
Adjoints with automatic differentiation:
parallel computation and programming language features

Jean Utke1

1University of Chicago and Argonne National Laboratory

June 2011

June 2011
Utke :”adjoints w AD”, 1

outline

assumption:

discrete adjoints ≡ discretize→ differentiate

aka automatic differentiation (AD) aka computational differentiation

motivation
AD basics, reversal schemes and checkpointing
parallelism
AD and programming language features

June 2011
Utke :”adjoints w AD”, 2

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

⇒ use tools to do it automatically!

June 2011
Utke :”adjoints w AD”, 3

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

⇒ use tools to do it automatically?

June 2011
Utke :”adjoints w AD”, 4

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

⇒ use tools to do it at least semi-automatically!

June 2011
Utke :”adjoints w AD”, 5

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t2

t1

code list→ intermediate values t1 and t2
each intrinsic v = φ(w, u) has local partials ∂φ

∂w , ∂φ∂u
e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

June 2011
Utke :”adjoints w AD”, 6

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t1

t2

code list→ intermediate values t1 and t2

each intrinsic v = φ(w, u) has local partials ∂φ
∂w , ∂φ∂u

e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)
y = t2*c

What do we do with this?

June 2011
Utke :”adjoints w AD”, 7

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

code list→ intermediate values t1 and t2
each intrinsic v = φ(w, u) has local partials ∂φ

∂w , ∂φ∂u
e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

June 2011
Utke :”adjoints w AD”, 8

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

code list→ intermediate values t1 and t2
each intrinsic v = φ(w, u) has local partials ∂φ

∂w , ∂φ∂u
e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

June 2011
Utke :”adjoints w AD”, 9

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

for each v = φ(w, u) propagate forward in order v̇ = ∂φ
∂w ẇ + ∂φ

∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)
t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

June 2011
Utke :”adjoints w AD”, 10

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

for each v = φ(w, u) propagate forward in order v̇ = ∂φ
∂w ẇ + ∂φ

∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

June 2011
Utke :”adjoints w AD”, 11

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

for each v = φ(w, u) propagate forward in order v̇ = ∂φ
∂w ẇ + ∂φ

∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)
d t2 = d t1*p1
y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

June 2011
Utke :”adjoints w AD”, 12

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

for each v = φ(w, u) propagate forward in order v̇ = ∂φ
∂w ẇ + ∂φ

∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)
d t2 = d t1*p1
y = t2*c
d y = d t2*c + d c*t2

What is in d y ?

June 2011
Utke :”adjoints w AD”, 13

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

for each v = φ(w, u) propagate forward in order v̇ = ∂φ
∂w ẇ + ∂φ

∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)
d t2 = d t1*p1
y = t2*c
d y = d t2*c + d c*t2

What is in d y ?

June 2011
Utke :”adjoints w AD”, 14

d y contains a projection

ẏ = Jẋ computed at x0

for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

yields the first element of the gradient

all gradient elements cost O(n) function evaluations

This as a source transformation...

June 2011
Utke :”adjoints w AD”, 15

d y contains a projection

ẏ = Jẋ computed at x0

for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

yields the first element of the gradient

all gradient elements cost O(n) function evaluations

This as a source transformation...

June 2011
Utke :”adjoints w AD”, 16

d y contains a projection

ẏ = Jẋ computed at x0

for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

yields the first element of the gradient

all gradient elements cost O(n) function evaluations

This as a source transformation...

June 2011
Utke :”adjoints w AD”, 17

applications
for instance

ocean/atmosphere state estimation & uncertainty quantification, oil
reservoir modeling

computational chemical engineering

CFD (airfoil shape optimization, suspended droplets e.g. by Dervieux,
Forth, Gauger, Giles et al.)

beam physics

mechanical engineering (design optimization)

use

gradients
Jacobian projections

Hessian projections

higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients?

June 2011
Utke :”adjoints w AD”, 18

applications
for instance

ocean/atmosphere state estimation & uncertainty quantification, oil
reservoir modeling

computational chemical engineering

CFD (airfoil shape optimization, suspended droplets e.g. by Dervieux,
Forth, Gauger, Giles et al.)

beam physics

mechanical engineering (design optimization)

use

gradients
Jacobian projections

Hessian projections

higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients?
June 2011
Utke :”adjoints w AD”, 19

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 20

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y

d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 21

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y

d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 22

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0

d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 23

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2

d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 24

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 25

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1

What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 26

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

June 2011
Utke :”adjoints w AD”, 27

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

June 2011
Utke :”adjoints w AD”, 28

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

June 2011
Utke :”adjoints w AD”, 29

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

June 2011
Utke :”adjoints w AD”, 30

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

June 2011
Utke :”adjoints w AD”, 31

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

June 2011
Utke :”adjoints w AD”, 32

ADOL-C

http://www.coin-or.org/projects/ADOL-C.xml

operator overloading creates an execution trace (also called ’tape’)

Speelpenning example y =
∏

i
xii evaluated at xi = i+1

i+2

#include "adolc.h"
a

double *x = new

a

double[n];

a

double t = 1;
double y;

trace on(1);

for(i=0; i<n; i++) {
x[i]

<<

= (i+1.0)/(i+2.0);
t *= x[i]; }

y = t;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

June 2011
Utke :”adjoints w AD”, 33

ADOL-C

http://www.coin-or.org/projects/ADOL-C.xml

operator overloading creates an execution trace (also called ’tape’)

Speelpenning example y =
∏

i
xii evaluated at xi = i+1

i+2

#include "adolc.h"
adouble *x = new

adouble[n];
adouble t = 1;
double y;
trace on(1);
for(i=0; i<n; i++) {
x[i]

<<= (i+1.0)/(i+2.0);
t *= x[i]; }

t >>= y;
trace off();
delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

June 2011
Utke :”adjoints w AD”, 34

ADOL-C

http://www.coin-or.org/projects/ADOL-C.xml

operator overloading creates an execution trace (also called ’tape’)

Speelpenning example y =
∏

i
xii evaluated at xi = i+1

i+2

#include "adolc.h"
adouble *x = new

adouble[n];
adouble t = 1;
double y;
trace on(1);
for(i=0; i<n; i++) {
x[i]

<<= (i+1.0)/(i+2.0);
t *= x[i]; }

t >>= y;
trace off();
delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

June 2011
Utke :”adjoints w AD”, 35

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b a

c

*

*

a b c

t2

t2

sin

p1

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 36

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b a
*

*

a b c

t2

t2

sin

p1

c

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 37

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b a
*

*

a b c

t2

t3

t3 = c*p1

t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 38

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b
*

*

a b c

t2

t3

a

t3 = c*p1

t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 39

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

*

a b c

t2

t3

t4b

t3 = c*p1
t4 = t3*a

t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 40

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

*

a b c

t2

t3

t4b

t3 = c*p1
t4 = t3*a

t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 41

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

a b c

t2

t5 t4

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 42

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

a b c

t2

t5 t4

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

June 2011
Utke :”adjoints w AD”, 43

sidebar: toy example - source transformation reverse mode
code preparation

⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 44

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 45

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 46

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 47

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 48

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 49

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 50

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver

use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 51

sidebar: toy example - source transformation reverse mode
code preparation⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y
!$openad INDEPENDENT(x)

y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver

use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

June 2011
Utke :”adjoints w AD”, 52

forward vs. reverse

simplest rule: given y = f (x) : Rn 7→ Rm use reverse if n� m (gradient)
what if n ≈ m and large

want only projections, e.g. Jẋ
sparsity (e.g. of the Jacobian)
partial separability (e.g. f (x) =

∑
(fi(xi)), xi ∈ Di b D 3 x)

intermediate interfaces of different size

the above may make forward mode feasible
(projection ȳTJ requires reverse)

higher order tensors (practically feasible for small n)→ forward mode
(reverse mode saves factor n in effort only once)

this determines overall propagation direction, not necessarily the local
preaccumulation (combinatorial problem)

June 2011
Utke :”adjoints w AD”, 53

source transformation vs. operator overloading

complicated implementation of tools
especially for reverse mode
full front end, back end, analysis
efficiency gains from

compile time AD optimizations
activity analysis
explicit control flow reversal

source transformation based type
change & overloaded operators
appropriate for higher-order
derivatives.
efficiency depends on analysis
accuracy

simple tool implementation
reverse mode: generate & reinterpret
an execution trace→ inefficient
implemented as a library
efficiency gains from:

runtime AD optimization
optimized library
inlining (for low order)

manual type change

� formatted I/O, allocation,...
matching signatures (Fortran)
easier with templates

higher-order derivatives⇒ source transformation based type change
+ overloaded operators.

June 2011
Utke :”adjoints w AD”, 54

Reversal Schemes

why it is needed

major modes

alternatives

June 2011
Utke :”adjoints w AD”, 55

recap: store intermediate values / partials

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

June 2011
Utke :”adjoints w AD”, 56

storage also needed for control flow trace and addresses...

original CFG⇒ record a path through the CFG⇒ adjoint CFG

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

⇒

Entry(1)

B(2)'

Branch(3)

B(4)'

T

iLc

 F

pB T

EndBranch(8)

B(9)'

Exit(10)

Loop(5)

B(6)'

T

pLc

F

+Lc

EndLoop(7)

pB F

⇒

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

often cheap with structured control flow and simple address computations (e.g.

index from loop variables)

unstructured control flow and pointers are expensive

June 2011
Utke :”adjoints w AD”, 57

trace all at once = global split mode

subroutine A()
call B(); call

D(); call B();
end subroutine A

subroutine B()
call C()

end subroutine B

subroutine C()
call E()

end subroutine C

B D B

CEC

A
1

1 1 2

211

A A

D B B D B

CECCEC

B

1

1 1

1 1

1

1

1

1

1

2 2

22

S
n

n-th invocation of subroutine S subroutine call

run forward order of execution

store checkpoint restore checkpoint

run forward and tape run adjoint

have memory limits - need to create tapes for short sections in reverse order

subroutine is “natural” checkpoint granularity, different mode...
June 2011
Utke :”adjoints w AD”, 58

trace one SR at a time = global joint mode

1

C

B

A

D

E C

B

A

B

C C

B

C E

D D

E E

B

C C

B

C

1

2

1

1 1 2 2

1 1 2 2 2 2 1

1 1

1 1

1 1

1 1

taping-adjoint pairs
checkpoint-recompute pairs
the deeper the call stack - the more recomputations (unimplemented solution -
result checkpointing)
familiar tradeoff between storing and recomputation at a higher level but in
theory can be all unified.
in practice - hybrid approaches...

June 2011
Utke :”adjoints w AD”, 59

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters.

, memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 60

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji

& 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 61

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 62

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 63

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 64

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 65

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 66

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 67

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 68

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 69

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 70

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 71

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 72

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; C++ and F9X
implementation

June 2011
Utke :”adjoints w AD”, 73

MPI - data transfer between processes

simple MPI program needs 6 calls :
mpi init // initialize the environment
mpi comm size// number of processes in the communicator
mpi comm rank// rank of this process in the communicator
mpi send // send (blocking)
mpi recv // receive (blocking)
mpi finalize // cleanup

example adjoining blocking communication between 2 processes:

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)

a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

use the communication graph as model

June 2011
Utke :”adjoints w AD”, 74

MPI - halo exchange

MPI usage in the MITgcm ocean model: exchange tile halos, reductions
operations. synchronization...

interfaces to various languages (here using Fortran), C implementation

total 287 routines (MPI-2)

covering: communication, setup, grouping of processes, I/O, status
queries, topologies, debugging,...

concentrate on portion “relevant” for AD (e.g. ignore one-sided comm. ?)

need to enable activity analysis
consider the communication modes:

for send: mpi [i][b|s|r]send
for receive: mpi [i]recv

ensure correctness and aim at improving efficiency
⇒ want the same for adjoints

June 2011
Utke :”adjoints w AD”, 75

MPI - halo exchange

MPI usage in the MITgcm ocean model: exchange tile halos, reductions
operations. synchronization...

interfaces to various languages (here using Fortran), C implementation

total 287 routines (MPI-2)

covering: communication, setup, grouping of processes, I/O, status
queries, topologies, debugging,...

concentrate on portion “relevant” for AD (e.g. ignore one-sided comm. ?)

need to enable activity analysis
consider the communication modes:

for send: mpi [i][b|s|r]send
for receive: mpi [i]recv

ensure correctness and aim at improving efficiency
⇒ want the same for adjoints

June 2011
Utke :”adjoints w AD”, 76

MPI - halo exchange

MPI usage in the MITgcm ocean model: exchange tile halos, reductions
operations. synchronization...

interfaces to various languages (here using Fortran), C implementation

total 287 routines (MPI-2)

covering: communication, setup, grouping of processes, I/O, status
queries, topologies, debugging,...

concentrate on portion “relevant” for AD (e.g. ignore one-sided comm. ?)

need to enable activity analysis

consider the communication modes:
for send: mpi [i][b|s|r]send
for receive: mpi [i]recv

ensure correctness and aim at improving efficiency
⇒ want the same for adjoints

June 2011
Utke :”adjoints w AD”, 77

MPI - halo exchange

MPI usage in the MITgcm ocean model: exchange tile halos, reductions
operations. synchronization...

interfaces to various languages (here using Fortran), C implementation

total 287 routines (MPI-2)

covering: communication, setup, grouping of processes, I/O, status
queries, topologies, debugging,...

concentrate on portion “relevant” for AD (e.g. ignore one-sided comm. ?)

need to enable activity analysis
consider the communication modes:

for send: mpi [i][b|s|r]send
for receive: mpi [i]recv

ensure correctness and aim at improving efficiency
⇒ want the same for adjoints

June 2011
Utke :”adjoints w AD”, 78

MPI - halo exchange

MPI usage in the MITgcm ocean model: exchange tile halos, reductions
operations. synchronization...

interfaces to various languages (here using Fortran), C implementation

total 287 routines (MPI-2)

covering: communication, setup, grouping of processes, I/O, status
queries, topologies, debugging,...

concentrate on portion “relevant” for AD (e.g. ignore one-sided comm. ?)

need to enable activity analysis
consider the communication modes:

for send: mpi [i][b|s|r]send
for receive: mpi [i]recv

ensure correctness and aim at improving efficiency
⇒ want the same for adjoints

June 2011
Utke :”adjoints w AD”, 79

correctness as in ...

correct parameters ? (data,endpoints)

no deadlocks ? (look at communication graphs)

for example: data exchange between P1 and P2
SEND SEND

RECV RECV

P1 P2

... has a cycle (involving comm.edges)

break with buffered∗ sends, reordering, non-blocking sends, ...

RECV RECV

P1 P2

SEND

RECV

P1 P2

ISENDBSENDBSEND RECV

SEND

RECVRECV

WAITWAIT

ISEND

the last idiom is used in MITgcm ∗
resource starvation?

June 2011
Utke :”adjoints w AD”, 80

easy adjoints for blocking calls

easy adjoint transformation: send 7→ recv and recv 7→ send

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)

a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

hyp.: if the forward communication graph is acyclic, so is the adjoint; look at the
communication graph with reversed edges
for activity analysis: difficult to statically determine send/recv pairs; e.g.
consider set of all possible dynamic comm. graphs
with wildcards (but no threads): record actual sources/tags on receive and send
with recorded tag to recorded source in the adjoint sweep
hyp.: no forward deadlock ≡ no cycle in current dynamic comm. graph⇒ no
cycle in inverted dynamic comm. graph ≡ no adjoint deadlock

June 2011
Utke :”adjoints w AD”, 81

MITgcm uses manual adjoints for halo exchange

w
es

t

o
v
er

la
p

ed

g
e

ea
st

ed

g
e

P0 P1 P2

P

P

=

=

+=

+=

ea
st

o
v
er

la
p

w
es

t

aE=
edge
east

isend(aE,r)
1

edge
west

waitall(r)

aW=

isend(aW,r)
2

P1

overlap

P0

east

recv(bE)

=bE west
overlap

P2

recv(bW)

=bW

actually in E-W and N-S; need to consider corners...

every tile needs to talk to its
neighbors

prevent deadlocks by
imposing ordering ? (requires
high-level view and imposes
order)

prevent deadlocks by buffered
communication? (can run out
of bufferspace)

use non-blocking calls, the
idiom used here is
ISEND∗ - RECV∗ - WAITALL

no “easy” transformation;
multiple in-edges at
waitall

June 2011
Utke :”adjoints w AD”, 82

no easy transformation because ...

consider the communication graphs for simple nonblocking idioms

need to retain correctness, i.e. use nonblocking calls in the adjoint

y=0

x+=t

y=0

x+=tISEND(x,r)

WAIT(rS ,x)

RECV(y)

ISEND(x,r)

WAIT(rS ,x)

RECV(y) SEND(y)

WAIT(r)

IRECV(t,r)

SEND(y)

WAIT(r)

IRECV(t,r)

x+=t

y=0 y=0

x+=t

IRECV(y,r)

WAIT(rR)

SEND(x)

IRECV(y,r)

WAIT(r)

SEND(x)

WAIT(r) WAIT(r)

R,y ,y ISEND(y,r)

RECV(t) RECV(t)

ISEND(y,r)

the above transformations are provably
correct

extensions to convey context
⇒ enables a transformation recipe per call

promises to not read or write the
respective buffer

RECV

ISEND

WAITALL

ISEND

RECV

WAITALL

June 2011
Utke :”adjoints w AD”, 83

...solution A

require individual, marked WAITs (achieves 1 on 1 comm edges)

i
R

i
R

WAIT(r)R
i

b =0
IRECV(b ,r)

ISEND(b ,r)

ISEND(b ,r)

S

R

1
S

2

1
S

2
S

R
1 1

WAIT(r R,b2)2

WAIT(r 1
R,b1

R)R

R R

WAIT(r S,b2
S)S 2

WAIT(r 1
S,b1

S)S

ISEND(b , r)i
R

k k
SIRECV(t ,r)

R
2
R

2IRECV(b ,r)

WAIT(r)S
k

b +=tk
S

extra arguments permit simple transformation recipe with (otherwise)
indistinguishable request and buffer arrays

but individual WAITs impose artificial order⇒ bad for performance

June 2011
Utke :”adjoints w AD”, 84

...solution B

require a symmetric counterpart to the waitall; think “anti waitall”

retains more efficient pattern ,

extend promises symmetrically to AWAITALL

IRECV(b ,r)k
R

n+k

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r)

AWAITALL(r)

i
S

iIIRECV(b ,r)

n+kk
RZISEND(b ,r)

WAITALL(r)

wrapped MPI calls have logic to delay zeroing/increment buffers

goal: “simple” adjoint interpretation for each call

June 2011
Utke :”adjoints w AD”, 85

in the OpenAD prototype

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r)

n+kk
R,rRECV(b)

1 call ampi awaitall(exchNReqsX(1,bi,bj), &
2 exchReqIdX(1,1,bi,bj), &
3 mpiStatus, mpiRC)

1 call ampi isend(westSendBuf RL(1,eBl,bi,bj),&
2 theSize, theType, theProc, theTag, &
3 MPI COMM MODEL,&
4 exchReqIdX(pReqI,1,bi,bj), &
5 exchNReqsX(1,bi,bj),&
6 mpiStatus , mpiRc)

1 call ampi wrecv(westRecvBuf RL(1,eBl,bi,bj),&
2 theSize, theType, theProc, theTag,&
3 MPI COMM MODEL ,&
4 exchReqIdX(pReqI,1,bi,bj), &
5 exchNReqsX(1,bi,bj), &
6 mpiStatus, mpiRc)

1 call ampi waitall(exchNReqsX(1,bi,bj),&
2 exchReqIdX(1,1,bi,bj), &
3 mpiStatus, mpiRC)

June 2011
Utke :”adjoints w AD”, 86

what about <insert problem here> ?

solutions A & B disambiguate edges in dynamic comm. graph

don’t do much for static analysis:

e.g. modeled with MPI-enhanced CFG
(Strout/Hovland/Kreaseck)

useful for activity analysis

branch on rank

end branch

0

1 2

3

send(a,tagA) send(b,tagB)

recv(c,tagC) recv(d,tagD)

would like to identify communication “channels” using
pragmas (can make up anything but no external support), or
aspects (existing systems w support, suggested by B. Gropp; no
“Aspecttran”)

group certain send - recv - wait / certain collective and barrier calls
would like runtime validity checks
reusable for analysis, debugging, adjoint generation
don’t assume locality of channels in the source or single call location of
collective ops

June 2011
Utke :”adjoints w AD”, 87

what about barrier ?

simple synch point⇒ same for adjoint, example:
x+=tIRECV(y,r)

WAIT(r)

WAIT(r)

R ,y

BARRIER BARRIER

RSEND(x) IRECV(t,r)

RSEND(y)

y=0

BARRIERBARRIER

retains pattern (rsend may improve performance by avoiding hand shake)

barrier itself does not conceptualize a critical section

BARRIER

BARRIER BARRIER

BARRIER

BARRIER

P1 P2 P2P1

BARRIER

do nasty stuff, e.g. shared
memory maniputation do nasty stuff

can rationalize the need for barrier enclosed section for correctness of
original program

note - MPI’s one-sided commun. has “fence” to demark section ,

June 2011
Utke :”adjoints w AD”, 88

collective communication

example: reduction followed by broadcast
b0 =

∑
ai followed by bi = b0∀i

conceptually simple; reduce 7→ bcast and bcast 7→ reduce
P
i

P
j

bcast(b)

bcast(b)

bcast(b)

reduce(a,b,+)

reduce(a,b,+)

reduce(a,b,+)

0
P

P
i

P
j

bcast(t);a+=...

reduce(b,t,+) bcast(t);a+=...

reduce(b,t,+)
bcast(t);a+=...

reduce(b,t,+)

0
P

adjoint: t0 =
∑
b̄i followed by āi+=t0∀i

has single transformation points (connected by hyper communication
edge)

efficiency for product reduction because of increment āi+=
∂b0
∂ai

t0, ∀i

June 2011
Utke :”adjoints w AD”, 89

what about test ?

for example loop and do “other stuff” (B1) until communication
completes, then continue (B2)

B0 B0

S ,x)

RECV(y)

TEST(r

ISEND(x,r)

B2

S ,x)

RECV(y)

TEST(r

ISEND(x,r)

B2

B1

False False

T
ru

e

T
ru

e
B1

x+=t

y=0

B1

B2

IRECV(t,r)

SEND(y)

WAIT(r)

x+=t

y=0

B1

B2

IRECV(t,r)

SEND(y)

WAIT(r)

l times l’ times

does not retain the TEST pattern

consider a more “plausible” example with deterministic loop count

June 2011
Utke :”adjoints w AD”, 90

attempt to be “plausible”

e.g. minimize order imposed on two sequential exchanges; B2 is costly
ISEND

RECV

RECV

WAIT

fixed loop count

True

F
al

se B1
ISEND

B2

ISEND

RECV

RECV

WAIT

fixed loop count

True

F
al

se B1
ISEND

B2

TEST||done TEST||done

WAIT

SEND

SEND

IRECV

B2

TEST||done

T
ru

e

IRECV

B1
ISEND

WAIT

SEND

SEND

IRECV

B2

TEST||done

T
ru

e

IRECV

B1
ISEND

False False

can retain pattern only if TEST can be moved to subsequent exchange;
i.e. TEST needs to be identified with both contexts

safe (less efficient) fallback is WAIT

how about MPI TEST{ALL|ANY|SOME}?...

June 2011
Utke :”adjoints w AD”, 91

with openMP

work with Michael Förster, Uwe Naumann (Aachen)

has an established set of directives
some known implications for adjoints
good entry point for improving data dependency analysis

Which directives are important?

June 2011
Utke :”adjoints w AD”, 92

with openMP

work with Michael Förster, Uwe Naumann (Aachen)

has an established set of directives

some known implications for adjoints
good entry point for improving data dependency analysis

Which directives are important?

June 2011
Utke :”adjoints w AD”, 93

with openMP

work with Michael Förster, Uwe Naumann (Aachen)

has an established set of directives
some known implications for adjoints

good entry point for improving data dependency analysis

Which directives are important?

June 2011
Utke :”adjoints w AD”, 94

with openMP

work with Michael Förster, Uwe Naumann (Aachen)

has an established set of directives
some known implications for adjoints
good entry point for improving data dependency analysis

Which directives are important?

June 2011
Utke :”adjoints w AD”, 95

with openMP

work with Michael Förster, Uwe Naumann (Aachen)

has an established set of directives
some known implications for adjoints
good entry point for improving data dependency analysis

Which directives are important?

June 2011
Utke :”adjoints w AD”, 96

Sequential version of dot product

1 int main(int argc, char∗ argv[])
2 {
3 double sum;
4 double x[N], y[N];
5

6 init(x,y);
7 sum = 0.;
8 for(int i=0; i<N; i++)
9 sum = sum + x[i]∗y[i];

10 cout << ”sum = ” << sum << endl;
11 return 0;
12 }

June 2011
Utke :”adjoints w AD”, 97

OpenMP version of dot product

1 int main(int argc, char∗ argv[])
2 {
3 double sum;
4 double x[N], y[N];
5

6 init(x,y);
7 sum = 0.;
8 #pragma omp parallel for reduction(+:sum)
9 for(int i=0; i<N; i++)

10 sum = sum + x[i]∗y[i];
11 cout << ”sum = ” << sum << endl;
12 return 0;
13 }

June 2011
Utke :”adjoints w AD”, 98

Supported subset of OpenMP

Subset of OpenMP that should be supported in a first step:

1 #pragma omp parallel for private(i,j) firstprivate(v)
lastprivate(v)

2 for(i=0; i<n; i++) {
3 for(j=0; j<m; j++) { ... }
4 }

All variables listed in clause private are defined as a local copy inside
of the thread.

firstprivate is as private but the variables are being initialized
with the value of the global variable.

lastprivate is as private but the thread that executes the last
iteration copies the local value of v into the global variable v.

June 2011
Utke :”adjoints w AD”, 99

Parallelism in Derivative Code

Given a parallel loop matrix product in the original code:

1 #pragma omp parallel for private(j)
2 for(i=0;i<m;i++) {
3 y[i]=0;
4 for(j=0;j<n;j++)
5 y[i]+=A[i][j]*x[j];
6 }

June 2011
Utke :”adjoints w AD”, 100

Parallelism in Forward Mode

Data flow stays the same.

1 #pragma omp parallel for private(j)
2 for(i=0;i<m;i++) {
3 t1_y[i]=0;
4 y[i]=0;
5 for(j=0;j<n;j++) {
6 t1_y[i]=t1_y[i]*1
7 +t1_A[i][j]*x[j]
8 +t1_x[j]*A[i][j];
9 y[i]+=A[i][j]*x[j];

10 }
11 }

June 2011
Utke :”adjoints w AD”, 101

Parallelism in Reverse Mode

Adjoint code would look something like:

1 #pragma omp parallel for private(j)
2 for(i=0;i<m;i++) {
3 y[i]=0;
4 for(j=0;j<n;j++)
5 y[i]+=A[i][j]*x[j];
6 }
7 // reverse run
8 #pragma omp parallel for private(j)
9 for(i=m-1;i>=0;i--) {

10 for(j=n-1;j>=0;j--) {
11 a1_A[i][j]+=a1_y[i]*x[j];
12 a1_x[j]+=a1_y[i]*A[i][j];
13 }
14 a1_y[i]=0;
15 }

June 2011
Utke :”adjoints w AD”, 102

Parallelism in Reverse Mode

Adjoint code would look something like:

1 #pragma omp parallel for private(j)
2 for(i=0;i<m;i++) {
3 y[i]=0;
4 for(j=0;j<n;j++)
5 y[i]+=A[i][j]*x[j];
6 }
7 // reverse run
8 #pragma omp parallel for private(j)
9 for(i=m-1;i>=0;i--) {

10 for(j=n-1;j>=0;j--) {
11 a1_A[i][j]+=a1_y[i]*x[j];

12 a1 x[j]+=a1 y[i]*A[i][j];

13 }
14 a1_y[i]=0;
15 }

June 2011
Utke :”adjoints w AD”, 103

Parallelism in Reverse Mode

Need of attribute grammar that performs an analysis to get the set
’critical’ variables (TBD).
These ’critical’ variables have to be handled:

Synchronization: Put assignments with critical variable on lhs in critical
section.
Memory extension: Each thread gets its own private copy of this variable.
Only master writes critical variables (synchronization between
master/slaves needed)

June 2011
Utke :”adjoints w AD”, 104

Under the Hood Handling of OpenMP

Compilers like Rose/gcc do outline the parallel region as indicated here as
pseudocode:

1 #pragma omp parallel for private(v)
2 for(i=0;i<n;i++)
3 BB;

Outlining of the parallel regions:

1 void out_omp_1(...){
2 double v;
3 for(i=my_low;i<my_upper;i++)
4 BB;
5 }

The original OpenMP loop is replaced with call to GNU OMP library:
GOMP_parallel_start(out_omp_1)

June 2011
Utke :”adjoints w AD”, 105

OpenMP Clause private in FM

In AD forward mode we have to ensure that the derivative variable for v
is a local variable as well.

In case of ADIC there is no change needed since both variables are
wrapped in a new data type DERIV_TYPE.

1 void out_omp_1_adic(...){
2 DERIV_TYPE v;
3 for(i=my_low;i<my_upper;i++)
4 BB;
5 }

June 2011
Utke :”adjoints w AD”, 106

OpenMP Clause firstprivate in FM

Only difference to the private case is the initialization of v.

Struct assignments are supported in C if same type on both sides.

1 void out_omp_1(DERIV_TYPE* global_v){
2 DERIV_TYPE v=*global_v;
3 for(i=my_low;i<my_upper;i++)
4 BB;
5 }

June 2011
Utke :”adjoints w AD”, 107

OpenMP Clause lastprivate in FM

Only difference to the private case is that data is written to the global
variable at the end of the last iteration.

1 void out_omp_1(DERIV_TYPE* global_v){
2 DERIV_TYPE v;
3 for(i=my_low;i<my_upper;i++)
4 BB;
5 if(my_upper==n-1) *global_v=v;
6 }

June 2011
Utke :”adjoints w AD”, 108

OpenMP Clause private in RM
Each iteration needs its own stack to store the values during forward
sweep.

1 {
2 #pragma omp parallel for private(v)
3 for(i=0;i<n;i++) {
4 BB1;
5 push[i](v);v=x[i];
6 BB2;
7 }
8 adjoint_out_omp_1(...);
9 }

10 void adjoint_out_omp_1(...){
11 double v; double a1_v=0.;
12 for(i=my_low;i<my_upper;i++) {
13 adjoint(BB2);
14 v=pop[i](v); a1_x[i]+=a1_v; a1_v=0;
15 adjoint(BB1);
16 }
17 }

June 2011
Utke :”adjoints w AD”, 109

OpenMP Clause firstprivate in RM
1 {
2 #pragma omp parallel for firstprivate(v)
3 for(i=0;i<n;i++) {
4 // v=global_v;
5 BB1;
6 push[i](v);v=x[i];
7 BB2;
8 }
9 adjoint_out_omp_1(&v);

10 }
11 void adjoint_out_omp_1(double* a1_global_v){
12 double v; double a1_v=0.;
13 for(i=my_low;i<my_upper;i++) {
14 adjoint(BB2);
15 v=pop[i](v); a1_x[i]+=a1_v; a1_v=0;
16 adjoint(BB1);
17 critical{ *a1_global_v+=a1_v };
18 }
19 }

June 2011
Utke :”adjoints w AD”, 110

OpenMP Clause lastprivate in RM
1 {
2 #pragma omp parallel for lastprivate(v)
3 for(i=0;i<n;i++) {
4 BB1;
5 push[i](v);v=x[i];
6 BB2;
7 // if(i==n-1){ *global_v=v; }
8 }
9 adjoint_out_omp_1(...);

10 }
11 void adjoint_out_omp_1(double* a1_global_v){
12 double v; double a1_v=0.;
13 for(i=my_low;i<my_upper;i++) {
14 if(my_upper==n-1){ a1_v+=*a1_global_v; }
15 adjoint(BB2);
16 v=pop[i](v); a1_x[i]+=a1_v; a1_v=0;
17 adjoint(BB1);
18 }
19 }

June 2011
Utke :”adjoints w AD”, 111

AD and Language Features: not-so-structured control flow
think - goto, exceptions, early return,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn exits into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative entry (or

goto); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

Fortran fallback: trace/replay enumerated basic
blocks; for C++: hoist local variables inst.;

exceptions: catch clause needs to completely
undo try effects

June 2011
Utke :”adjoints w AD”, 112

AD and Language Features: not-so-structured control flow
think - goto, exceptions, early return,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn exits into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative entry (or

goto); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

Fortran fallback: trace/replay enumerated basic
blocks; for C++: hoist local variables inst.;

exceptions: catch clause needs to completely
undo try effects

June 2011
Utke :”adjoints w AD”, 113

AD and Language Features: not-so-structured control flow
think - goto, exceptions, early return,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn exits into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative entry (or

goto); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

Fortran fallback: trace/replay enumerated basic
blocks; for C++: hoist local variables inst.;

exceptions: catch clause needs to completely
undo try effects

June 2011
Utke :”adjoints w AD”, 114

AD and Language Features: not-so-structured control flow
think - goto, exceptions, early return,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn exits into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative entry (or

goto); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

Fortran fallback: trace/replay enumerated basic
blocks; for C++: hoist local variables inst.;

exceptions: catch clause needs to completely
undo try effects

June 2011
Utke :”adjoints w AD”, 115

AD and Language Features: not-so-structured control flow
think - goto, exceptions, early return,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn exits into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative entry (or

goto); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

Fortran fallback: trace/replay enumerated basic
blocks; for C++: hoist local variables inst.;

exceptions: catch clause needs to completely
undo try effects

June 2011
Utke :”adjoints w AD”, 116

Checkpointing and non-contiguous data

checkpointing = saving program data (to disk)

“contiguous” data: scalars, arrays (even with stride > 1), strings,
structures,...

“non-contiguous” data: linked lists, rings, structures with pointers,...

checkpointing is very similar to “serialization”

Problem: decide when to follow a pointer and save what we point to
A

A

A

A

A

A

B

C
DD

E

(big)

unless we have extra info this is not decidable at source transformation
time

possible fallback: runtime bookkeeping of things that have been saved (is
computationally expensive, cf. python copy.deepcopy or pickle)

June 2011
Utke :”adjoints w AD”, 117

Semantically Ambiguous Data

e.g. union (or its Fortran counterpart equivalence)
data dependence analysis: dependencies propagate from one variable to all
equivalenced variables
“activity” (i.e. the need to generate adjoint code for a variable) leaks to all
equivalenced variables whether appropriate or not
certain technical problems with the use of an active type (as in OpenAD)

work-arrays (multiple,0 semantically different fields are put into a (large)
work-array); access via index offsets

data dependence analysis: there is array section analysis but in practice it
is often not good enough to reflect the implied semantics
the entire work-array may become active / checkpointed

programming patterns where the analysis has no good way to track the
data dependencies:

data transfer via files (don’t really want to assume all read data depends on
all written data)
non-structured interfaces: exchanging data that is identified by a “key” but
passed as void* or something equivalent.

June 2011
Utke :”adjoints w AD”, 118

Recomputation from Checkpoints and Program Resources

think of memory, file handles, sockets, MPI communicators,...

problem when resource allocation and
deallocation happen in different partitions
(see hierarchical checkpointing scheme in
the figure on the left)
current AD checkpointing does not track
resources
dynamic memory is “easy” as long as
nothing is deallocated before the adjoint
sweep is complete.

June 2011
Utke :”adjoints w AD”, 119

options to handle local deallocations

1 #include <iostream>

2 #include <cstdlib>
3
4 void foo(int ∗&p, int∗ t) {
5 // need adjoint of ’p’ to point to (invisible) t1:
6 ∗t = ∗p ∗ 2;
7 p = t; // pointer is overwritten
8 }
9

10 void bar(){
11 int ∗t1, ∗t2;
12 int ∗p;
13 t1=(int∗)malloc(sizeof(int));
14 t2=(int∗)malloc(sizeof(int));
15 ∗t1=1;
16 p=t1;
17 foo(p,t2);
18 std::cout << ∗p;
19 free(t1); free(t2);
20 }
21
22 int main(void) {
23 bar();
24 return 0;
25 }

modify model to reuse/grow allocated memory
(rather than repeatedly allocate/deallocate), e.g.
turn t1 t2 into global vars,...

potential solution for allocate/deallocate within
a checkpointing partition without pointers:
track allocated memory to turn deallocates (line
19) into allocates (of the appropriate size)

potential (complicated) solution when pointers
are involved: associate dynamic allocations in
forward sweep to dynamic allocations in the
adjoint sweep (adjoint needs to restore pointer
overwritten on line 7, but stored pointer value
references deallocated memory; need abstract
association between forward allocate on line
13/14 and adjoint allocate corresponding to the
deallocate on line 19)

June 2011
Utke :”adjoints w AD”, 120

object-oriented syntactic encapsulation

syntactic encapsulation of data and methods

Fortran/C recipes recommend extraction of “numerical core”, filtering out
init/cleanup/debug code.

extraction would require (atypical) encapsulation based on control flow

selective augmentation for derivatives vs . deeply structured data types
and low level containers

a
c

e

d
b

r1

r5

r2
r3

r4

a
c

e

d
b

r1

r5

r2
r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA Sophia-Antipolis

June 2011
Utke :”adjoints w AD”, 121

object-oriented syntactic encapsulation

syntactic encapsulation of data and methods

Fortran/C recipes recommend extraction of “numerical core”, filtering out
init/cleanup/debug code.

extraction would require (atypical) encapsulation based on control flow

selective augmentation for derivatives vs . deeply structured data types
and low level containers

a
c

e

d
b

r1

r5

r2
r3

r4

a
c

e

d
b

r1

r5

r2
r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA Sophia-Antipolis

June 2011
Utke :”adjoints w AD”, 122

object-oriented syntactic encapsulation

syntactic encapsulation of data and methods

Fortran/C recipes recommend extraction of “numerical core”, filtering out
init/cleanup/debug code.

extraction would require (atypical) encapsulation based on control flow

selective augmentation for derivatives vs . deeply structured data types
and low level containers

a
c

e

d
b

r1

r5

r2
r3

r4

a
c

e

d
b

r1

r5

r2
r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA Sophia-Antipolis

June 2011
Utke :”adjoints w AD”, 123

object-oriented syntactic encapsulation

syntactic encapsulation of data and methods

Fortran/C recipes recommend extraction of “numerical core”, filtering out
init/cleanup/debug code.

extraction would require (atypical) encapsulation based on control flow

selective augmentation for derivatives vs . deeply structured data types
and low level containers

a
c

e

d
b

r1

r5

r2
r3

r4

a
c

e

d
b

r1

r5

r2
r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA Sophia-Antipolis

June 2011
Utke :”adjoints w AD”, 124

object-oriented syntactic encapsulation

syntactic encapsulation of data and methods

Fortran/C recipes recommend extraction of “numerical core”, filtering out
init/cleanup/debug code.

extraction would require (atypical) encapsulation based on control flow

selective augmentation for derivatives vs . deeply structured data types
and low level containers

a
c

e

d
b

r1

r5

r2
r3

r4

a
c

e

d
b

r1

r5

r2
r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA Sophia-Antipolis

June 2011
Utke :”adjoints w AD”, 125

object-oriented syntactic encapsulation

syntactic encapsulation of data and methods

Fortran/C recipes recommend extraction of “numerical core”, filtering out
init/cleanup/debug code.

extraction would require (atypical) encapsulation based on control flow

selective augmentation for derivatives vs . deeply structured data types
and low level containers

a
c

e

d
b

r1

r5

r2
r3

r4

a
c

e

d
b

r1

r5

r2
r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA Sophia-Antipolis
June 2011
Utke :”adjoints w AD”, 126

usage concerns
availability of AD tools (forward, reverse, efficiency implications)

restrict tool use to volatile parts?

access to the code for all components
consider manual adjoints for static parts
consider the math (solvers, iterative processes, sparsity, self adjointedness,
convergence criteria ...); avoid differentiating some algorithm portions

effort for

initial implementation
validation
efficiency (generally - what is good for the adjoint is good for the model)
implement volatile parts with a domain-specific language (cf. ampl)?
robustness

adjoint robustness and efficiency are impacted by

capability for data flow and (structured) control flow reversal
code analysis accuracy
use of certain programming language features
use of certain inherently difficult to handle patterns
smoothness of the model, utility of the cost function

June 2011
Utke :”adjoints w AD”, 127

usage concerns
availability of AD tools (forward, reverse, efficiency implications)
restrict tool use to volatile parts?

access to the code for all components
consider manual adjoints for static parts
consider the math (solvers, iterative processes, sparsity, self adjointedness,
convergence criteria ...); avoid differentiating some algorithm portions

effort for

initial implementation
validation
efficiency (generally - what is good for the adjoint is good for the model)
implement volatile parts with a domain-specific language (cf. ampl)?
robustness

adjoint robustness and efficiency are impacted by

capability for data flow and (structured) control flow reversal
code analysis accuracy
use of certain programming language features
use of certain inherently difficult to handle patterns
smoothness of the model, utility of the cost function

June 2011
Utke :”adjoints w AD”, 128

usage concerns
availability of AD tools (forward, reverse, efficiency implications)
restrict tool use to volatile parts?

access to the code for all components
consider manual adjoints for static parts
consider the math (solvers, iterative processes, sparsity, self adjointedness,
convergence criteria ...); avoid differentiating some algorithm portions

effort for
initial implementation
validation
efficiency (generally - what is good for the adjoint is good for the model)
implement volatile parts with a domain-specific language (cf. ampl)?
robustness

adjoint robustness and efficiency are impacted by

capability for data flow and (structured) control flow reversal
code analysis accuracy
use of certain programming language features
use of certain inherently difficult to handle patterns
smoothness of the model, utility of the cost function

June 2011
Utke :”adjoints w AD”, 129

usage concerns
availability of AD tools (forward, reverse, efficiency implications)
restrict tool use to volatile parts?

access to the code for all components
consider manual adjoints for static parts
consider the math (solvers, iterative processes, sparsity, self adjointedness,
convergence criteria ...); avoid differentiating some algorithm portions

effort for
initial implementation
validation
efficiency (generally - what is good for the adjoint is good for the model)
implement volatile parts with a domain-specific language (cf. ampl)?
robustness

adjoint robustness and efficiency are impacted by
capability for data flow and (structured) control flow reversal
code analysis accuracy

use of certain programming language features
use of certain inherently difficult to handle patterns
smoothness of the model, utility of the cost function

June 2011
Utke :”adjoints w AD”, 130

usage concerns
availability of AD tools (forward, reverse, efficiency implications)
restrict tool use to volatile parts?

access to the code for all components
consider manual adjoints for static parts
consider the math (solvers, iterative processes, sparsity, self adjointedness,
convergence criteria ...); avoid differentiating some algorithm portions

effort for
initial implementation
validation
efficiency (generally - what is good for the adjoint is good for the model)
implement volatile parts with a domain-specific language (cf. ampl)?
robustness

adjoint robustness and efficiency are impacted by
capability for data flow and (structured) control flow reversal
code analysis accuracy
use of certain programming language features
use of certain inherently difficult to handle patterns

smoothness of the model, utility of the cost function

June 2011
Utke :”adjoints w AD”, 131

usage concerns
availability of AD tools (forward, reverse, efficiency implications)
restrict tool use to volatile parts?

access to the code for all components
consider manual adjoints for static parts
consider the math (solvers, iterative processes, sparsity, self adjointedness,
convergence criteria ...); avoid differentiating some algorithm portions

effort for
initial implementation
validation
efficiency (generally - what is good for the adjoint is good for the model)
implement volatile parts with a domain-specific language (cf. ampl)?
robustness

adjoint robustness and efficiency are impacted by
capability for data flow and (structured) control flow reversal
code analysis accuracy
use of certain programming language features
use of certain inherently difficult to handle patterns
smoothness of the model, utility of the cost function

June 2011
Utke :”adjoints w AD”, 132

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 133

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 134

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 135

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 136

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 137

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 138

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 139

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 140

is the model smooth?

y=abs(x); gives a kink

y=(x>0)?3*x:2*x+2; gives a
discontinuity

y=floor(x); same

Y=REAL(Z); what about IMAG(Z)

if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a*b;

intended: ẏ=a*ḃ+b*ȧ

y = sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does
(d
√

t
dt)

t→+0
= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria

June 2011
Utke :”adjoints w AD”, 141

nonsmooth models

observed:

INF, NaN

oscillating derivatives (may be glossed over by FD) or derivatives
growing out of bounds

T(0)

time

bT

delta

a

f

aCrit

1:updF1

f2 f1

2:updF2

3:updF1

4:updF2

June 2011
Utke :”adjoints w AD”, 142

nonsmooth models II

blame AD tool - verification problem

forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 143

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)

compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 144

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD

compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 145

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 146

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 147

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs

what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 148

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 149

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling

Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 150

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling

OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 151

nonsmooth models II

blame AD tool - verification problem
forward vs reverse (dot product check)
compare to FD
compare to other AD tool

blame code, model’s built-in numerical approximations, external
optimization scheme or inherent in the physics?

higher order models in mech. engineering, beam physics, AtomFT
explicit g-stop facility for ODEs, DAEs
what to do about first order

Adifor: optionally catches intrinsic problems via exception handling
Adol-C: tape verification and intrinsic handling
OpenAD (comparative tracing)

June 2011
Utke :”adjoints w AD”, 152

differentiability

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-1

-0.5

 0

 0.5

 1

-1

-0.5

 0

 0.5

 1

 0
 0.2
 0.4
 0.6
 0.8

 1

abs(x**2 -sin(abs(y)))

piecewise differentiable function:
|x2 − sin(|y|)|
is (locally) Lipschitz continuous; al-
most everywhere differentiable (except
on the 6 critical paths)

Gâteaux: if ∃ df (x, ẋ) = lim
τ→0

f (x+τ ẋ)−f (x)
τ for all directions ẋ

Bouligand: Lipschitz continuous and Gâteaux

Fréchet: df (., ẋ) continuous for every fixed ẋ ... not generally

in practice: often benign behavior, directional derivative exists and is an
element of the generalized gradient.

June 2011
Utke :”adjoints w AD”, 153

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or
discontinuity (ceil,...) [for source transformation: also different control
flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value
than before (tape invalid→ sparsity pattern may be changed,...)]

3

1
2

2

−1

0reference point 1

June 2011
Utke :”adjoints w AD”, 154

case distinction
3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or
discontinuity (ceil,...) [for source transformation: also different control
flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value
than before (tape invalid→ sparsity pattern may be changed,...)]

3

1
2

2

−1

0reference point 1

June 2011
Utke :”adjoints w AD”, 155

case distinction
3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or
discontinuity (ceil,...) [for source transformation: also different control
flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value
than before (tape invalid→ sparsity pattern may be changed,...)]

3

1
2

2

−1

0reference point 1

June 2011
Utke :”adjoints w AD”, 156

case distinction
3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or
discontinuity (ceil,...) [for source transformation: also different control
flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value
than before (tape invalid→ sparsity pattern may be changed,...)]

3

1
2

2

−1

0reference point 1

June 2011
Utke :”adjoints w AD”, 157

case distinction
3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or
discontinuity (ceil,...) [for source transformation: also different control
flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value
than before (tape invalid→ sparsity pattern may be changed,...)]

3

1
2

2

−1

0reference point 1

June 2011
Utke :”adjoints w AD”, 158

case distinction
3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...) or
discontinuity (ceil,...) [for source transformation: also different control
flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value
than before (tape invalid→ sparsity pattern may be changed,...)]

3

1
2

2

−1

0reference point 1

June 2011
Utke :”adjoints w AD”, 159

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 160

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 161

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 162

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 163

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 164

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 165

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 166

www.autodiff.org/ad12

Summary

basics of AD are deceptively simple

AD can handle common parallel idioms (as a proof of concept)

there are inherent problems with certain language features

avoiding some of them helps AD and is good for compiler optimization

details in the code have a large impact on AD adjoint efficiency

need new recipes/approaches for AD at a higher level

need to distill some new recipes from manual adjoints...

... for AD 2012: 6th International Conference on AD
July 23-27 2012, Fort Collins, CO: www.autodiff.org/ad12

June 2011
Utke :”adjoints w AD”, 167

www.autodiff.org/ad12

	motivation
	basics & examples
	simple forward
	application areas
	simple reverse
	preaccumulation & propagation
	reverse with OpenAD
	forward vs. reverse
	source transformation vs. operator overloading

	Reversal Schemes
	why do we need them
	split mode
	joint mode
	nested checkpointing

	MPI
	basics
	adjoints
	other issues
	barrier
	collective
	test

	OpenMP
	dot product
	OpenMP subset
	parallel forward
	parallel reverse
	implementation choices
	private in forward
	firstprivate in forward
	lastprivate in forward
	private in reverse
	firstprivate in reverse
	lastprivate in reverse

	Language Features
	Control Flow
	Checkpointing and Data
	Resources

	Usage Concerns
	Nonsmooth Models
	Summary

