(open)ad-joint issues

Jean Utke!

! University of Chicago and Argonne National Laboratory

July 17, 2009

b

AI’gO nne UChicago » P> office of

Science
[4:;; t: r:;:ctj o Argonne, . sasarian o anar

July 17, 2009
Utke : ’(open)ad-joint issues”, 1

Why adjoints by source transformation?

operator overloading source transformation

@ simple tool implementation as a @ complicated implementation of tools
library @ especially for adjoints

@ adjoints: generate & reinterpret an @ full front end, back end, analysis
execution trace — inefficient @ efficiency gains from

@ efficien ins come from: o e
ciliciency gamns come 1ro e compile time AD optimizations
e runtime AD optimization e source code (esp. activity) analysis
e optimized library e explicit control flow reversal
e inlining

@ requires manual type change

Adjoints for computationally complex applications require source
transformation!

July 17, 2009
Utke : ’(open)ad-joint issues”, 2

Why is this a user concern?

Adjoint efficiency depends on AD transformation algorithms and exploiting
higher level model properties (sparsity, iterative solvers, self adjointness,...)

BUT source transformation efficiency depends also on
@ capability for structured control flow reversal
@ code analysis accuracy
o partitioning the execution for checkpointing
the above are affected by
@ use of programming language features

@ using such features in certain inherently difficult to handle patterns
@ programming style

July 17, 2009
Utke : ’(open)ad-joint issues”, 3

therefore

@ knowing some AD tool “internal” algorithms is of interest to the user
(e.g. compare to compiler vectorization or interval arithmetic)

@ only very simple models with low computational complexity
— can get away with “something”

@ fully automatic solutions exist for narrowly defined setups (e.g. NEOS)

When dealing with any unsupported language feature / programming pattern :

@ Does it have a supported alternative and is the alternative more efficient (and
better maintainable in the model source)?

@ Is the adjoint of such an alternative more efficient than the adjoint of the
unsupported construct?

@ What is the effort of changing the model vs. the effort of implementing a
potentially complicated or rarely used or inherently inefficient adjoint
transformation?

OpenAD mode of operation: implement language features on demand so that we can

maximize the time available to improve the generally applicable AD algorithms!

July 17, 2009
Utke : ’(open)ad-joint issues”, 4

Structured vs. Unstructured Control Flow

@ think - GOTO, alternative ENTRY, early RETURN,

o structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

o simple view: use only loops and branches and no other control flow

constructs (some things are easily fixable though, e.g. turn STOPs into some error routine call ,...)
e example: early return from within a loop (CFG left, adjoint CFG right)

@ all is fine without the red arrow

@ by inspection: adjoint needs alternative ENTRY

(or coroy; but difficult to automate in general

@ need to trace more control flow path details

@ unstructured control flow is bad for compiler
optimization, already for the original model!

@ possible generic but inefficient fallback: trace
enumerated basic blocks, replay inverse trace
with GOTO <blockId> mo branches/loops left, more

memory needed for trace)

July 17, 2009
Utke : ’(open)ad-joint issues”, 5

Non-deterministic control flow

= control flow may change between two model executions on identical model inputs
because of a multiuser system environment
examples:

@ branching based on availability of system resources (that may be used by
others), disk space, memory, system load

@ communication in parallel execution for instance with mutexes, semaphores,
(justiﬁed) use of MPI_TEST (test for completion of one exchg. 1 to early start exhg. 2, adjoint needs to switch test

to exchg.2)
[ISEND] [ISEND | WAIT Jwarr
[RECV [RECV | SEND JSEND
d IRECV - IRECV
TEST;[YI‘gune Bl Bl
% [BI
ISEND . .
> STildone

- T T
RECV 4~ SEND <4~ _____| . » SEND,
WAIT < > WAIT IRECGV -~~~ T REGY

July 17, 2009
Utke : ’(open)ad-joint issues”, 6

Non-deterministic control flow 11

@ hard to automatically detect the context to which a tested condition
applies but the transformation requires the context information to
correctly generate & place the adjoint test condition

@ non-deterministic communication with MPI wildcards can be made
deterministic (at the expense of lower efficiency) by recording the actual
wild card values and using them in the adjoint sweep.

@ google “adjoinable MPI”

July 17, 2009
Utke : ’(open)ad-joint issues”, 7T

Checkpointing and non-contiguous data

checkpointing = saving program data (to disk)

@ “contiguous” data: scalars, arrays (even with stride > 1), strings,
structures,...

@ “non-contiguous” data: linked lists, rings, structures with pointers,...
@ checkpointing is very similar to “serialization”

@ Problem: decide when to follow a pointer and save what we point to

e

@ unless we have extra info this is not decidable at source transformation
time

@ possible fallback: runtime bookkeeping of things that have been saved (is
computationally expensive)

July 17, 2009
Utke : ’(open)ad-joint issues”, 8

Semantically Ambiguous Data

@ e.g. EQUIVALENCE (or its C counterpart union)
o data dependence analysis: dependencies propagate from one variable to all
equivalenced variables
e “activity” (i.e. the need to generate adjoint code for a variable) leaks to all
equivalenced variables whether appropriate or not
e certain technical problems with the use of an active type (as in OpenAD)

e work-arrays (multiple,0 semantically different fields are put into a (large)
work-array); access via index offsets
o data dependence analysis: there is array section analysis but in practice it
is often not good enough to reflect the implied semantics
o the entire work-array may become active / checkpointed

@ programming patterns where the analysis has no good way to track the
data dependencies:
o data transfer via files (don’t really want to assume all read data depends on

all written data)
e non-structured interfaces: exchanging data that is identified by a “string” as
done for instance in the ESMF interfaces (if you feel bad about Fortran think of void« in C.)

July 17, 2009
Utke : ’(open)ad-joint issues”, 9

Recomputation from Checkpoints and Program Resources

think of memory, file handles, sockets, MPI communicators,...

@ problem when resource allocation and
1 1 et deallocation happen in different partitions
o / (see hierarchical checkpointing scheme in
I / the figure on the left)

. / @ current AD checkpointing does not track

resources

@ dynamic memory is “easy” as long as
/ nothing is deallocated before the adjoint

/ sweep is complete.

July 17, 2009
Utke : ’(open)ad-joint issues”, 10

options to handle local deallocations

1 | subroutine foo(p,t)
2 integer, intent(inout), pointer, dimension(:) :: p
3 integer, target :: t(:)
4 t=2xp ! need adjoint pointer to point to (invisible) t1
5 p=>>t! pointer is overwritten
6 | end subroutine
7
8 | subroutine bar
9 | interface
10 subroutine foo(p,t)
11 integer, intent(inout), pointer, dimension(:) :: p
12 integer, target :: t(:)
13 | end subroutine
14 | end interface
15 integer, target, allocatable :: t1(:), t2(:)
16 | integer, pointer, dimension(:) :: p
17 allocate(t1(1)); allocate(t2(1))
18 | (=1
19 | p=>t1
20 | call foo(p,12)
21 printx, p(1) / p points now to 12
22 | end subroutine ! 11 and 12 are deallocated
23
24 | program p
25 | call bar()
26 | end program
July 17, 2009

Utke : ’(open)ad-joint issues”, 11

@ modify model to reuse/grow allocated memory

(rather than repeatedly allocate/deallocate), e.g.
turn t1 t2 into global vars,...

potential solution for allocate/deallocate within
a checkpointing partition without pointers:
track allocated memory to turn deallocates (here
implicit on exit line 22) into allocates (of the
appropriate size)

potential (complicated) solution when pointers
are involved: associate dynamic allocations in
forward sweep to dynamic allocations in the
adjoint sweep (adjoint needs to restore pointer
overwritten on line 5, but stored pointer value
references deallocated memory; need abstract
association between forward allocate on line 17
and adjoint allocate corresponding to implicit
deallocate on line 22)

quick OpenAD overview

e
@ www.mcs.anl.gov/OpenAD openéd front —ends (Epgy
@ forward and reverse whirl Sage3
@ source transformation
dular desi openaD/| | Open SageTo
@ modular aesign FortTk Analysis XAIF
@ aims at large problems
@ language 1nfiependent (Angelh)
transformation E{ xaifBooster J
. . . AD s ransformati
@ researching combinatorial problems (xerces J=[H{AD souree tamfomation
@ current Fortran front-end Open64 Fortran pipeline:

(Open64/SL branch at Rice U)

@ migration to Rose (already used for
C/C++ with EDG)
@ uses association by address

(i.e. has an active type) (whirl2xaif |~ openanalysis| | xaif2whirl]
@ Rapsodia for higher-order)
derivatives via type change

transformation

July 17, 2009
Utke :’(open)ad-joint issues”, 12

www.mcs.anl.gov/OpenAD

summary

for OpenAD (and other AD tools) there is no “simple” characterization of
what works and what doesn’t

currently being extended in the OpenAD implementation are:
@ complex/array arithmetic
@ various Fortran syntax elements
@ improved taping algorithm

If something doesn’t work as expected - talk to us to find out if there is a quick
fix or what it takes to make it work.

July 17, 2009
Utke : ’(open)ad-joint issues”, 13

	motivation
	Why is this a user concern
	Control Flow
	Checkpointing and Data
	Releasing Program Resources
	OpenAD
	summary

