 — ydot=3
y=fmax (2*x,3*x) ;

e 0.0, xdot=-1.0 — ydot=-2 return y;

e -0.5, xdot=1.0 — ydot=2 }

tape at 1.0 and rerun at adouble foo(adouble x) {

adouble y;
e 0.5, xdot=1.0 — ydot=.707107

y=sqrt(x) ;
e 0.0, xdot=1.0 — ydot=INF return vy;
e 0.0, xdot=-1.0 — ydot=NaN }

HW: Provide an overview the different cases for for pow(b,e) and set up a test program to

gather Adol-C responses.

and on a higher level...

o _/

Utke Argonne

AD short course - MIT January 2009

Practical use of AD

23

adouble foo(adouble x) {
adouble y;
if (x<=2.5)
y=2*fmax(x,2.0) ;
else
y=3*floor (x) ;
return y;

}

/ classifying non-smooth events I

e tape at 2.2 and rerun at
— 2.3 —-3
— 2.0 —-1
— 2.5 —0
— 2.6 — -1
e tape at 3.5 and rerun at
— 3.6 — 3
— 4.5 — 2
— 2.5 — -1

e validates tape but is

\\\‘ unspecific ®

#include "adolc.h"
adouble foo(adouble x);

int main() {

adouble x,y;

double xp,yp;

std::cout << " tape at: " ;
std::cin >> xp;

trace_on(1);

x <<= xp;
y=foo (x);
y >>= yp;

trace_off();
while (true) {
std::cout << "rerun at: ";

std::cin >> xp;

int rc=function(1,1,1,&xp,&yp);

std: :cout<<"return code: "<<rc<<std::endl;

_/

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 24

Kcracilrlg; facility - example' \

program driver

OAD ti
subroutine head(x,y) use -active
.. use 0AD_rev
double precision :: x
o use 0AD_trace
double precision :: y
! $openad INDEPENDENT (x) ()
t ti X,
y=tan (x) ype(active X, ¥
! $openad DEPENDENT (y)
) x7%v=.5D0
end subroutine
I first trace
driver — call oad_trace_init ()
output: call oad_trace_open()
<Trace number="1"> Call head(X,y)
<Call name="tan_scal" line="5">
</Call> call oad_trace_close()
<Tan sd="0"/>
</Trace>

x/hv=x%v+3.0D0

| second trace

<Trace number="2">

<Call name="tan_scal" line="5">

</Call> call oad_trace_open()
<Tan sd="1"/>
</Trace> call head(x,y)

indicates subdomain of tan(x) is sd=k with call oad_trace_close()

d dri
\\if?egerk7zztx+:/2j end program driver

Utke Argonne

AD short course - MIT January 2009

Practical use of AD 25

/

tracing facility - control ﬂow'

check active control flow decisions:

test routine:

subroutine head(x1,x2,y)

real,intent(in) :: x1,x2
real,intent(out) :: y
integer i

!$openad INDEPENDENT (x1)
!$openad INDEPENDENT (x2)
y=x1
do i=int(x1),int(x2)+2
y=y*x2
if (y>1.0) then
y=y*2.0
end if
end do
! $openad DEPENDENT (y)
end subroutine head

trace at x=[0.5, 0.75]

trace at x=[0.5, 1.75]

<Trace number="1">
<Loop line="8">
<Branch line="10">
<Cfval val="0"/>
</Branch>
<Branch line="10">
<Cfval val="0"/>
</Branch>
<Branch line="10">
<Cfval val="0"/>
</Branch>
<Cfval val="3"/>
</Loop>
</Trace>

Q)te: difference between active and

program variables.

<Trace number="2">
<Loop line="8">
<Branch line="10">
<Cfval val="0"/>
</Branch>
<Branch line="10">
<Cfval val="1"/>
</Branch>
<Branch line="10">
<Cfval val="1"/>
</Branch>
<Branch line="10">
<Cfval val="1"/>
</Branch>
<Cfval val="4"/>
</Loop>
</Trace>

Utke

Argonne

AD short course - MIT January 2009

Practical use of AD

26

/

test routine:

tracing facility - data'

associating events with program data:

subroutine head(x,y)
real :: x(2),y
!$openad INDEPENDENT (x)
y=0.0
do i=1,2

end do
!$openad DEPENDENT (y)
end subroutine

y=y+sin(x(i))+tan(x(i))

o

trace at x=[0.5, 0.75]

trace at x=[0.5, 3.75]

<Trace number="1">
<Call name="tan_scal" line="6">
<Arg name="X">
<Index val="1"/>
</Arg>
</Call>
<Tan sd="0"/>
<Call name="tan_scal" line="6">
<Arg name="X">
<Index val="2"/>
</Arg>
</Call>
<Tan sd="0"/>
</Trace>

<Trace number="2">
<Call name="tan_scal" line="6">
<Arg name="X">
<Index val="1"/>
</Arg>
</Call>
<Tan sd="0"/>
<Call name="tan_scal" line="6">
<Arg name="X">
<Index val="2"/>
</Arg>
</Call>
<Tan sd="1"/>
</Trace>

note: no arguments recorded w/o address computation...

Utke

Argonne

AD short course - MIT January 2009

Practical use of AD

27

/

tracing facility - call stack'

need call stack context (shown by nesting):

test routine:

trace at x=0.5

trace at x=1.0

subroutine foo(t)
real :: t
call bar(t)
end subroutine
subroutine bar(t)
real :: t
t=tan(t)
end subroutine
subroutine head(x,y)
real :: x
real :: y
!$openad INDEPENDENT (x)
call foo(x)
call bar(x)
y=X
!$openad DEPENDENT (y)

end subroutine

<Trace number="1">
<Call name="foo" line="13">
<Call name="bar" line="3">
<Call name="tan_scal" line="7"></Call>
<Tan sd="0"/>
</Call>
</Call>
<Call name="bar" line="14">
<Call name="tan_scal" line="7"></Call>
<Tan sd="0"/>
</Call>
</Trace>

<Trace number="2">
<Call name="foo" line="13">
<Call name="bar" line="3">
<Call name="tan_scal" line="7"></Call>
<Tan sd="0"/>
</Call>
</Call>
<Call name="bar" line="14">
<Call name="tan_scal" line="7"></Call>
<Tan sd="1"/>
</Call>
</Trace>

\\;ifte: tracing difference only for the direct call from head, not from foo

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 28

4)

one-sided Laurent series (unimplemented)'

Utke Argonne

AD short course - MIT January 2009 Practical use of AD

29

-

Reversal / Checkpointing Schemes'

why it is needed
major modes
OpenAD implementation

alternatives

Utke

Argonne

AD short course - MIT January 2009

Practical use of AD 30

-

f:y=sin(axb)*xc

\VV hat can we do with this?

‘recap - why we need a tape...'

yields a graph representing the order of computation:

intrinsics ¢(...,w,...) have local partial derivatives

99
ow

e.g. sin(t1l) yields cos(t1)
code list— intermediate values t1 and t2

all others already stored in variables

tl = a*b
pl = cos(tl)

t2 = sin(t1l)
y = t2*c

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 31

reverse with adjoints'

Assume variable and adjoints associated in pairs (v,g_v):

Q append computations of adjoints

tl = axb

pl = cos(tl)

t2 = sin(t1)

y = t2x%c

g_Cc = g_y*t2

g_t2 = g_y*c

g_tl = g_t2xpl

g_b = g _tlxa

g_a = g_tlxb

require pl in the adjoint sweep = recompute (time) or store (taping space)

\ _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 32

/ may also need control flow trace and addresses... I \

original CFG = record a path through the CFG = adjoint CFG

Entry(1)
+ Entry(10)
B(2)’ 7
Entry(1) v B(9)’
v Branch(3) v
B(+2) / T \F pB
1 v
Branch(3) B®) IL+C Branch(8)
»/ T\F } LLoop® f T\f
B4) || Loop(5) BT '/: 4 \I pLc
l F &T = - =~ = Bl \'
EndBranch(8)|| B(6) PL ©
i N v v Loop(7)
B(9) EndLoop(7) ‘;BF ++LC F lT
Y EndBranch(3)]| B(6)’
Exit(10) EndBranch(8)[| EndLoop(7)
+ B(2)’ EndLoop(5)
B(9) V
v Exit(1)
Exit(10)
often cheap with and (c.g.
index from loop variables)
Qnstructured control flow and pointers are expensive /

Utke Argonne

AD short course - MIT January 2009

Practical use of AD

33

/

‘trace all at once = global split mode'

N

subroutine 1
call 2; ...
call 4; ...
call 2;

end subroutine 1

subroutine 2
call 3

end subroutine 2

subroutine 4
call 5

end subroutine 4

11
21= 41= 22=
31= 51= 32=

117 11
o] [4r] [22] [22] Far) [2r
oiedel 0

E;n

%

run forward

subroutine call

order of execution

n-th invocation of subroutine S

run forward and tape

run adjoint

store checkpoint

restore checkpoint

\o subroutine is “natural” checkpoint granularity, different mode...

e have memory limits - need to create tapes for short sections in reverse order

_/

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 34

trace one SR at a time = global joint mode'

taping-adjoint pairs

checkpoint-recompute pairs

the deeper the call stack - the more recomputations (unimplemented solution -
result checkpointing)

familiar tradeoftf between storing and recomputation at a higher level but in

theory can be all unified.

_/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 35

/ ADified Shallow Water Call Graph' \

shallow_water

read_eta_data map_to_control_vector length_of_control_vector

make_weights

make_weights_zonal_transport make_weights_graddepth

make_weights_lapldepth forward_model
map_from_control_vector initial_values calc_depth_uv calc_zonal_transport_joint cost_depth

loop_body_wrapper_outer

l

loop_body_wrapper_inner

T

time_step cost_function

umomentum vmomentum continuity read_data is_eta_data_time calc_zonal_transport_split

make_weights_depth

prep_coriolis

read_data_file

determine_data_time read_data_fields

()
read_field read_extended_field

boundary_conditions

e mix joint and split mode
e nested loop checkpointing in outer and [inner loop body wrapper

e inner loop body in split mode

\o calc_zonal transport is used in both contexts /

Utke Argonne

AD short course - MIT January 2009

Practical use of AD

36

/

OpenAD reversal modes with checkpointing'

subroutine level granularity

Y

f f
- - \ -4
, ol | 02 02 02
> > > > > > (> - > -
i1 12 i3 14 K 14 14 i4 13 K
plain mode split mode

N

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD

37

/

in OpenAD orchestrated with templates'

e OpenAnalysis provides side-effect analysis

r

~\

template variables
subroutine variables
setup

state indicates task 1

A 4

rpre state chng. task (1
St

rpost state chng. tas&

()

J

[state indicates task 2 |

J

v

rpre state chng. task P

>

d 3\

J

rpost state chng. tas&

e provides checkpoint sets as (formal) arguments & references to global variables

e we ask for four sets: ModLocal C Mod, ReadLocal C Read

subroutine template()
use OAD_tape ! tape storage
use 0OAD_rev ! state structure
' $TEMPLATE_PRAGMA_DECLARATIONS
if (rev_modetape) then
! the state component
! taping’ is true
' $PLACEHOLDER_PRAGMA$ id=2
end if

if (rev_modeadjoint) then
! the state component
! Yadjoint’ run is true
' $PLACEHOLDER_PRAGMA$ id=3
end if

end subroutine template

\[v'vrapup .]J

N

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 38

/ ‘general reversal example' \

e we have 4 tape units
e 27 and2® behave like split, 2' behaves like joint
e How do we control the behavior?

e runtime estimates for checkpoint /tape size and recomputation effort — derive

\ reversal scheme according to memory /runtime limits as dynamic call tree /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 39

-

box_model_body 0:3752 0:0:pSubroutineName tape double:integer checkpoint dombéger:boole
/ L%SO\

box_final_state 0:2 6:0: | box_forward 0:4 41:1:Q| box_ini_fields 12:63 20:0:(

//A/a/se/noo L73oo \%EO 3650
box_transport 3:0 5:0:¢| box_density 6:13 8:0:(

box_cycle_fields 0:25 12:0:() box_robert filter 12:25 10:0:0| box_timestep 11:1 19:0:
L?BOO

box_update 6:13 7:0:(

problem availability and name clashes...
alternative behavior control with Revolve - should have the loop isolated.

o _/

Argonne

Utke

AD short course - MIT January 2009 Practical use of AD 40

4)

sparsity, scarcity and partial separability'

sparsity and partial separability — can we get away with forward mode

scarcity (aka scarcity) — captures sparsity and low rank of of matrices whose

sum /product forms the Jacobian

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 41

/ recap - how do directional derivatives come about?' \

f:y=sin(axb)*xc

yields a graph representing the order of computation:

e intrinsics ¢(...,w,...) have local partial derivatives

99
ow

e c.g. sin(tl) yields cos(tl)
e code list— intermediate values t1 and t2

e all others already stored in variables

tl = a*b
pl = cos(tl)

t2 = sin(t1l)
y = t2*c

\VV hat can we do with this? /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 42

/ ‘forward with directional derivatives' \

flg(x)) = f(g(x))g(x)a: multiplications along paths

Assume a point (ag, by, ¢o) and a direction (&, b, ¢) =(d_a,d_b,d_c)

variable and directional derivatives associated in pairs (v,d_v):
d_axb*pl*xc+d_b*axpl*xc+d_c*xt2

has common subexpressions

interleave computations of directional derivatives
tl = axb
d_tl = d_axb + d_bx*a
pl = cos(tl)
t2 = sin(t1)
d_t2 = d_tl1*pl
y = t2%cC

d_y = d_t2*xc + d_c*t2

\W hat is in d_y? /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 43

/ ‘forward with directional derivatives II' \

o if (a,b,¢) = (1,0,0) then d_y=2L (ag, by, co)

tl = axb

d_tl = d_axb + Oxa
pl = cos(tl)

t2 = sin(tl)

d_t2 = d_tlx*xpl

y = t2%cC

d_t2*c + O0xt2

d_y

e 3 directions give V f(ag, by, cg) and
dy=VfT(a,b,¢) =V T

_ d c
e floating point accuracy for derivative calculation !

\\\¥ e gradient calculation cost ~ n Al///

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 44

Tangent-linear Models I

The tangent-linear model of

F:R"—-R", y=F(x)
1S

F:R"™ S R™, y=F(x%)=F(x)x%x.

n q

Jacobian matrix 0
1

j=1,...,m m = 0

1 [Oy Bl

Fl=(Ge) T = F, 0
1=1,...,n 0

0

column by column at O(n). 0
0

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 45

/ ‘ sparse Jacobians I \

many repeated Jacobian vector products — compress the Jacobian

F".S =B e R™*? using a seed matrix S € R"*?

What are S and ¢7

Row i in F’ has p; nonzeros in columns v(1),...,v(p;)

F! = (ai,...,a,,) = al and the compressed row is B; = (31,...,0,) = 81 We

choose S so we can solve:

gz'Oé — 5
with Sf — (31)(1)7 Cee S,U(pi))

el BN B mmm ('

\ v(1)v(2) v(3) /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 46

4 N
‘determining q,S (1) I

e Curtis/Powell /Reid: structurally orthogonal

direct:

e Coleman/Moré: column incidence graph coloring)

q is the color number in column incidence graph, each column in .S represents a

color with a 1 for each entry whose corresponding column in F” is of that color.

_.. 1 0
B @5_01
10

0 1

E B
- HE @

reconstruct F’ by relocating nonzero elements (direct)

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD

47

/ ‘determining q,S (2) I

indirect:

e Newsam/Ramsdell: ¢ = max{#nonzeros} < x

e S is a (generalized) Vandermonde matrix [)\‘Z _1} , j=1...q,

e How many different A\; 7

same example

[VAP
2
1 HEER ®
E B ISt
- HE VRV @)

all combinations of columns (= rows of S): (1,2),(2,3), (1,4)
anroved condition via generalization approaches

i # At

Utke

AD short course - MIT January 2009

Practical use of AD

48

-

3 colors

but with A € —1,0,1

‘example with a difference'

o o o o

o o o o

O Q. O

o O Q O

S s O O

o v O O

_ = =

o o O =

O = = O

_ O O O

e O Q <o

Utke

Argonne

49

Practical use of AD

AD short course - MIT January 2009

example forward compression

©Hovland

Argonne

Utke

AD short course - MIT January 2009 Practical use of AD

50

/ tool support I

all tools: seeding & vector mode (forward)
SparsLinC:

e C++ library (used with Adifor)
e pattern detection
e sparse forward propagation
Adol-C:
e pattern detection via bitmap propagation, blockwise Bayesian probing
e dense forward (or reverse) propagation
TAF:
e dense forward propagation

e preaccumulated blocks

main concern: conservative overestimate vs. practical usage patterns u m
often there is application level knowledge, e.g. PDE with a particular N
stencil on a particular grid .

\ What about i_i_i_._ _._;_i_

Utke

AD short course - MIT January 2009 Practical use of AD 51

reverse with adjoints'

Assume variable and adjoints associated in pairs (v,g_v):

Q append computations of adjoints

tl = axb

pl = cos(tl)

t2 = sin(t1)

y = t2x%c

g_Cc = g_y*t2

g_t2 = g_y*c

g_tl = g_t2xpl

g_b = g _tlxa

g_a = g_tlxb

What is in (g_a,g b,g.c)? If g_.y=1, then V f(aq, bo, co)

\ _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD

52

/ Adjoint Models I

The adjoint model of
1S

Jacobian matrix

NJ=1,....m
= (8%) :(F/)T-[m

8:131' .
1=1,....,n

row by row at O(m) (cheap gradients @, tape intermediates / partials ®)

n
O oo

m

o

_/

Utke Argonne

AD short course - MIT January 2009 Practical

use of AD

53

-

compress the Jacobian:
F'T.§ = B e R"*P with a seed matrix S € R™*P:

incidence graph.

e forward sweep with

= 2 B 1 7] - W |) e e
e reverse sweep with o 1 " = 0 |
p=1 F'l: - |=1: and F'T| :
o 1 | [0 |
| 1 0 | | N SSH_ L1 B
\Utke

sparse Jacobians (2) I

Combination through partitioning (Coleman/Verma): ®

i ——

Here ¢ as maximal number of nonzeros in columns, or color number in row

AD short course - MIT January 2009 Practical use of AD 54

4)
tool support (2)'

row compression / partitioning require reverse mode!

OpenAD/TAF /Tapenade:

e reverse mode
Adol-C:
e dependency propagation for Hessian computation

e dynamic dependency kind estimation (none, linear, polynomial, rational,
transcendental, non-smooth)

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 55

4 N
‘ Adol-C sparsity I

sparsity pattern detection (needs ColPack & config flag, ... suggested for homework)

e safe (conservatively correct) and tight mode, think
P(max(a,b))=P(a) |P(b) VS. P(max(a,b))=P(a) if max(a,b)==a

e propagation of unsigned longs
e forward or reverse
e convoluted example code in examples/additional_examples/sparse/jacpatexam.cpp

e c.g. choice -4 with an arrow-like structure (non-negative numbers indicate the use of a

test tape)
e possibility of collecting entries into blocks of rows and columns for (cheaper) block wise
propagation using jac_pat
— -1: contiguous blocks
— -2: non-contiguous blocks

— -3: one block per variable (as in -4)

e see also User Guide (Adol-C v. 2.0) pp. 27

o _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 56

/ ‘ Adol-C dependencies I \

e example code in examples/odexam. cpp

e ths R? — R’

yprime[0] = -sin(y[2]) + 1.0e8xy[2]*(1.0-1.0/y[0]);
yprime[1] = -10.0%y[0] + 3.0e7xy[2]*(1-y[1]);
yprime[2] = -yprime[0] - yprime[1];

e uses active vector class adoublev (there is also an active matrix class

adboublem and along for active subscripting, see examples/gaussexam.cpp)

e forode/accode: generate Taylor coefficients and Jacobians for
x'(t) = F(x(t)), see User Guide pp. 66

® nonzero pattern:

3 -1 4
1 2 2
3 2 4

4 = transcend , 3 = rational , 2 = polynomial , 1 = linear , 0 = zero

\ negative k indicate that entries of all dx;/dxy with j < —k vanish /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 57

4)

‘tool support (2) ... continued'

OpenAnalysis:
e linearity analysis
e similarly extendable to e.g. polynomial dependency detection

Why do we care?

\ _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 58

‘ partial separability I

e reverse mode yields cheap gradient ... at a considerable cost.

e forward takes O(n) but sparse Hessian indicates

f(@)=> a;fi(z;) + b

1

where

x, €D;€D>x sothat Vf; e R",n;<n
e use compressed forward propagation
e research: identify linear sections

. more general question - how to preserve structure

\ _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 59

sidebar: preaccumulation & propagation II

e propagation = overall mode forward or reverse

e preaccumulation = local application of chain rule (view as graph operation)

e example: source code = ssa form = computational graph (DAG)

t1 = x(1) + x(2) n . ()
V1 = V- vo; V2 = sin(vg);

t2 = t1 + sin(x(2)) ! ir 05 V2) 0); R
v = v Vo: U = v Va:

y(1) = cos(tl * t2) 3 1 2; V4 1 33
Vs = /V3; Vg = COS(’U4); V7 = —Us

y(2) = -sqrt(t2)

e chain rule application: multiplication of edge labels along paths &

absorption of parallel edges by addition

e in the graph: elimination of (intermediate) vertices, edges, faces

\ _/

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 60

/ sidebar: preaccumulation & propagation III \

Y?Y?YZ

vertex front- edge back-edge
elimination | elimination | elimination

- /

e efficiency measure is operations count (at runtime)

e combinatorial problem (heuristics for optimization)

\o problem: granularity = face elimination /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD

61

/ ‘sidebar: preaccumulation & propagation IIII

A
)

)
®

0—

=

ey Tt
J

"
/N~
o
s
O/.
_/

e cranularity is single fused multiply add

e also requires heuristics

~

\o elimination sequence terminates with tripartite dual graph, i.e. Jacobian /

Utke

Argonne

AD short course - MIT January 2009 Practical use of AD 62

/ sidebar: preaccumulation & propagation IVI \

have preaccumulated local Jacobians;

given the J;,2=1,...,k we want to do:
o forward: (Jyo...o(Jio0x)...), or
o reverse: (...(§l oJ)o...0Jy)
the total cost:
e function evaluation + local partials (fixed)
e preaccumulation (NP-hard, varying with heuristic)

e propagation (fixed for a given preaccumulation)
— for simplicity: one saxpy per non-unit J; element

— potential for n-ary saxpys (generated)

\ What — other than the preaccumulation heuristic - can vary? /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 63

g carciy | R

observation: Jacobian accumulation can obscure sparse / low rank dependencies

example: consider f(x) = (D + ax!)z with an intermediate variable z = z1'x

that has 0z/0x; = 2x;

OZ eliminate z
=

A...

2 variable edge labels vs. n variable and constant ones

now we have n
e want: “minimal” representation
e scarcity: discrepancy of nm vs dimension of the manifold of all J(x),x € D
e required ops: edge eliminations, reroutings, normalization
e avoid refill, backtrack, randomized heuristics, propagate through remainder graph

e reachability of a minimal representation. e.g. w/o algebraic dependencies?

\o cheap propagation through remainder dual graph? /

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 64

4 ey A

DAG with unit/constant edges

)

\ faé%%" = Semat
74P

Utke Argonne

AD short course - MIT January 2009 Practical use of AD 65

scarcity heuristics - example behavior'

non-unit edge count over edge elimination step; variation via avoiding refill:

280 | | | | | | |
270 ‘
260
250
240
230
220
210
200
190
180

at minimum 26 reroutings performed; further post-elimination reduction via 8
normalizations
Note: relies heavily on precise data dependency analysis < coding style (!)

similar concerns as with sparsity: (local) automatic improvement observed up

to factor 2 but application-level exploitation is desired. /

\

Utke Argonne

AD short course - MIT January 2009

Practical use of AD

66

same example as before y = sin(z?)

OpenAD - reverse

mode example

program driver

use OAD_active

use OAD_rev

implicit none

external head

type(active) :: x, y

x%v=.5D0

y%d=1.0D0

our_rev_modeYtape=.TRUE.

call head(x,y)

print *, ’driver running for x =’,x%v

print *, °’ yields y =’,y%v,’ dy/dx =’,x/d
1+tan(x) "2-dy/dx =’,1.0D0+tan(x%v)**2-x%d

end program driver

print *, ’

> openad -c -m rj head.prepped.f90

openad log: openad.2009-01-28_13:16:59.1log"
parsing head.prepped.f90

analyzing source code and translating to xaif
adjoint transformation

getting runtime support file OAD_active.f90
getting runtime support file w2f__types.£f90
getting runtime support file ijaddr.c
getting runtime support file ad_inline.f
getting runtime support file 0AD_cp.£f90
getting runtime support file OAD_rev.£90
getting runtime support file 0AD_tape.f90
getting template file

translating transformed xaif to whirl
unparsing transformed whirl to fortran

postprocessing transformed fortran

Utke

Argonne

