Recompute vs. Store for Adjoints

Jean Utke’

?University of Chicago or Argonne National Laboratory

Apr/4/2012

v b

ArgO nne UChicago» W74 office of
NATIONAL Argonne, . .ﬁ...sﬁ':.':fe
LABORATORY

LLANS 2012
Utke :recompute vs. store

overview

context: computing adjoints via algorithmic differentiation (AD)

@ background

storing checkpoints / “tape”
performance implications
what to recompute

store all vs recompute all
existing approaches

@ new approach

as a graph problem
cost function
heuristic
implementation

@ observations and summary

LLANS 2012

Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model

e take a point (ay, by, cp), compute y, pick a weight y

e for each v = ¢(w, 1) propagate backward
=25 ar=%97%v v=0

d backward propagation code appended:

e tl = axb

pl = cos(tl)
t2 = sin(tl)
y = t2xc

9

pl 2

b a
LLANS 2012
tke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
=275 =279 $=0

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2xc

d.c = t2xd.y

LLANS 2012
Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward

=525 ar=% 79 v=0

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2xc

d.c = t2xd.y

dt2 = cxd.y

LLANS 2012
Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e for each v = ¢(w, 1) propagate backward
=525 ar=% 79 v=0
backward propagation code appended:
tl = axb
pl = cos(tl)
t2 = sin(tl)
y = t2xc
d.c = t2xd.y
dt2 = cxd.y
dy = 0

ANS 2012
Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
=275 =279 $=0

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2xc

d.c = t2xd.y

dt2 = cxd.y

dy = 0

(a) (b (¢ dtl = pl+d.t2

LLANS 2012
Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e for each v = ¢(w, 1) propagate backward
=525 ar=% 79 v=0

backward propagation code appended:

tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2xc

d.c = t2xd.y

dt2 = cxd.y

dy = 0

dtl = pl*xd.t2

db = axd._tl

b a

LLANS 2012
Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
=275 =279 $=0

backward propagation code appended:
tl = axb

pl = cos(tl)
t2 = sin(tl)
y = t2xc

d.c = t2xd.y
dt2 = cxd.y
dy = 0

dtl = pl*xd.t2
db = axd.tl
d.a = bxd_tl

b a

LLANS 2012
Utke :recompute vs. store

reverse mode with adjoints

@ name/address association model
e take a point (ay, by, cp), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
=275 =279 $=0

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2xc

d.c = t2xd.y

dt2 = cxd.y

dy = 0

(a) (b)) (¢ dtl = pl+d.t2

db = axdtl

d.a = bxd_tl What isin (d_a, d_b, d_c)?

LLANS 2012
Utke :recompute vs. store

(d_a, d b, d_c) contains a projection

e ¥ = y'J computed at xg

LANS 2012
Utke :recompute vs. store

(d_a, d b, d_c) contains a projection

e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations

LANS 2012
Utke :recompute vs. store

(d_a, d b, d_c) contains a projection
e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations

@ but consider when p1 is computed and when it is used

LLANS 2012
Utke :recompute vs. store

(d_a, d b, d_c) contains a projection

e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations

}
e @ but consider when p1 is computed and when it is used
o

5]
o0
<
=
=}
=
@

@ storage requirements grow with the length of the
computation

@ typically mitigated by recomputation

ba
OO

LLANS 2012
tke :recompute vs. store

(d_a, d b, d_c) contains a projection

e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations
@ but consider when p1 is computed and when it is used

@ storage requirements grow with the length of the
computation

@ typically mitigated by recomputation

recomputation at different levels

LLANS 2012
Utke :recompute vs. store

high-level recomputation = checkpointing

iteration

runtime

o 11 iters.

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J;

e run forward, store = “tape” the last step, and adjoin

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

[¢)
I Y |

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

_I iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin

@ restore checkpoints and recompute

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

o
I I |

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

o
I I |

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

o
I I |

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

runtime

o 11 iters., memory limited to one iter. of storing J; & | 3 checkpoints

e run forward, store = “tape” the last step, and adjoin
@ restore checkpoints and recompute (2 levels in this example)

o reuse checkpoint space as it becomes available for new checkpoints

LLANS 2012
Utke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

;

runtime
11 iters., memory limited to one iter. of storing J; & | 3 checkpoints
run forward, store = “tape” the last step, and adjoin
restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; FOX implementation
available at http://mercurial .mcs.anl.gov/ad/RevolveF9X

LLANS 2012
tke :recompute vs. store

http://mercurial.mcs.anl.gov/ad/RevolveF9X

high-level recomputation = checkpointing

iteration

LLANS 2012
tke :recompute vs. store

runtime
11 iters., memory limited to one iter. of storing J; &
run forward, store = “tape” the last step, and adjoin
restore checkpoints and recompute (2 levels in this example)
reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; FOX implementation
available at http://mercurial .mcs.anl.gov/ad/RevolveF9X

source transformation tool needs to provide four variants

http://mercurial.mcs.anl.gov/ad/RevolveF9X

checkpointing usage

@ checkpoints on disk* vs. tape in memory

LANS 2012
Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

LANS 2012
tke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

LLANS 2012
tke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

LLANS 2012
tke :recompute vs. store

checkpointing usage

checkpoints on disk* vs. tape in memory

limited tape memory
— limited length of computation between checkpoints

limited disk space for checkpoints

hierarchical scheme — recomputation overhead

simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

LLANS 2012
tke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

@ simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

@ in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)

LANS 2012
Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

@ simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

@ in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)
@ in theory:

e parallelized recomputation
e cost of writes

LANS 2012
Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

@ simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

@ in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)

@ in theory:

parallelized recomputation

cost of writes

nested checkpointing for non- split/joint reversal schemes
unified view of checkpointing/taping (data flow eqn.)
result checkpointing

LANS 2012
Utke :recompute vs. store

low-level recomputation - existing approaches

i

@ “recompute all” (taf) - manual store pragmas &
automatic slicing

LLANS 2012
Utke :recompute vs. store

low-level recomputation - existing approaches

i

@ “recompute all” (taf) - manual store pragmas &
automatic slicing
@ store all”

LLANS 2012
Utke :recompute vs. store

low-level recomputation - existing approaches

i

@ “recompute all” (taf) - manual store pragmas &
automatic slicing
@ store all”
o values, ops, pseudo-addresses (adol-c)

LLANS 2012
Utke :recompute vs. store

low-level recomputation - existing approaches

4

@ “recompute all” (taf) - manual store pragmas &
automatic slicing
@ store all”

o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)

LLANS 2012
Utke :recompute vs. store

low-level recomputation - existing approaches

i

@ “recompute all” (taf) - manual store pragmas &
automatic slicing
@ store all”
o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)
e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)

LLANS 2012
tke :recompute vs. store

low-level recomputation - existing approaches

4

@ “recompute all” (taf) - manual store pragmas &
automatic slicing

@ ’store all”

o values, ops, pseudo-addresses (adol-c)

e preaccumulated partials (dco,sacado,openad*)

e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)

e ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

LLANS 2012
tke :recompute vs. store

low-level recomputation - existing approaches

T @ “recompute all” (taf) - manual store pragmas &
o automatic slicing
. @ store all”
o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)
e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)
e ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

o TBR rationale: a value is overwritten only once™* but
used at least once.

LLANS 2012
tke :recompute vs. store

low-level recomputation - existing approaches

T @ “recompute all” (taf) - manual store pragmas &
o automatic slicing
. @ store all”
o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)
e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)
e ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

o TBR rationale: a value is overwritten only once™* but
used at least once.

What is the problem then?

LANS 2012
tke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

LLANS 2012
Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

LLANS 2012
tke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

LLANS 2012

tke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

LANS 2012
Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

e less so for operator overloading (complete scope, locally valid)

LANS 2012
Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

e less so for operator overloading (complete scope, locally valid)

e significant implementation effort & strong dependencies on
analysis for graph representations in source transformation

LLANS 2012
Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

e less so for operator overloading (complete scope, locally valid)

e significant implementation effort & strong dependencies on
analysis for graph representations in source transformation

Is the graph representation worth the effort?

LANS 2012
Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax™)x with
intermediate z = x”x (constant edges dashed)

R

1Oz

A

LANS 2012
tke :recompute vs. store

the case for using graphs

@ scarcity preserving elim./rerouting, e.g. f(x) = (D + ax™)x with
mtermedlate z=x"x (constant edges dashed)

LANS 2012
tke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

(R

'Oz

A

0 100 200 300 400 500 600 700 800

LANS 2012
tke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

XYX 280

A

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

0 100 200 300 400 500 600 700 800

LANS 2012
Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

A

A

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

280

0 100 200 300 400 500 600 700 800

o TBR rationale & simple observations on storage decision:

)y

y=x%pxq d“b
xOPOY

LANS 2012
Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

A

A

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

280

0 100 200 300 400 500 600 700 800
o TBR rationale & simple observations on storage decision:

O<O
AN c!o”b
store p,q or p x q? NOMOR

LANS 2012
Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

boad

v

'Oz

AN

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

0 100 200 800 400 500 600 700 800

o TBR rationale & simple observations on storage decision:

t = ¢1(x);
b = ¢a(th);

QY
\Q y = ¢3(12);
y=x%pxq d‘\o
store p, g or p x q? NOMOR

LANS 2012
Utke :recompute vs. store

<

O~O~0—0

=

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

boad

v

'Oz

AN

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

0 100 200 800 400 500 600 700 800

o TBR rationale & simple observations on storage decision:

t = ¢1(x);
b = ¢a(th);

Qy
\Q y = ¢3(t2);
y=Xx%xpxq d b instead store just x
x@P@4q

store p, g or p x q? and recompute?

LANS 2012
Utke :recompute vs. store

macroscopic view

@ use case for preferring preaccumulation store over store (on overwrite) of
(input) values
e state (p,q), p is some passive forcing

@ time stepping loop

)

P

SNNNNNNNNNNNN
ANAARARARARAA NN 5

.preacc. y q

ARRRRAY AARRARRN
AAARARY ARRARAAN NN\
ANNNSNNENNNNNNNN
N . N ARARAN ARARAAN
: artlals Y TTAANRAN N RN
N N AN 1 SO 2
N W\ ARRRARE RN NN
AARARRRRRRRRARRN ARRN] ARN N
AMAARAARAARAARNY \\\\\\\\\\\\\\\;/
@

///)
/77
/77
/77
/77
777

7

7 7
777
/77
/77
/77
/77
/77
A,

AONNNNNY T SANNNANNNN N NN\ NN\N ARERARRARRARRARRRARRRARRA
ARRARRA ARRRARNY ARRARRRARRN ARRRARRRARRRARRRRNY
ARARRN ARARARRN ARARRARRARRAN ARRARRARRARRARN
ARAARA ARARRARNY ARARRRARRRARRRN ARRRARRRRRRRRRNY

LLANS 2012
tke :recompute vs. store

macroscopic view

@ use case for preferring preaccumulation store over store (on overwrite) of
(input) values

e state (p,q), p is some passive forcing

@ time stepping loop

)

P

1

(preacc. J| ¢

AARARARRARARARRN
SONNANNNANNNNNNNYN

partials JERRRY Y
IR ‘

@

'
I

I

I

I

I

I

!

I

ARRRRAY AARRARRN ARARRARY \\\\\\\‘\:
ANNNANNNTANNNNANNY ARAARNE NANNNNNNY
NV VNVNYRNNNNNNN N
N\ '

Y I

N\ '

W\ |

|

1

I

I

I

I

I

I

I

I

I

AONNNNNY T SANNNANNNN NN \\\\\ CARERARRARRARRRRRRRRARNY
ARRARRA ARRRARNY \\\\\\\\\\\\\ ARRRARRRARRRARRRRNY
ARARRN ARARARRN ARAARARRARRAMNN ARRARRARRARRARN
ARAARA ARARRARNY ARRRRRRRRRRRRN ARRRARRRRRRRRRNY

BUT ,,, preaccumulated partials are never shared!

LLANS 2012
tke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G!, G?, ...} of DAGs, i.e. sequences of statements in a
given scope

LLANS 2012
Utke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G!, G?, ...} of DAGs, i.e. sequences of statements in a
given scope

@ minimal vertices = program variables (a. . . e)

LLANS 2012
Utke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G!, G?, ...} of DAGs, i.e. sequences of statements in a
given scope

@ minimal vertices = program variables (a. . . e)

@ values held in a. . . e are overwritten by instructions oj . . . 0¢

01 02 03 04 05 O¢

VVVVYVYY

Q/%\Q O/Gz

®a ®b c®®d ®e

LANS 2012
tke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G!, G?, ...} of DAGs, i.e. sequences of statements in a
given scope

@ minimal vertices = program variables (a. . . e)
@ values held in a. . . e are overwritten by instructions oj . . . 0¢

@ overlay use-overwrite graph

01 02 03 04 05 O¢

LLANS 2012
tke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in sfatic analysis

o aliasing
@ *P VS xg

LLANS 2012
Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in sfatic analysis

o aliasing
@ *P VS xg
e al[i]lvsaljl
o ...

ANS 2012

L.
Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in sfatic analysis

o aliasing
@ *P VS xg
e al[i]lvsaljl
o ...

o unproven full array overwrites

LLANS 2012
tke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in sfatic analysis

o aliasing
@ *p VS *xQ
e al[ilvsaljl
o ...

o unproven full array overwrites
o control flow branches

LLANS 2012
tke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in sfatic analysis

o aliasing
@ *P VS xg
e al[i]lvsaljl
o ...

o unproven full array overwrites
o control flow branches

multiple overwrites are paired with multiple uses

LLANS 2012
tke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 05 01 03 03 04 05
V1 V2 V3 V4 V5 V2 V3 V4 V5
(@) (b)
LU lr(\IS r(glllzﬂﬁuf(’ Vs, store

01 02

Vi V2

03 04

V3 V4 V5

(©

rationale for looking at bicliques

01 02 03 04 O5 01 02 03 04 05 01 0 03 04
I A 4 I v I) l ;) 4 vy
* * L R B 2 4 L R R 4
V1 V2 V3 V4 V5 V2 V3 V4 V5 Vi V2 V3 V4 V5
(@) (b) (©

o (static) cost estimate via node count ratios
e (a) inconclusive (tie breakers: control flow, memory reference,...)
e (b) v;store on use (or temporary), v . . . Vs store on overwrite
e (C) v3...vs store on overwrite

LLANS 2012
Utke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 O5 01 02 03 04 05 01 0 03 04

I A 4 I v I) l ;) 4 vy

* * L R B 2 4 L R R 4

V1 V2 V3 V4 V5 V2 V3 V4 V5 Vi V2 V3 V4 V5
(@) (b) (©

o (static) cost estimate via node count ratios

e (a) inconclusive (tie breakers: control flow, memory reference,...)
e (b) v;store on use (or temporary), v . . . Vs store on overwrite
e (C) v3...vs store on overwrite

o bicliques may share nodes — need adjustments

LLANS 2012
Utke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 O5 01 02 03 04 05 01 0 03 04

* * L IR 2R R 2 L R R 4

V1 V2 V3 V4 V5 V2 V3 V4 V5 Vi V2 V3 V4 V5
(@) (b) (©

o (static) cost estimate via node count ratios

e (a) inconclusive (tie breakers: control flow, memory reference,...)
e (b) v;store on use (or temporary), v . . . Vs store on overwrite
e (C) v3...vs store on overwrite

o bicliques may share nodes — need adjustments

o need condition ensuring correct recovery of “required”
values.

LLANS 2012
Utke :recompute vs. store

required values and their correct recovery

example G!

o=sin(a);
p=cos (b);
g=o*p;

LANS 2012
Utke :recompute vs. store

required values and their correct recovery

example G', modify to “combined” DAG

o=sin(a); % op
ob
p=cos (b) ; ¢ % g @)%
g=o0*p; dp do
(g
é \
0 1P
a b

NS 2012
ke

LA 1
Utke :recompute vs. store

§" =cos(a);
L —_sin(b
b) (b); linearization

required values and their correct recovery
example G', modify to “combined” DAG

9q 9q .
(da @ @ ob
o=sin (a); Jo @/‘ op 9p__ sin(b);
da ob b) . . .
p=cos (b); “ dq og Fq —o: linearization
gq=0*p; dp do QZ_ ‘
Do~
9q_09q , Do.
) .
I gf}: g, 6p. (Preaccumulation
a b

LLANS 2012
Utke :recompute vs. store

LA
Ut

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

NS 2012
ke

o=
p:
q:

t=
p=
r=

sin(a);
cos (b);
o*p;

S5xd+4x*e;

sin(c) +t;

cos (t);

recompute vs. store

%—cos(a);
p_

sin(b L

2 . (b); linearization
op— 9
9q _
do ™ I
Oq __ 80
3q gq preaccumulation
ob ™ Bb)

op Or
o;fb

Od e

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

ol .
| @ ©% =cos(a)
o=sin(a); g/ lz— sinb)s |,
- . a inearization
p=cos (b) ; dq dq 8p_0
q=0%*p; 517 B0 9,
80
80
Gl gq gq preaccumulation
Bb’
Q_ .

o . _4 *1;
t=5«d+4~*e; de or %:5 % 1;
p=sin(c)+t; 1.

=
r=cos (t); ; 5
0, or .
R={%,2% ()/ \() S=—sin(1);
G? p_ :
cOOd Oe Fe=cos(c);
LANS 2012

S
tke :recompute vs. store

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

%@ @% %"—cos(a);
0, op _

o=sin(a); f——sin(b);

%@ % o
p=cos (b) ; da 9 9 b 84 o, linearization
gq=0*p; o 9o Fq_

do p’

Oq _ 80
I g gq preaccumulation
a b

ob™— Bb’
ot _ .
01 03 04 05 0¢ ap o —_4 *1;
t=5+d+4~*e; YWYy o or %:5*1;
p=sin(c)+t; \ %pzl_
t)

r=cos (t); . 5

R={%.% N\ d G
dGZ @:cos(c)'

c \®d We o ’

LLANS 2012
tke :recompute vs. store

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

%@ @% %"—cos(a);
p_

o=sin (a); do ap s1n(b)
) ob b I . . .
p=cos (b) ; “T o o 84 o, linearization
gq=0*p; op do gz—p
o !
é >> Oq _ 80
I g gq preaccumulation
a b ob ™ 8b7
ot __ .
01 03 04 05 0¢ ap o —_4 *1;
t=5xdtdre; VNNV F @ d=5x 1
p=sin(c)+t; \ M _1.
r=<:o§:9 (t); ' . gi ’
o) or __ ¢ .
R= ;{{61;7 ar) \\ d vz\() 5= sin(t);
S= 01,03, ..,06 G @: :
U=10 W We e=<0s(¢);
LLANS 2012

tke :recompute vs. store

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

%@ @% %"—cos(a);
p_

o=sin(a); o ap sin(b);
ob b ’ . . .
p=cos (b) ; da 9 9 b 84 o, linearization
gq=0*p; o 9o]
Do p’
Oq __ 80,
I g gq preaccumulation
a b ob ™ 8b’
@_)

01 03 04 05 0¢ ap o =4 1;
t=5xd+4xe; WY > # %:5*1;
p=sin(c)+t; \ M _.
r=cos (t); ' . gt)

(op 8 or .
R=1{%: % (@/ 5 = sin(t);
S = {03705706} G2©e %:COS<C);
U = {u} ¢
LLANS 2012

tke :recompute vs. store

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

%@ @% %"—cos(a);
0, op _

o=sin(a); f——sin(b);

%@ % o
p=cos (b) ; da 9 9 b 84 o, linearization
gq=0*p; o 9o Fq_

do p’

Oq _ 80,
I g gq preaccumulation
a b

ab 8b7
01 03 04 05 0¢ @:4* 1;
L A S
t=5xd+4xe; g or Ot _5 I;
od
p=sin(c)+t; 1.
=L
r=cos (t); ; 5
0, or__ _ .
R={2.% b= sinl):
_ 2
S = {03,060} 3 G % —cos(c);
U = {1}
LANS 2012

tke :recompute vs. store

recomputation criterion for a set of DAGs

given: {G*!',... G*} with G* = (V¥ E*)and {R',... R}, S =S,
U = |J U, and the bipartite use-overwrite graph G, = ((J Vi) U O, Ey);
then S C O and U C |J V* are sufficient to recompute all vertices in the R’ if
for each combined G*' there is a vertex cut C' with respect to R’ such that

Veje C: (e U)Y ((¢ € Vi) A((cj,0) €0 =0€S))

LLANS 2012
tke :recompute vs. store

recomputation criterion for a set of DAGs

given: {G*!',... G*} with G* = (V¥ E*)and {R',... R}, S =S,
U = |J U, and the bipartite use-overwrite graph G, = ((J Vi) U O, Ey);
then S C O and U C |J V* are sufficient to recompute all vertices in the R’ if
for each combined G*' there is a vertex cut C' with respect to R’ such that

Veje C: (e U)Y ((¢ € Vi) A((cj,0) €0 =0€S))

COSt estimate (because it is static) . ’S‘ + ’U|

LLANS 2012
tke :recompute vs. store

recomputation criterion for a set of DAGs

given: {G*!',... G*} with G* = (V¥ E*)and {R',... R}, S =S,

U = |J U, and the bipartite use-overwrite graph G, = ((J Vi) U O, Ey);
then S C O and U C |J V* are sufficient to recompute all vertices in the R’ if
for each combined G*' there is a vertex cut C' with respect to R’ such that

Veje C: (e U)Y ((¢ € Vi) A((cj,0) €0 =0€S))

min

COSt estimate (because it is static) . ’S‘ + ’U|

approach: change S, then use criterion to update U to be sufficient:

uve.. uvs

Given single comb. DAG G* = (V. UV UVy E).R,S Vs, U
01 U::U\V; C:=VsN Vyin
02 form the subgraph G*' induced by all paths from V,,;,, \ C to R
03 determine a minimal vertex cut C’ in G* using as tie breaker

the minimal distance from C’ to R.
04 set C := C U (' as the vertex cut for G* and set U := U U C'.

LLANS 2012
Utke :recompute vs. store

How to change S

@ compute minimal biclique cover of G,

LLANS 2012
Utke :recompute vs. store

How to change S

o compute minimal biclique cover of G,

e for each biclique B = (Vj, Op), evaluate

_ 1051 4+ _ sl

= r
vl 7 o]

I'p

where Oy = OgNSand Of = Op\ S.

@ they are the indicators for removing from and adding to S

LLANS 2012
tke :recompute vs. store

How to change S

o compute minimal biclique cover of G,

e for each biclique B = (Vj, Op), evaluate

—_ 10l _ Ivsl

= r
Popvel P |Of

where Oy = OgNSand Of = Op\ S.
@ they are the indicators for removing from and adding to S

@ the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

LANS 2012
Utke :recompute vs. store

How to change S

o compute minimal biclique cover of G,

e for each biclique B = (Vj, Op), evaluate
105l o Dl
Pl P |of

where Oy = OgNSand Of = Op\ S.

they are the indicators for removing from and adding to S

the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

SU 0; if maximal ratio is r;;

S = L. . .. 2

S\ Oy if maximal ratio is ry

LANS 2012
Utke :recompute vs. store

How to change S

o compute minimal biclique cover of G,

e for each biclique B = (Vj, Op), evaluate
105l o Dl
Pl P |of

where Oy = OgNSand Of = Op\ S.

they are the indicators for removing from and adding to S

the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

°
S U OF if maximal ratio is rj
S = Z. . .. B
S\ Oy if maximal ratio is ry
@ need to adjust overlapping bicliques

LANS 2012
Utke :recompute vs. store

as an algorithm

Given é € [0,1],R = |JR', G}, forall G' € G and Gy, = (V;, 0, Ep);

01
02
03
04
05
06
07
08
09
10
11
12

if |O| < |R| then (S, U) := (0,0); c¢:=10|
else (S,U) := (0,R); c¢:=|R]|
compute minimal biclique cover C for G,
VB = (Vp,0p) € Cset Op := OpU{o: ((v,0) € E, Av € Vp)}
while C # ()
VB € C compute ratios r5 and rj and sort
if maximal ratio is less than 1 — ¢ exit with current (S, U)
update S as on previous slide
VG;;’,'. update U using criterion
if ¢ > |S| + |U| then set ¢ := |S| + |U]|
else reset S to the value it had before line 07

setC:=C\ {B}

terminates (05,12); greedy heuristic; in the static estimate equal to or better
than TBR (01), and store on use (02)

LLANS 2012
Utke :recompute vs. store

implementation

example combined graph in OpenAD:

' ‘Il\l g

o started by Andrew Lyons, continued by Heather Cole-Mullen

e outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

LLANS 2012
tke :recompute vs. store

implementation

example combined graph in OpenAD:

L L

-—-' ‘
-_.=
e

o started by Andrew Lyons, continued by Heather Cole-Mullen

e outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

@ source transformation context prohibits lowering to simpler compiler
representations

LANS 2012
tke :recompute vs. store

implementation

example combined graph in OpenAD:

‘II\ lll?i'l?l‘ _..! i A

o started by Andrew Lyons, continued by Heather Cole-Mullen

e outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

@ source transformation context prohibits lowering to simpler compiler
representations

@ once S is determined, need a second round* for address variables
occurring in memory references in S and Vg, i.e. i fora[i] or p for xp

LANS 2012
tke :recompute vs. store

implementation

example combined graph in OpenAD:

‘II\ lll?i'l?l‘ _..! i A

o started by Andrew Lyons, continued by Heather Cole-Mullen

e outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

@ source transformation context prohibits lowering to simpler compiler
representations

@ once S is determined, need a second round* for address variables
occurring in memory references in S and Vg, i.e. i fora[i] or p for xp

@ ... work in progress

LLANS 2012
tke :recompute vs. store

summary & observations

@ algorithm complements earlier alg. on inverse loop computations
o first step towards automatic recomputation tradeoff

@ addresses TBR and store-on-use shortcomings

LLANS 2012
tke :recompute vs. store

summary & observations

@ algorithm complements earlier alg. on inverse loop computations
o first step towards automatic recomputation tradeoff
@ addresses TBR and store-on-use shortcomings

e correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

LLANS 2012
tke :recompute vs. store

summary & observations

@ algorithm complements earlier alg. on inverse loop computations
o first step towards automatic recomputation tradeoff
@ addresses TBR and store-on-use shortcomings

e correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

@ needed for hardware with small memory or expensive memory access

LLANS 2012
tke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access
@ starting point for future improvements:
e consider user directives

LANS 2012
Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access

@ starting point for future improvements:

e consider user directives
e consider static cost estimates for subroutine calls

LANS 2012
Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access

@ starting point for future improvements:
o consider user directives
e consider static cost estimates for subroutine calls
o consider other search heuristics

LANS 2012
Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access
@ starting point for future improvements:

consider user directives

consider static cost estimates for subroutine calls

consider other search heuristics

o
(]
(]
e consider recomputations across DAG sequences

LANS 2012
Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access
@ starting point for future improvements:

o consider user directives

e consider static cost estimates for subroutine calls

o consider other search heuristics

e consider recomputations across DAG sequences

o weakest point of the cost estimate is the lack of control flow information,
SO...

LANS 2012
Utke :recompute vs. store

the last slide - idea on placing (re)store wrt. control flow

@ ongoing work with Hascoét and Naumann

@ consider an augmented control flow graph

LLANS 2012
Utke :recompute vs. store

the last slide - idea on placing (re)store wrt. control flow

@ ongoing work with Hascoét and Naumann
@ consider an augmented control flow graph

@ edge labels represent increased cost of stores in
loops, decreased cost of stores in (mutually
exclusive) branches

LLANS 2012
tke :recompute vs. store

the last slide - idea on placing (re)store wrt. control flow

@ ongoing work with Hascoét and Naumann
@ consider an augmented control flow graph

@ edge labels represent increased cost of stores in
loops, decreased cost of stores in (mutually
exclusive) branches

@ max flow / min cut gives cheapest* store
placement

LLANS 2012
tke :recompute vs. store

the last slide - idea on placing (re)store wrt. control flow

@ ongoing work with Hascoét and Naumann
@ consider an augmented control flow graph

@ edge labels represent increased cost of stores in
loops, decreased cost of stores in (mutually
exclusive) branches

@ max flow / min cut gives cheapest* store
placement

@ eventual connection to recomputation via
modified G,

LLANS 2012
tke :recompute vs. store

