Recompute vs. Store on multiple DAGs

Heather Cole-Mullen! ~ Andrew Lyons® Jean Utke! 3

University of Chicago
2Dartmouth College

3 Argonne National Laboratory

July/2012

b

Argonne UChicagor 175, otice o

NATIONAL Argonne .
LABORATORY

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

overview

context: computing adjoints via algorithmic differentiation (AD)

@ background

storing checkpoints / “tape”
performance implications
what to recompute

store all vs recompute all
existing approaches

@ new approach

as a graph problem
cost function
heuristic
implementation

@ observations and summary

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reverse mode on the graph (same old)

@ name/address association model

e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
WJFZ% V; [1+:%) vi v=0

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2x*cC

reverse mode on the graph (same old)

@ name/address association model

e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
WJFZ% V; [1+:%) vi v=0

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2x*cC

dc = t2xd.y

reverse mode on the graph (same old)

@ name/address association model

e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
er:% V; [1+:%) vi v=0

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2x*cC

dc = t2xd.y

dt2 = cxdy

reverse mode on the graph (same old)

@ name/address association model

e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
er:% V; [1+:%) vi v=0

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2x*cC

dc = t2xd.y

dt2 = cxdy

dy =0

reverse mode on the graph (same old)

@ name/address association model
e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
WJFZ% V; [1+:%) vi v=0

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2x*cC

dc = t2xd.y

dt2 = cxdy

dy =0

dtl = plxd.t2

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reverse mode on the graph (same old)

@ name/address association model
e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
WJFZ% V; ﬁ+:3—2) vi v=20

backward propagation code appended:
tl = axb

pl = cos(tl)

t2 = sin(tl)

y = t2x*cC

dc = t2xd.y

dt2 = cxdy

dy =0

dtl = plxd.t2

db = axd.-tl

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reverse mode on the graph (same old)

@ name/address association model
e take a point (ag, by, co), compute y, pick a weight y

e foreach v = ¢(w, u) propagate backward
WJFZ% V; ﬁ+:3—2) vi v=20

backward propagation code appended:
tl = axb

pl = cos(tl)
t2 = sin(tl)
y = t2x*cC

d.c = t2xd.y
dt2 = cxdy
dy =0

dtl = plxd.t2
db = axd.tl
d.a = bxd_tl

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

got the gradient (d_a, d b, d_c) but need storage
e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations

@ but consider when p1 is computed and when it is used

900 — ‘

&
<
=
o
=
17}

@ storage requirements grow with the length of the
computation

b a

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

got the gradient (d_a, d b, d_c) but need storage

e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations

}
e @ but consider when p1 is computed and when it is used
o

&
<
=
o
=
17}

@ storage requirements grow with the length of the
computation

@ typically mitigated by recomputation

b a

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

got the gradient (d_a, d b, d_c) but need storage

e ¥ = y'J computed at xg

o for example for y = 1 we have [a, b, ¢] = Vf

e all gradient elements cost O(1) function evaluations

}
e @ but consider when p1 is computed and when it is used
o

&
<
=
o
=
17}

@ storage requirements grow with the length of the
computation

@ typically mitigated by recomputation

b a

recomputation at different levels

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

high-level recomputation = checkpointing

iteration

runtime

o 11 iters.

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

high-level recomputation = checkpointing

iteration

;

runtime
11 iters., memory limited to one iter. of storing J; &
run forward, store = “tape” the last step, and adjoin
restore checkpoints and recompute
reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve;

source transformation tool needs to provide four variants

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

checkpoints on disk* vs. tape in memory

limited tape memory
— limited length of computation between checkpoints

limited disk space for checkpoints

hierarchical scheme — recomputation overhead

simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

@ simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

@ in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

@ simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

@ in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)
@ in theory:

e parallelized recomputation
e cost of writes

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

checkpointing usage

@ checkpoints on disk* vs. tape in memory

@ limited tape memory
— limited length of computation between checkpoints

o limited disk space for checkpoints

@ hierarchical scheme — recomputation overhead

@ simple time stepping loop with k iterations, worst case overhead factor up
to O(k?)

@ in practice up to 3-4 nesting levels (revolve precomputes)

joint reversal or manually prescribed (at loop)

@ in theory:

parallelized recomputation

cost of writes

nested checkpointing for non- split/joint reversal schemes
unified view of checkpointing/taping (data flow eqn.)
result checkpointing

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing
@ store all”

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing
@ store all”
o values, ops, pseudo-addresses (adol-c)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing
@ store all”

o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

starting points at extreme ends:

}
. @ “recompute all” (TAF) - manual store pragmas &
* automatic slicing
@ ’store all”
o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)
e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing

@ ’store all”

o values, ops, pseudo-addresses (adol-c)

e preaccumulated partials (dco,sacado,openad*)

e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)

e ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing
@ ’store all”
o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)
e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)
e ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

o TBR rationale: a value is overwritten only once™* but
used at least once.

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

low-level recomputation - existing approaches

4

starting points at extreme ends:

@ “recompute all” (TAF) - manual store pragmas &
automatic slicing
@ ’store all”
o values, ops, pseudo-addresses (adol-c)
e preaccumulated partials (dco,sacado,openad*)
e store on overwrite program variables referenced in
non-linear ops aka TBR (tapenade)
e ad-hoc for address computations (data &
instructions), i.e. pointers, indices, control flow

o TBR rationale: a value is overwritten only once™* but
used at least once.

What is the problem then?

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

e less so for operator overloading (complete scope, locally valid)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

e less so for operator overloading (complete scope, locally valid)

e significant implementation effort & strong dependencies on
analysis for graph representations in source transformation

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

observations regarding existing approaches

e existing approaches are fixed schemes based on data flow analysis
(i.e. not computational graphs)

e is there a data flow formulation for the store vs. recompute
tradeoff?

e prefer graph representation (already used for cross-country
eliminations, scarcity)

e graph based approach plausible for source transformation (limited
scope, globally valid),

e less so for operator overloading (complete scope, locally valid)

e significant implementation effort & strong dependencies on
analysis for graph representations in source transformation

Is the graph representation worth the effort?

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

R

Jok:

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

@ scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

YxY«Y

012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

R

Jok:

0 100 200 300 400 500 600 700 800

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

R

Jok:

0 100 200 300 400 500 600 700 800

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

R

Jok:

0 100 200 300 400 500 600 700 800

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

o TBR rationale & simple observations on storage decision:
/O <O
Sxcdrta

y=xxpiq

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

R

Jok:

0 100 200 300 400 500 600 700 800

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

o TBR rationale & simple observations on storage decision:

5

y=x%pxq d‘b
store p,q or p x q? Ox@rP®4

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

oA

v

280
270

'Oz

AN

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

0 100 200 800 400 500 600 700 800

o TBR rationale & simple observations on storage decision:

t = ¢1(x);
b = ¢a(th);

QY
\Q y = ¢3(12);
y=x%pxq d“b
store p,q or p x g? NOMOR!

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

O~O~0O~0O

=

S <

_

the case for using graphs

e scarcity preserving elim./rerouting, e.g. f(x) = (D + ax”)x with
intermediate z = x”x (constant edges dashed)

oA

v

280

'Oz

AN

@ inverse (re)computations of loop variables during reverse
sweep/combined with forward computations (loop body)

0 100 200 800 400 500 600 700 800

o TBR rationale & simple observations on storage decision:

t = ¢1(x);
b = ¢a(th);

Qy
\Q y = ¢3(02);
y=X*px*q (5 b instead store just x
store p,q or p x g? x@P@I and recompute?

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

macroscopic view

@ use case for preferring preaccumulation store over store (on overwrite) of
(input) values
e state (p,q), p is some passive forcing

@ time stepping loop

‘
|
SONNNNNNNNNNN !
CTTTTTIIIISS D ; | X
_preacc. 3 |
N PN !
|
|
‘ |
ARARARAY AARRARRN ARARAARY \\\\\\\\\ :
ANANNNNTANNNNNNY AN - NANNNNY
NANNNNTRNNNNNNANN AAAAAN N\ NNNN\Y
. N ARARAN NANNNNNY
artials o WY |
B AARAAN SONNNNNY 2
W\ ARRN] N AN
ARARRRARRRRRRRRRNY NAN\N NN\ 2 |
SONNANNNANNNNNNNYN ARARARRN \\\\\\\\)\/ :
-
|
! ~
SNNNNNNT TANNNNNANN : ARARAARAR MRS ARBRARRR AR R AR R AR AR
AAAAAN ANRNNNNNY | AIIANNNNNNNNNNY ARRRRARRARRARRN
ARARRN ANANNNNNY | AANNNNNNNNNNANY ARRARRARRARRARN
AARARN ARARARRD EEARRARRAARRAMARAAN ARARAARRARAARAN
|

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

macroscopic view

@ use case for preferring preaccumulation store over store (on overwrite) of
(input) values
e state (p,q), p is some passive forcing

@ time stepping loop

‘

‘
\\\\\\\\\\\\\ !

\\\\\\\\\ N - | .
‘preacc. 3 1
t o N\ |
|
|
|
ARRRARRY ARRRRARRR ARARAARY \\\\\\\\\ |
ARRRRRY AR RRRRRNY NN\ NANNNNNNY
NNNNNNTRNNNNNNNYN ARRRRN NANNNNANNY
. N\ ARRRARN NANNNNNNY
artials Jepsw NN
N\ \\\\\\ \\\\\\\ I
N\ \\\\ 2ONNY
ARRRARRRRRARRR RN NN\ 2 !
AARRRARRRRRRRRAR \\\\\\\ \\\\\\\\)\/ !
e

‘
|

NANNNNY UVNNNNNNY : ARRR R R R R AR R S ARERR AR RRRARRRRAR R R AN

ARRRRM ANRNNNNNY | AIIANNNNNNNNNNY ARRRARRRRRRR R RN

NNNNNN ANANNNNNY | AANNNNNNNNNNANY ARRRARRRRRRR AR

NNNNNYN ARARRRARN FERARRRRRARRARRANN ARRARRARRRRARRARRNY
|

BUT ,,, preaccumulated partials are never shared!

012
Cole-Mulle,Lyons,Utke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G', G?,...} of DAGs, i.e. sequences of statements in a
given scope

O O
So (g

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G', G?,...} of DAGs, i.e. sequences of statements in a
given scope

@ minimal vertices = program variables (a. . . e)

O O
So (g

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G', G?,...} of DAGs, i.e. sequences of statements in a
given scope

@ minimal vertices = program variables (a. . . e)

@ values held in a. .. e are overwritten by instructions o; . . . 0¢

01 02 03 04 05 O¢

VVVVYVYY

O O

@a @b c

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

Multiple DAG formulation to capture shared use

e consider a set {G', G?,...} of DAGs, i.e. sequences of statements in a
given scope

@ minimal vertices = program variables (a. . . e)
@ values held in a. .. e are overwritten by instructions o; . . . 0¢

@ overlay use-overwrite graph

01 02 03 04 05 O¢

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in static analysis

o aliasing
@ *P VS xg

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in static analysis

o aliasing
@ *P VS xg
e al[ilvsaljl
o ...

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in static analysis

o aliasing
@ *P VS xg
e al[ilvsaljl
o ...

o unproven full array overwrites

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in static analysis

o aliasing
@ *p VS *Q
e alilvsalijl
o ...

o unproven full array overwrites
o control flow branches

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

reasons for ambiguous overwrites

overwrite instructions in static analysis
o aliasing
@ *P VS xg
e al[ilvsaljl
o ...

o unproven full array overwrites
o control flow branches

multiple overwrites are paired with multiple uses

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 05 01 02 03 04 05 o1 0 03 04
V1 V2 V3 V4 V5 Vi V2 V3 V4 V5 Vi V2 V3 V4 V5
(a) (b) ©

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 05 01 02 03 04 05 o1 0 03 04
I A 4 I v I ¥ l ;) 4 vy
* * LN B 2 4 L R R 4
V1 V2 V3 V4 V5 V2 V3 V4 V5 Vi V2 V3 V4 V5
(a) (b) ©

o (static) cost estimate via node count ratios

e (a) inconclusive (tie breakers: control flow, memory reference,...)
o (b) vystore on use (or temporary), v, .. . vs store on overwrite
e (¢) v3...vs store on overwrite

2
Cole-Mulle,Lyons,Utke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 05 01 02 03 04 05 o1 0 03 04

I A 4 I v I ¥ l ;) 4 vy

* * LN B 2 4 L R R 4

V1 V2 V3 V4 V5 V2 V3 V4 V5 Vi V2 V3 V4 V5
(a) (b) ©

o (static) cost estimate via node count ratios

e (a) inconclusive (tie breakers: control flow, memory reference,...)
o (b) vystore on use (or temporary), v, .. . vs store on overwrite
e (¢) v3...vs store on overwrite

o bicliques may share nodes — need adjustments

012
Cole-Mulle,Lyons,Utke :recompute vs. store

rationale for looking at bicliques

01 02 03 04 05 01 02 03 04 05 o1 0 03 04

* * L IR 2R R 2 L IR R 4

V1 V2 V3 V4 V5 V2 V3 V4 V5 Vi V2 V3 V4 V5
(a) (b) ©

o (static) cost estimate via node count ratios

e (a) inconclusive (tie breakers: control flow, memory reference,...)
o (b) vystore on use (or temporary), v, .. . vs store on overwrite
e (¢) v3...vs store on overwrite

o bicliques may share nodes — need adjustments

o need condition ensuring correct recovery of “required”
values.

012
Cole-Mulle,Lyons,Utke :recompute vs. store

required values and their correct recovery

example G!

o=sin (a);
p=cos (b);
g=ox*p;

Soon

Oa O

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

required values and their correct recovery

example G', modify to “combined” DAG

o=sin(a); do op
_ Oa Ob
p=cos (b) ; Qg
gq=o*p; Oz
g?’ EW
b

012
Cole-Mulle,Lyons,Utke :recompute vs. store

%" =cos(a);
L —_sin(b
b) (b); linearization

required values and their correct recovery
example G', modify to “combined” DAG

%@ @% %"—cos(a);
p_

o=sin (a); do ap —_sin(b
p=cos (b) ; da b 82 —o: (b); linearization
D
q=O *p M 80 o,
' q—p,
Oq _ 80
Gl gq 34 preaccumulation
b 8b’

012
Cole-Mulle,Lyons,Utke :recompute vs. store

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

9q
Oa
o=sin(a); do
p=cos (b) ; o
g=0*p;
t=5xd+4xe;

p=sin(c)+t;
r=cos (t);

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

%—mﬂ)

P —_sin(b

2__0_ (b); linearization
op

0

50 —p,

‘9‘1 80

gq 34 i }]meaccunuﬂaﬁon

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

o=sin (a);
p=cos (b);
g=o*p;

t=5xd+4*e;
p=sin(c)+t;

r=cos (t);

_ (9Op or
R = {867 ot

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs.

dq dq
w® @F
o op
Oa ob
80
é Glé
b
op
Oc
®
C

store

?—mﬂ)
11; = Sll’l(b), . . .
94 g linearization
op
0
q—p,
Jq __ 80
gq 34 preaccumulation
ob 8[77
or __ .
or W_4 * 17
ot or __ .
@ %—5 * 17
9 _1
ot
<::5~ ! %%% — sin(?)
2)
C%FCN L=cos(c);

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

o=
p:
q:

t=

p:
r:
R =

012
Cole-Mulle,Lyons,Utke :recompute vs.

sin(a);
cos (b);
o*p;

S5xd+4xe;
sin(c) +t;

cos (t);

{8[’ or
dc? Ot

do
da

01

V.

store

8q

é Glé

b

op
db

03 04 05 0O¢

VVVY

%” =cos(a);
11; = Sll’l(b), . . .
dq__ . linearization
%
b —p,
‘9‘1 80
gq 34 preaccumulation
ob 8[77
or __ .
or W_4 * 17
ot or __ .
@ %—5 * 17
Op_
ar 1
! or—_ sin(7)

required values and their correct recovery

example G', modify to “combined” DAG, same for G>

o=sin (a); do
p=cos (b) ; o
gq=0*py

01

t=5xd+4xe; v

p=sin(c)+t;
r=cos (t);

__(0p B
R'_'{6ﬁ78;
S: {017037"706}
U=10

012
Cole-Mulle,Lyons,Utke :recompute vs. store

8q

é Glé

b

op
db

03 04 05 0Og¢

VVVY

?—mﬂ)
11; = Sll’l(b), . . .
dq__ . linearization
5
q—p,
Jq __ 80
gq 34 preaccumulation
ob 8[77
or __ .
or W_4 * 17
% %:5 *1;
Op _
=1
! or—_ sin(7)

required values and their correct recovery
example G', modify to “combined” DAG, same for G>

o=sin (a);
p=cos (b);
g=o*p;

t=5+d+4+e;
p=sin(c)+t;
r=cos (t);
R= {35

S = {03,05,06}
U= {u}

8q
Qo ap
da ob
é Glé
b
01 03 04 05 Og¢ op
V' WYY o
\®

2
Cole Mulle.Lyons,Utke :recompute vs. store

?—mﬂ)
Z_i Sll’l(b), . . .
dq__ . linearization
5
q—p,
Jq __ 80
gq 34 preaccumulation
ob 8[77
- %:4* 1;
% %:5 *1;
op
=1
! or—_ sin(7)

required values and their correct recovery

example G', modify to “combined” DAG, same for G>

o=sin (a);
p=cos (b);
g=o*p;

t=5+d+4+e;
p=sin(c)+t;
r=cos (t);
R= {35

S = {03,06}

U ={r}

8q

é Glé

b

do
da

01 03 04 05 Og¢

v v

2
Cole Mulle.Lyons,Utke :recompute vs. store

op

b

OE S

?—mﬂ)
P —_sin(b
2__ . (b); linearization
5
q—p,
Jq __ 80
gq 34 preaccumulation
ob 8[77
or __ .
or W_‘L* 17
ot or __ .
@ %—5 * 17
& »_|.
ot ’
to G=—sin(0);
2)
G L=cos(c);

recomputation criterion for a set of DAGs

given: {G*!' ... G*} with G* = (V¥ E*)and {R',... R}, S =S,
U = |J U, and the bipartite use-overwrite graph G, = ((J Vi) U O, Ey);
then S C O and U C |J V* are sufficient to recompute all vertices in the R’ if
for each combined G*' there is a vertex cut C' with respect to R’ such that

Ve € Ci (e U)Y ((¢j € Vi) A ((cj,0) € 0= 0€YS))

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

recomputation criterion for a set of DAGs

given: {G*!' ... G*} with G* = (V¥ E*)and {R',... R}, S =S,
U = |J U, and the bipartite use-overwrite graph G, = ((J Vi) U O, Ey);
then S C O and U C |J V* are sufficient to recompute all vertices in the R’ if
for each combined G*' there is a vertex cut C' with respect to R’ such that

Ve € Ci (e U)Y ((¢j € Vi) A ((cj,0) € 0= 0€YS))

COSt estlmate (because it is static) |S‘ + ’U|

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

recomputation criterion for a set of DAGs

given: {G*!' ... G*} with G* = (V¥ E*)and {R',... R}, S =S,

U = |J U, and the bipartite use-overwrite graph G, = ((J Vi) U O, Ey);
then S C O and U C |J V* are sufficient to recompute all vertices in the R’ if
for each combined G*' there is a vertex cut C' with respect to R’ such that

Ve € Ci (e U)Y ((¢j € Vi) A ((cj,0) € 0= 0€YS))

min

COSt estlmate (because it is static) |S‘ + ’U|

approach: change S, then use criterion to update U to be sufficient:

uv: . Uve

Given single comb. DAG G* = (V;, UV: UVy _E),R,S, Vs, U
oo U:=U\V; C:=VsNVyp
02 form the subgraph G*' induced by all paths from V,,;, \ C to R
03 determine a minimal vertex cut C’ in G* using as tie breaker

the minimal distance from C’ to R.

04 set C := C U (' as the vertex cut for G* and set U := U U C'.

2
Cole-Mulle,Lyons,Utke :recompute vs. store

How to change S

e compute minimal biclique cover of G

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

How to change S

e compute minimal biclique cover of G

e for each biclique B = (V3, Op), evaluate

- |OE|, + |VB‘

rg = r
Pt P oy

where Oy = Og N Sand OF = Op \ S.
@ they are the indicators for removing from and adding to S

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

How to change S

e compute minimal biclique cover of G

e for each biclique B = (V3, Op), evaluate

- |OE|, + |VB‘

rg = r
Pt P oy

where Oy = Og N Sand OF = Op \ S.
@ they are the indicators for removing from and adding to S

@ the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

How to change S

e compute minimal biclique cover of G

e for each biclique B = (V3, Op), evaluate

- |OE|, + |VB‘

rg = r
Pt P oy

where Oy = Og N Sand OF = Op \ S.
@ they are the indicators for removing from and adding to S

@ the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

g . { SuU 0; if maximal ratio is r;

S\ Oy if maximal ratio is ry

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

How to change S

e compute minimal biclique cover of G

e for each biclique B = (V3, Op), evaluate

- |OE|, + |VB‘

rg = r
Pt P oy

where Oy = Og N Sand OF = Op \ S.
@ they are the indicators for removing from and adding to S

@ the bicliques with the largest node ratios are expected to have the biggest
impact on the cost

g . SuU 0; if maximal ratio is r;
~ | S\ Oy if maximal ratio is ry

@ need to adjust overlapping bicliques

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

as an algorithm

Given é € [0,1],R = R, Gy, forall G' € G and Gy, = (V;, 0, Ep);

01
02
03
04
05
06
07
08
09
10
11
12

if |O| < |R| then (S, U) := (0,0); c¢:=10|
else (S,U) := (0,R); c¢:=|R]
compute minimal biclique cover C for G,
VB = (Vg,0p) € Cset Op := OpU{o: ((v,0) € E, ANv € Vp)}
while C # ()
VB € C compute ratios r5 and r; and sort
if maximal ratio is less than 1 — § exit with current (S, U)
update S as on previous slide
VG};’,'. update U using criterion
if ¢ > |S| + |U| then set ¢ := |S| + |U]|
else reset S to the value it had before line 07

setC :=C\ {B}

terminates (05,12); greedy heuristic; in the static estimate equal to or better
than TBR (01), and store on use (02)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

implementation

example combined graph in OpenAD:
i

' ‘.!\ lllr— ‘1' iR “‘

"-.'lllll.lii"-—= — !l.‘-

8
Pret S

i

o started by Andrew Lyons, continued by Heather Cole-Mullen

@ outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

012
Cole-Mulle,Lyons,Utke :recompute vs. store

implementation

example combined graph in OpenAD:
‘Ir\ lllr.—ﬁvAﬁ ! ' PO

A

o started by Andrew Lyons, continued by Heather Cole-Mullen

@ outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

@ source transformation context prohibits lowering to simpler compiler
representations

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

implementation

example combined graph in OpenAD:

' ‘I!l lllr —ﬁi

.—-wnllll.lii'l-—_
-__,

‘i?/

o started by Andrew Lyons, continued by Heather Cole-Mullen

@ outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

@ source transformation context prohibits lowering to simpler compiler
representations

@ once S is determined, need a second round* for address variables
occurring in memory references in S and Vi, i.e. i fora[i] or p for xp

012
Cole-Mulle,Lyons,Utke :recompute vs. store

implementation

example combined graph in OpenAD:

' ‘I!l lllr —ﬁi

.—-wnllll.lii'l-—_
-__,

‘i?/

o started by Andrew Lyons, continued by Heather Cole-Mullen

@ outcome depends heavily on (whole program) code analysis (alias,
reaching definitions, ...)

@ source transformation context prohibits lowering to simpler compiler
representations

@ once S is determined, need a second round* for address variables
occurring in memory references in S and Vi, i.e. i fora[i] or p for xp

@ ... but wait

012
Cole-Mulle,Lyons,Utke :recompute vs. store

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

7N
@
(o)

/&/
f\/\(‘\

SO

®
VT~
(O
R

C}f k/&/\

o U Y

<

¥

S

revisit the graph construction

@ limitation by ambiguous A
dependencies ({a|b} — c) relevant CD/ ‘}C)
for (adjoint) propagation CZC Cj d

@ add dependency edges s

Oa Db
e
/ r\/\ D
<Y
®® ®

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need
to recover mem. refs.

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

/&f

VD
o
(o)

S

o U T UUY

AR TR
(}/ /ﬁ‘/‘(/ /\f\(

o) (1)

<

¥

S

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need
to recover mem. refs.

@ ¢’ maybep->f[1i]

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

/&f

@
I8N
(o)

S

o U T UUY

AR TR
(}/ /ﬁ‘/‘(/ /\f\(

o) (1)

<

¥

S

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need
to recover mem. refs.

¢’ may be p—>f [1i]

@ add memory ref. expressions

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

)
55

O
B

~—_ ™

Ot BN
O Qe D
\(‘L ‘?\ \ﬂ/}‘}’)/\
/r\/\ D

D O C
@® ®

¥

S

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need
to recover mem. refs.

¢’ may be p—>f [1i]
@ add memory ref. expressions

@ include overwrites of i

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

)
s
COANINNG
@ O
N
ot N
O Qe D
\(‘L ‘?\ \f) / ‘5’3/\
/r\/\ D
NUAREAN
P Q) (@) <>
@ (e

W

S

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need
to recover mem. refs.

¢’ may be p—>f [1i]
@ add memory ref. expressions

@ include overwrites of i (and p ?)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

)
s
COANINNG
@ O
N
ot N
O Qe D
\(‘L ‘?\ \f) / ‘5’3/\
/r\/\ D
NUAREAN
P Q) (@) <>
@ (e

W

S

revisit the graph construction

@ limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need
to recover mem. refs.

¢’ may be p—>f [1i]
add memory ref. expressions

include overwrites of i (and p ?)

pointer p benign?

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

)
s
COANINNG
@ O
N
ot N
O Qe D
\(‘L ‘?\ \f) / ‘5’3/\
/r\/\ D
NUAREAN
P Q) (@) <>
@ (e

W

S

revisit the graph construction

limitation by ambiguous
dependencies ({a|b} — c) relevant
for (adjoint) propagation

@ add dependency edges

@ allow more recomputation but need

to recover mem. refs.

¢’ may be p—>f [1]

add memory ref. expressions
include overwrites of i (and p ?)
pointer p benign?

that aside - need mem. refs. for all

active min/max vertices for
propagation

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

(®)
i
COANINNG
@c @
M
ot N
O ®e @
\(‘L ‘?\ \f) / ‘}’3(4\
/r\/\ D
NUAREAN
P D) (&) <>
@ (e

W

S

revisit the graph construction

~
@ limitation by ambiguous A
dependencies ({a|b} — c) relevant ggf \g)
for (adjoint) propagation —~ J‘c: \5 d
@ add dependency edges D11 N
. Pan e S IR @b
@ allow more recomputation but need WO a \/\
to recover mem. refs. Cjﬁ \/; o(f) // } B!
@ ¢’ maybep->f[1i] = OO
@ add memory ref. expressions @ <> <>
@ include overwrites of i (and p ?)
@ pointer p benign?
@ that aside - need mem. refs. for all

active min/max vertices for
propagation

@ implies graph repr. with filters for
edge/vertex classes

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

@ algorithm complements earlier alg. on inverse loop computations
o first step towards automatic recomputation tradeoff

@ addresses TBR and store-on-use shortcomings

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

@ algorithm complements earlier alg. on inverse loop computations
o first step towards automatic recomputation tradeoff
@ addresses TBR and store-on-use shortcomings

@ correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

@ algorithm complements earlier alg. on inverse loop computations
o first step towards automatic recomputation tradeoff
@ addresses TBR and store-on-use shortcomings

@ correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

@ needed for hardware with small memory or expensive memory access

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access

o starting point for future improvements:
e consider user directives

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access

o starting point for future improvements:

e consider user directives
e consider static cost estimates for subroutine calls

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access

o starting point for future improvements:

e consider user directives
e consider static cost estimates for subroutine calls
e consider other search heuristics

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access
o starting point for future improvements:

e consider user directives

e consider static cost estimates for subroutine calls
o consider other search heuristics

e consider recomputations across DAG sequences

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

summary & observations

algorithm complements earlier alg. on inverse loop computations
first step towards automatic recomputation tradeoff

addresses TBR and store-on-use shortcomings

correctness does not depend on the scope of the DAG set
(but efficacy & complexity of the algorithm does)

needed for hardware with small memory or expensive memory access
o starting point for future improvements:
e consider user directives
consider static cost estimates for subroutine calls
consider other search heuristics
consider recomputations across DAG sequences

current work

AD 2012
Cole-Mulle,Lyons,Utke :recompute vs. store

weakest point of the cost estimate is the lack of control flow information, ...

