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reverse mode on the graph (same old)

name/address association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1
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for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
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got the gradient (d a,d b,d c) but need storage
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation

recomputation at different levels
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high-level recomputation = checkpointing
iteration

runtime

11 iters.

, memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store = “tape” the last step

, and adjoin

restore checkpoints and recompute

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve;

source transformation tool needs to provide four variants
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checkpointing usage
checkpoints on disk∗ vs. tape in memory

limited tape memory
→ limited length of computation between checkpoints

limited disk space for checkpoints

hierarchical scheme→ recomputation overhead

simple time stepping loop with k iterations, worst case overhead factor up
to O(k2)

in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)
in theory:

parallelized recomputation
cost of writes
nested checkpointing for non- split/joint reversal schemes
unified view of checkpointing/taping (data flow eqn.)
result checkpointing
...
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low-level recomputation - existing approaches

b a

c

*

*

a b c

t1

t2

t2

sin

p1

starting points at extreme ends:

”recompute all” (TAF) - manual store pragmas &
automatic slicing

”store all”

values, ops, pseudo-addresses (adol-c)
preaccumulated partials (dco,sacado,openad∗)
store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)
ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

TBR rationale: a value is overwritten only once∗ but
used at least once.

What is the problem then?
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observations regarding existing approaches

existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

is there a data flow formulation for the store vs. recompute
tradeoff?
prefer graph representation (already used for cross-country
eliminations, scarcity)
graph based approach plausible for source transformation (limited
scope, globally valid),
less so for operator overloading (complete scope, locally valid)
significant implementation effort & strong dependencies on
analysis for graph representations in source transformation

Is the graph representation worth the effort?
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the case for using graphs

scarcity preserving elim./rerouting, e.g. f(x) = (D + axT)x with
intermediate z = xTx (constant edges dashed)

z

inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

TBR rationale & simple observations on storage decision:

y = x ∗ p ∗ q
store p, q or p ∗ q?

t1 = φ1(x);
t2 = φ2(t1);
y = φ3(t2);
instead store just x
and recompute?
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sweep/combined with forward computations (loop body)

TBR rationale & simple observations on storage decision:

y = x ∗ p ∗ q
store p, q or p ∗ q? x p q

y
t1 = φ1(x);
t2 = φ2(t1);
y = φ3(t2);

instead store just x
and recompute?

x

t1

t2

y
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macroscopic view

use case for preferring preaccumulation store over store (on overwrite) of
(input) values

state (p, q), p is some passive forcing

time stepping loop

f f
1 2partials

preacc. p’q’

q p

BUT ,,, preaccumulated partials are never shared!

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store



macroscopic view

use case for preferring preaccumulation store over store (on overwrite) of
(input) values

state (p, q), p is some passive forcing

time stepping loop

f f
1 2partials

preacc. p’q’

q p

BUT ,,, preaccumulated partials are never shared!

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store



Multiple DAG formulation to capture shared use

consider a set {G1,G2, . . .} of DAGs, i.e. sequences of statements in a
given scope

minimal vertices = program variables (a . . . e)

values held in a . . . e are overwritten by instructions o1 . . . o6

overlay use-overwrite graph

G1
a b

G2

d ec
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reasons for ambiguous overwrites

overwrite instructions in static analysis
aliasing

*p vs *q

a[i] vs a[j]
...

unproven full array overwrites
control flow branches

multiple overwrites are paired with multiple uses
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rationale for looking at bicliques

v1 v2 v3 v4 v5

o1 o2 o3 o4 o5

v1 v2 v3 v4 v5

o1 o2 o3 o4 o5

v1 v2 v3 v4 v5

o1 o2 o3 o4

(a) (b) (c)

(static) cost estimate via node count ratios

(a) inconclusive (tie breakers: control flow, memory reference,...)
(b) v1store on use (or temporary), v2 . . . v5 store on overwrite
(c) v3 . . . v5 store on overwrite

bicliques may share nodes→ need adjustments
need condition ensuring correct recovery of “required”
values.
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required values and their correct recovery
example G1

, modify to “combined” DAG, same for G2

o=sin(a);
p=cos(b);
q=o*p;

G1

a b

o p

q

∂o
∂a=cos(a);
∂p
∂b=− sin(b);
∂q
∂p=o;
∂q
∂o=p;

 linearization

∂q
∂a=∂q

∂o ∗
∂o
∂a ;

∂q
∂b=∂q

∂p ∗
∂p
∂b ;

}
preaccumulation

t=5*d+4*e;
p=sin(c)+t;
r=cos(t);
R = {∂p

∂c ,
∂r
∂t }

∂t
∂d =4 ∗ 1;

∂t
∂d =5 ∗ 1;

∂p
∂t =1;

∂r
∂t =− sin(t);
∂p
∂c =cos(c);
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d ec

t
p r

∂t
∂d =4 ∗ 1;

∂t
∂d =5 ∗ 1;

∂p
∂t =1;

∂r
∂t =− sin(t);
∂p
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required values and their correct recovery
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recomputation criterion for a set of DAGs
given: {G∗1, . . . ,G∗k} with G∗i = (V∗i,E∗i) and {R1, . . . ,Rk}, S =

⋃
Si,

U =
⋃

Ui, and the bipartite use-overwrite graph Gb = ((
⋃

V∗imin) ∪ O,Eb);
then S ⊆ O and U ⊆

⋃
V∗i are sufficient to recompute all vertices in the Ri if

for each combined G∗i there is a vertex cut Ci with respect to Ri such that
∀cj ∈ Ci : (cj ∈ U) Y

(
(cj ∈ V∗imin) ∧ ((cj, o) ∈ O⇒ o ∈ S)

)

cost estimate (because it is static): |S|+ |U|

approach: change S, then use criterion to update U to be sufficient:

Given single comb. DAG G∗ = (V∗min ∪ V∗inter ∪ V∗max,E),R, S,VS,U

01 U := U \ V; C := VS ∩ Vmin

02 form the subgraph G∗
′

induced by all paths from Vmin \ C to R
03 determine a minimal vertex cut C′ in G∗

′
using as tie breaker

the minimal distance from C′ to R.
04 set C := C ∪ C′ as the vertex cut for G∗ and set U := U ∪ C′.
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How to change S

compute minimal biclique cover of Gb

for each biclique B = (VB,OB), evaluate

r−B =
|O−B |
|vB|

; r+B =
|vB|
|O+

B |

where O−B = OB ∩ S and O+
B = OB \ S.

they are the indicators for removing from and adding to S

the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

S :=

{
S ∪ O+

B if maximal ratio is r+B
S \ O−B if maximal ratio is r−B

need to adjust overlapping bicliques
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as an algorithm

Given δ ∈ [0, 1],R =
⋃

Ri,G∗iRi for all Gi ∈ G and Gb = (Vb,O,Eb);
01 if |O| < |R| then (S,U) := (O, ∅); c := |O|
02 else (S,U) := (∅,R); c := |R|
03 compute minimal biclique cover C for Gb
04 ∀B = (VB,OB) ∈ C set OB := OB ∪ {o : ((v, o) ∈ Eb ∧ v ∈ VB)}
05 while C 6= ∅
06 ∀B ∈ C compute ratios r−B and r+B and sort
07 if maximal ratio is less than 1− δ exit with current (S,U)
08 update S as on previous slide
09 ∀G∗iRi update U using criterion
10 if c ≥ |S|+ |U| then set c := |S|+ |U|
11 else reset S to the value it had before line 07
12 set C := C \ {B}

terminates (05,12); greedy heuristic; in the static estimate equal to or better
than TBR (01), and store on use (02)
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implementation

example combined graph in OpenAD:

started by Andrew Lyons, continued by Heather Cole-Mullen

outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

source transformation context prohibits lowering to simpler compiler
representations

once S is determined, need a second round∗ for address variables
occurring in memory references in S and V i

S, i.e. i for a[i] or p for *p

... but wait
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revisit the graph construction

limitation by ambiguous
dependencies ({a|b} 7→ c) relevant
for (adjoint) propagation

add dependency edges
allow more recomputation but need
to recover mem. refs.
’c’ may be p->f[i]
add memory ref. expressions
include overwrites of i

( and p ?)

pointer p benign?
that aside - need mem. refs. for all
active min/max vertices for
propagation
implies graph repr. with filters for
edge/vertex classes

c d

a b
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summary & observations

algorithm complements earlier alg. on inverse loop computations

first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access
starting point for future improvements:

consider user directives
consider static cost estimates for subroutine calls
consider other search heuristics
consider recomputations across DAG sequences
weakest point of the cost estimate is the lack of control flow information, ...
current work
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