solvers and derivatives

Jean Utke!

! University of Chicago and Argonne National Laboratory

Sisiphus Meeting
Feb. 16 2010

vV

AI’gO nne UChicago» W45 office of
NATIONAL Argonne, . 222 Soience
LABORATORY

Sisiphus 2010
Utke : "solvers and derivatives”. 1

simple

context: apply automatic differentiation to models that use (linear) solvers.
have Ax = b

also have solver (source code) to do the mapping b[,A] — x

want forward derivatives x = A~ (b [—Ab]) (parameter sensitivities)

want adjoints b=ATx[andA = —A TxxT = —bx7]
gradients for state estimates

questions

are A, b active ?

which solver is being used?

ignore the context and differentiate through with AD ?
efficiency/accuracy?

most models need an answer (not only climate research but also other subject
areas, e.g. NE, economics)

Sisiphus 2010
Utke : "solvers and derivatives”. 2

what kind of solvers?

e direct / iterative

e reuse the factors / derivative convergence

e self-adjoint?

e home grown solvers / libraries (petcs,lapack,...slap)

Sisiphus 2010
Utke : "solvers and derivatives”. 3

for example - lapack

... because I tried this myself

e linear system solvers, also for least-squares solutions,
eigen/singular value problems

e but lapack uses blas ...
e blas = basic linear algebra subprograms
o scalar,vector,vector/vector, matrix/vector,matrix/matrix
operations
e variations on precision and real vs complex
o total of 150 subroutines and functions in F77
o F77 reference implementation (slow)
o vendor specific implementations, ATLAS, Goto are optimized
for performance

Sisiphus 2010

Utke : "solvers and derivatives”. 4

lapack ... contd.

similar situation here

e reference implementation on netlib

@ again vendor implementations optimized for speed

e with type/precision variations 1.5k routines (400+ marked “auxiliary”)
observations after experimenting with a nuclear physics code

@ blas reference implementation is known to be slow

@ contains some manual code optimizations that can mislead AD tools

@ lapack to blas calls use a lot of difficult-to-analyze offsets into work
arrays

o efficiency problems with combinations of matrix-vector and
matrix/matrix ops = inefficient derivatives

@ one-shot implementations are not reusable across AD tools
o variants caused by different activity patterns

observations apply to libraries in general

Sisiphus 2010

Utke : "solvers and derivatives”. 5

solution

near term:

@ use recipies of existing OpenAD capabilities for wrapping solver calls
(PatricK)

@ provide solutions for use of slap/petsc solvers in ice models
long term:

@ treat blas/solver routines as high-level intrinsics

@ generate derivative code & interfaces

o performance advantage from explicit derivative computations

°

avoid pitfalls from brute force differentiations (for example problem with
dgesvd from Bastani/Guerrieri)

reusable solution

Sisiphus 2010

Utke : "solvers and derivatives’. 6

why automatic differentiation?
given: some numerical model y = f(x) : R” — R™ implemented as a
(large / volatile) program
wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...
@ don’t pretend we know nothing about the program
(and take finite differences of an oracle)

© get machine precision derivatives as Jx or y’.J or ...
(avoid approximation-versus-roundoff problem)

© the reverse (aka adjoint) mode yields “cheap” gradients

@ if the program is large, so is the adjoint program, and

so is the effort to do it manually ... easy to get wrong but hard to debug
Sisiphus 2010

Utke : ”solvers and derivatives”. 7

A

OpenAD overview - current

@ www.mcs.anl.gov/OpenAD
@ forward and reverse o
i OpenAD/ pen SageTo

@ source transformation {Form(H Analysis YXAIF
@ modular design
o ai

aims at large problems CAngel h
@ language independent E{ xaifBooster J

tl‘ans forma tion m (AD source transformation)
@ researching combinatorial problems Fortran pipeline:

@ current Fortran front-end Open64
(Open64/SL branch at Rice U)
@ uses association by address

<
\

(i.e. has an active type) /
@ Rapsodia for higher-order [whiri2xait |<={openanalysis] [xaif2whirl]
derivatives via type change
ransformation
transformatio
Sisiphus 2010

Utke : "solvers and derivatives”. 8

www.mcs.anl.gov/OpenAD

OpenAD overview - changes

P&P

Fort,/ front — ends (gEpg/
Rose Rose

RoseTo
XAIF

Open
Analysis

@ expanded language coverage

(common blocks, equivalence,
unstrucctured control flow, xaifBooster
intrinsics,.. .) m (AD source transformation)

@ new pre- and postprocessor (python, Fortran pipeline:
MITgcm consequences)
@ migration from Open64 to Rose

(LLNL)
[rose2xaif]«—»[OpenAnalysis] xaif2rose]
Z '\
Sisiphus 2010

Utke : "solvers and derivatives”. 9

some research toopis

adjoinable MPI

optimal local preaccumulation (scarcity)
additional parallelism from checkpointing
higher order derivatives (in parallel)

Sisiphus 2010
Utke : "solvers and derivatives”. 10

some research toopis

adjoinable MPI

optimal local preaccumulation (scarcity)
additional parallelism from checkpointing
higher order derivatives (in parallel)

Sisiphus 2010
Utke : "solvers and derivatives”. 11

make it work on code <insert something here> ...

some other applications

@ suite of reactor models

e old style Fortran
e equivalence, unstructured control flow,...

e transport of nuclear materials (container safety)

e Fortran 9X
e dependecies via files
e dynamic memory

e forthcoming: ice sheet models (NSF and DOE projects)

needs migration to Rose

Sisiphus 2010
Utke : "solvers and derivatives”. 12

for MITgcm

installed on beagle (updated/recompiled nightly)

w. Chris (use w/o intervention)
e cost function change,
e adding extra output
e compiler optimization
e computational cost
w. Patrick 20 year 1x1 run on beagle

o setup hurdle (find the right combination of modules for the sge run script)
e bottleneck checkpointing via NFS (switch to local disk)

usability: remove extra steps e.g. Common Block to Module conversion,
some specific changes to non-transformed files. e.g. cost_final

next step w. Chris: “high-res” run

Sisiphus 2010
Utke : "solvers and derivatives”. 13

