
Introduction to Algorithmic Differentiation

J. Utke

Argonne National Laboratory
Mathematics and Computer Science Division

May/2013 at Ames Lab

outline

⋄ motivation

⋄ basic principles

⋄ tools and methods

⋄ considerations for the user

Intro to AD - Utke - May/2013 1

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it automatically!

Intro to AD - Utke - May/2013 2

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it automatically?

Intro to AD - Utke - May/2013 2

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it at least semi-automatically!

Intro to AD - Utke - May/2013 2

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c
t2

t1

Intro to AD - Utke - May/2013 3

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t1

t2

⋄ code list→ intermediate values t1 and t2

t1 = a*b

t2 = sin(t1)

y = t2*c

Intro to AD - Utke - May/2013 3

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

⋄ code list→ intermediate values t1 and t2
⋄ each intrinsic v = φ(w, u) has local partials ∂φ

∂w
,

∂φ
∂u

⋄ e.g. sin(t1) yields p1=cos(t1)
⋄ in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

Intro to AD - Utke - May/2013 3

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

⋄ code list→ intermediate values t1 and t2
⋄ each intrinsic v = φ(w, u) has local partials ∂φ

∂w
,

∂φ
∂u

⋄ e.g. sin(t1) yields p1=cos(t1)
⋄ in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Intro to AD - Utke - May/2013 3

forward mode with directional derivatives

⋄ associate each variable v with a derivative v̇

⋄ take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

⋄ for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w
ẇ + ∂φ

∂u
u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

⋄ in practice: associate by name [a,d a]

or by address [a%v,a%d]

⋄ interleave propagation computations

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

Intro to AD - Utke - May/2013 4

forward mode with directional derivatives

⋄ associate each variable v with a derivative v̇

⋄ take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

⋄ for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w
ẇ + ∂φ

∂u
u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

⋄ in practice: associate by name [a,d a]

or by address [a%v,a%d]

⋄ interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

Intro to AD - Utke - May/2013 4

forward mode with directional derivatives

⋄ associate each variable v with a derivative v̇

⋄ take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

⋄ for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w
ẇ + ∂φ

∂u
u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

⋄ in practice: associate by name [a,d a]

or by address [a%v,a%d]

⋄ interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

Intro to AD - Utke - May/2013 4

forward mode with directional derivatives

⋄ associate each variable v with a derivative v̇

⋄ take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

⋄ for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w
ẇ + ∂φ

∂u
u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

⋄ in practice: associate by name [a,d a]

or by address [a%v,a%d]

⋄ interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2

Intro to AD - Utke - May/2013 4

forward mode with directional derivatives

⋄ associate each variable v with a derivative v̇

⋄ take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

⋄ for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w
ẇ + ∂φ

∂u
u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

⋄ in practice: associate by name [a,d a]

or by address [a%v,a%d]

⋄ interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Intro to AD - Utke - May/2013 4

d y contains a projection

⋄ ẏ = Jẋ computed at x0

Intro to AD - Utke - May/2013 5

d y contains a projection

⋄ ẏ = Jẋ computed at x0

⋄ for example for (ȧ, ḃ, ċ) = (1, 0, 0)

Intro to AD - Utke - May/2013 5

d y contains a projection

⋄ ẏ = Jẋ computed at x0

⋄ for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

⋄ yields the first element of the gradient

⋄ all gradient elements cost O(n) function
evaluations

Intro to AD - Utke - May/2013 5

applications
for instance

⋄ ocean/atmosphere state estimation & uncertainty
quantification, oil reservoir modeling

⋄ computational chemical engineering

⋄ CFD (airfoil shape optimization, suspended droplets e.g. by
Dervieux, Forth, Gauger, Giles et al.)

⋄ beam physics

⋄ mechanical engineering (design optimization)

use

⋄ gradients

⋄ Jacobian projections

⋄ Hessian projections

⋄ higher order derivatives
(full or partial tensors, univariate Taylor series)

Intro to AD - Utke - May/2013 6

applications
for instance

⋄ ocean/atmosphere state estimation & uncertainty
quantification, oil reservoir modeling

⋄ computational chemical engineering

⋄ CFD (airfoil shape optimization, suspended droplets e.g. by
Dervieux, Forth, Gauger, Giles et al.)

⋄ beam physics

⋄ mechanical engineering (design optimization)

use

⋄ gradients

⋄ Jacobian projections

⋄ Hessian projections

⋄ higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients?
Intro to AD - Utke - May/2013 6

higher order AD (1)

⋄ propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

Intro to AD - Utke - May/2013 7

higher order AD (1)

⋄ propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

⋄ i.e. again no numerical approximation using finite differences

Intro to AD - Utke - May/2013 7

higher order AD (1)

⋄ propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

⋄ i.e. again no numerical approximation using finite differences

⋄ for “general” functions b = φ(a) the computation of the bij can be
costly
(Faa di Bruno’s formula)

Intro to AD - Utke - May/2013 7

higher order AD (1)

⋄ propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

⋄ i.e. again no numerical approximation using finite differences

⋄ for “general” functions b = φ(a) the computation of the bij can be
costly
(Faa di Bruno’s formula)

⋄ but the propagation is applied to the sequence of programming
language intrinsics

⋄ and all relevant non-linear univariate (Fortran/C++) intrinsics φ
can be seen as ODE solutions

Intro to AD - Utke - May/2013 7

higher order AD (2)

⋄ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(

r

k
∑

j=1

bk−j ãj −
k−1
∑

j=1

ak−j b̃j

)

with c̃j = jcj

Intro to AD - Utke - May/2013 8

higher order AD (2)

⋄ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(

r

k
∑

j=1

bk−j ãj −
k−1
∑

j=1

ak−j b̃j

)

with c̃j = jcj

⋄ sine and cosine are coupled

s = sin(u) : s̃k =
k
∑

j=1

ũjck−j and c = cos(u) : c̃k =
k
∑

j=1

−ũjsk−j

Intro to AD - Utke - May/2013 8

higher order AD (2)

⋄ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(

r

k
∑

j=1

bk−j ãj −
k−1
∑

j=1

ak−j b̃j

)

with c̃j = jcj

⋄ sine and cosine are coupled

s = sin(u) : s̃k =
k
∑

j=1

ũjck−j and c = cos(u) : c̃k =
k
∑

j=1

−ũjsk−j

⋄ arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k
∑

j=0

aj ∗ bk−j

Intro to AD - Utke - May/2013 8

higher order AD (2)

⋄ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(

r

k
∑

j=1

bk−j ãj −
k−1
∑

j=1

ak−j b̃j

)

with c̃j = jcj

⋄ sine and cosine are coupled

s = sin(u) : s̃k =
k
∑

j=1

ũjck−j and c = cos(u) : c̃k =
k
∑

j=1

−ũjsk−j

⋄ arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k
∑

j=0

aj ∗ bk−j

⋄ others see the AD book (Griewank, Walther SIAM 2008)

Intro to AD - Utke - May/2013 8

higher order AD (2)

⋄ using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(

r

k
∑

j=1

bk−j ãj −
k−1
∑

j=1

ak−j b̃j

)

with c̃j = jcj

⋄ sine and cosine are coupled

s = sin(u) : s̃k =
k
∑

j=1

ũjck−j and c = cos(u) : c̃k =
k
∑

j=1

−ũjsk−j

⋄ arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k
∑

j=0

aj ∗ bk−j

⋄ others see the AD book (Griewank, Walther SIAM 2008)

⋄ cost approx. O(o2) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Utke - May/2013 8

higher order AD (3)

⋄ higher order AD preferably implemented via operator and intrinsic
overloading (C++, Fortran)

Intro to AD - Utke - May/2013 9

higher order AD (3)

⋄ higher order AD preferably implemented via operator and intrinsic
overloading (C++, Fortran)

⋄ want to avoid code explosion; have less emphasis on reverse mode

Intro to AD - Utke - May/2013 9

higher order AD (3)

⋄ higher order AD preferably implemented via operator and intrinsic
overloading (C++, Fortran)

⋄ want to avoid code explosion; have less emphasis on reverse mode

⋄ for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);
library code (preprocessed & reformatted)

Tres += pk−1; Targ1 += pk−1; Targ2 += pk−1;
for (l=p−1; l>=0; l−−)
for (i=k−1; i>=0; i−−) {
∗Tres = dp T0[arg1]∗∗Targ2−− + ∗Targ1−−∗dp T0[arg2];
Targ1OP = Targ1−i+1;
Targ2OP = Targ2;
for (j=0;j<i;j++) {
∗Tres += (∗Targ1OP++) ∗ (∗Targ2OP−−);

}
Tres−−;

}
dp T0[res] = dp T0[arg1] ∗ dp T0[arg2];

Intro to AD - Utke - May/2013 9

higher order AD (3)

⋄ higher order AD preferably implemented via operator and intrinsic
overloading (C++, Fortran)

⋄ want to avoid code explosion; have less emphasis on reverse mode

⋄ for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);
library code (preprocessed & reformatted)

Tres += pk−1; Targ1 += pk−1; Targ2 += pk−1;
for (l=p−1; l>=0; l−−)
for (i=k−1; i>=0; i−−) {
∗Tres = dp T0[arg1]∗∗Targ2−− + ∗Targ1−−∗dp T0[arg2];
Targ1OP = Targ1−i+1;
Targ2OP = Targ2;
for (j=0;j<i;j++) {
∗Tres += (∗Targ1OP++) ∗ (∗Targ2OP−−);

}
Tres−−;

}
dp T0[res] = dp T0[arg1] ∗ dp T0[arg2];

⋄ uses a work array and various pointers into it; the indices res, arg1,
arg2 have been previously recorded; p = number of directions, k =
derivative order
makes compiler optimization difficult etc.; various AD tools

Intro to AD - Utke - May/2013 9

tools (i)

⋄ special purpose tools: COSY, AD for R, Matlab

Intro to AD - Utke - May/2013 10

tools (i)

⋄ special purpose tools: COSY, AD for R, Matlab

⋄ general purpose tools: Adol-C, AD02, CppAD, ...

Intro to AD - Utke - May/2013 10

tools (i)

⋄ special purpose tools: COSY, AD for R, Matlab

⋄ general purpose tools: Adol-C, AD02, CppAD, ...

⋄ ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v = a.v ∗ b.v;
r.d1 1 = a.v ∗ b.d1 1 + a.d1 1 ∗ b.v;
r.d1 2 = a.v ∗ b.d1 2 + a.d1 1 ∗ b.d1 1 + a.d1 2 ∗ b.v;
r.d1 3 = a.v ∗ b.d1 3 + a.d1 1 ∗ b.d1 2 + a.d1 2 ∗ b.d1 1 + a.d1 3 ∗ b.v;
r.d2 1 = a.v ∗ b.d2 1 + a.d2 1 ∗ b.v;
r.d2 2 = a.v ∗ b.d2 2 + a.d2 1 ∗ b.d2 1 + a.d2 2 ∗ b.v;
r.d2 3 = a.v ∗ b.d2 3 + a.d2 1 ∗ b.d2 2 + a.d2 2 ∗ b.d2 1 + a.d2 3 ∗ b.v;

Intro to AD - Utke - May/2013 10

tools (i)

⋄ special purpose tools: COSY, AD for R, Matlab

⋄ general purpose tools: Adol-C, AD02, CppAD, ...

⋄ ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v = a.v ∗ b.v;
r.d1 1 = a.v ∗ b.d1 1 + a.d1 1 ∗ b.v;
r.d1 2 = a.v ∗ b.d1 2 + a.d1 1 ∗ b.d1 1 + a.d1 2 ∗ b.v;
r.d1 3 = a.v ∗ b.d1 3 + a.d1 1 ∗ b.d1 2 + a.d1 2 ∗ b.d1 1 + a.d1 3 ∗ b.v;
r.d2 1 = a.v ∗ b.d2 1 + a.d2 1 ∗ b.v;
r.d2 2 = a.v ∗ b.d2 2 + a.d2 1 ∗ b.d2 1 + a.d2 2 ∗ b.v;
r.d2 3 = a.v ∗ b.d2 3 + a.d2 1 ∗ b.d2 2 + a.d2 2 ∗ b.d2 1 + a.d2 3 ∗ b.v;

⋄ C++ active types called: RAfloatS, RAfloatD

⋄ in Fortran: RArealS, RArealD, RAcomplexS, RAcomplexD

⋄ are flat data structures with fields v and d1 1...d2 3

⋄ code in Fortran: replace “.” with “%”

⋄ most differences are in the wrapping (also generated because
of number the of interfaces, especially for Fortran)

Intro to AD - Utke - May/2013 10

Rapsodia Use Example

#include <iostream>

#include <cmath>

int main(void){

double x,y;

// the point at which we execute

x=0.3;

// compute sine

y=sin(x);

// print it

std::cout << "y="<< y << std::endl;

return 0; }

Intro to AD - Utke - May/2013 11

Rapsodia Use Example

#include <iostream>

#include <cmath>

int main(void){

double x,y;

// the point at which we execute

x=0.3;

// compute sine

y=sin(x);

// print it

std::cout << "y="<< y << std::endl;

return 0; }

⋄ figure out what to
compute

⋄ generate the library:
generate -d 2 -o 3 -c Rlib

Intro to AD - Utke - May/2013 11

Rapsodia Use Example

#include <iostream>

#include <cmath>

#include "RAinclude.ipp"

int main(void){

RAfloatD x,y;

// the point at which we execute

x=0.3;

// compute sine

y=sin(x);

// print it

std::cout << "y="<< y.v << std::endl;

return 0; }

⋄ figure out what to
compute

⋄ generate the library:
generate -d 2 -o 3 -c Rlib

⋄ adjust the
types/references

Intro to AD - Utke - May/2013 11

Rapsodia Use Example

#include <iostream>

#include <cmath>

#include "RAinclude.ipp"

int main(void){

int i,j;

const int directions=2;

const int order=3;

RAfloatD x,y;

// the point at which we execute

x=0.3;

// initialize the input coefficients

// in the 2 directions

for(i=0;i<directions;i++) {

for(j=0;j<order; j++) {

if (j==0) x.set(i+1,j+1,0.1*(i+1));

else x.set(i+1,j+1,0.0);

} }

// compute sine

y=sin(x);

// print it

std::cout << "y="<< y.v << std::endl;

// get the output Taylor coefficients

// for each of the 2 directions

for(i=0;i<directions;i++) {

for(j=0;j<order; j++) {

std::cout<<"y["<<i+1<<","<<j+1<<"]="

<< y.get(i+1,j+1)

<< std::endl;

} }

return 0; }

⋄ figure out what to
compute

⋄ generate the library:
generate -d 2 -o 3 -c Rlib

⋄ adjust the
types/references

⋄ augment the “driver”

Intro to AD - Utke - May/2013 11

Rapsodia Use Example

#include <iostream>

#include <cmath>

#include "RAinclude.ipp"

int main(void){

int i,j;

const int directions=2;

const int order=3;

RAfloatD x,y;

// the point at which we execute

x=0.3;

// initialize the input coefficients

// in the 2 directions

for(i=0;i<directions;i++) {

for(j=0;j<order; j++) {

if (j==0) x.set(i+1,j+1,0.1*(i+1));

else x.set(i+1,j+1,0.0);

} }

// compute sine

y=sin(x);

// print it

std::cout << "y="<< y.v << std::endl;

// get the output Taylor coefficients

// for each of the 2 directions

for(i=0;i<directions;i++) {

for(j=0;j<order; j++) {

std::cout<<"y["<<i+1<<","<<j+1<<"]="

<< y.get(i+1,j+1)

<< std::endl;

} }

return 0; }

⋄ figure out what to
compute

⋄ generate the library:
generate -d 2 -o 3 -c Rlib

⋄ adjust the
types/references

⋄ augment the “driver”

⋄ compile and link
everything

Intro to AD - Utke - May/2013 11

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
⋄ for all tensors up to order o and n inputs one needs

d ≡
(

n+o−1
o

)

directions

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
⋄ for all tensors up to order o and n inputs one needs

d ≡
(

n+o−1
o

)

directions
⋄ the directions are the multi-indices t ∈ INn

0 , where each
ti, i = 1 . . . n represents the derivative order with respect to
input xi

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
⋄ for all tensors up to order o and n inputs one needs

d ≡
(

n+o−1
o

)

directions
⋄ the directions are the multi-indices t ∈ INn

0 , where each
ti, i = 1 . . . n represents the derivative order with respect to
input xi

⋄ exploits symmetry - e.g., the two Hessian elements
H12 =

∂2

∂x1∂x2
and H21 =

∂2

∂x2∂x1
are both represented by

t = (1, 1).

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
⋄ for all tensors up to order o and n inputs one needs

d ≡
(

n+o−1
o

)

directions
⋄ the directions are the multi-indices t ∈ INn

0 , where each
ti, i = 1 . . . n represents the derivative order with respect to
input xi

⋄ exploits symmetry - e.g., the two Hessian elements
H12 =

∂2

∂x1∂x2
and H21 =

∂2

∂x2∂x1
are both represented by

t = (1, 1).
⋄ interpolation coefficients are precomputed

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
⋄ for all tensors up to order o and n inputs one needs

d ≡
(

n+o−1
o

)

directions
⋄ the directions are the multi-indices t ∈ INn

0 , where each
ti, i = 1 . . . n represents the derivative order with respect to
input xi

⋄ exploits symmetry - e.g., the two Hessian elements
H12 =

∂2

∂x1∂x2
and H21 =

∂2

∂x2∂x1
are both represented by

t = (1, 1).
⋄ interpolation coefficients are precomputed
⋄ practical advantage can be observed already for small o > 3

Intro to AD - Utke - May/2013 12

multivariate derivatives
have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry

⋄ direct w multi index management: COSY, AD02,..
⋄ univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
⋄ for all tensors up to order o and n inputs one needs

d ≡
(

n+o−1
o

)

directions
⋄ the directions are the multi-indices t ∈ INn

0 , where each
ti, i = 1 . . . n represents the derivative order with respect to
input xi

⋄ exploits symmetry - e.g., the two Hessian elements
H12 =

∂2

∂x1∂x2
and H21 =

∂2

∂x2∂x1
are both represented by

t = (1, 1).
⋄ interpolation coefficients are precomputed
⋄ practical advantage can be observed already for small o > 3
⋄ interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)
Intro to AD - Utke - May/2013 12

Rapsodia vs AD02

run time for derivative tensors of an ocean acoustics model;
DISCLAIMER: big advantage mostly due to univariate propagation!
. AD02 Rapsodia
. g95 ifort NAG g95 ifort NAG
o n .-O3 -O2 -O2 -O4 d∗ d -O3 -O2 -O2 -O4
2 5 0.599 0.460 0.543 0.658 15 15 0.072 0.106 0.087 0.086
4 3 40.97 11.97 13.67 14.41 15 15 0.161 0.255 0.181 0.176
6 3 185.4 58.88 73.63 71.21 14 28 0.514 0.794 0.538 0.515
8 2 105.8 36.39 45.41 41.56 9 9 0.250 0.366 0.262 0.257
8 3 651.1 * 289.8 285.2 15 45 1.157 1.762 1.172 1.101

10 3 1958. * + + 11 66 2.453 3.523 2.474 2.420
13 3 + * + + 10 105 5.677 8.656 5.673 5.638

⋄ o = derivative order, n = number of inputs

⋄ + = we did not wait for completion; * = aborted because of
lack of memory;

⋄ to see the difference to loops we had to hand-write our own
test lib

Intro to AD - Utke - May/2013 13

Rapsodia vs Loops

✥

✥�✁

✥�✂

✥�✄

✥�☎

✆

✭✁✝✆✞✟ ✭✂✝✆✞✟ ✭✄✝✆✂✟ ✭☎✝✠✟ ✭☎✝✆✞✟ ✭✆✥✝✆✆✟ ✭✆✡✝✆✥✟

❢✠✞☛✥

❢✠✞☛✁

❢✠✞☛✂

❣✠✞☛✥

❣✠✞☛✁

❣✠✞☛✡

❣❢☞✌✍✌✎✏☛✥

❣❢☞✌✍✌✎✏☛✁

❣❢☞✌✍✌✎✏☛✡

✐❢☞✌✍☛✥

✐❢☞✌✍☛✁

✐❢☞✌✍☛✡

run time ratios of Rapsodia vs. hand written library with loops
over PARAMETERized o and d∗

Intro to AD - Utke - May/2013 14

Rapsodia vs Adol-C

✥
�
✁
✂
✄

☎✥
☎�
☎✁
☎✂
☎✄
�✥

✶
✶
✆

✷
✆

✺
✆ ✶

✶
✆

✷
✆

✺
✆ ✶

✶
✆

✷
✆

✺
✆ ✶

✶
✆

✷
✆

✺
✆

r✝
✞
✟✠
✡
☛

☞✌✍✌✎✏✎✏✑✒✓

❘☎ ❘� ❆☎ ❆�

✏✐✍✐ ✔✕✖✏✐✍✐ ✔✕✥❣✗✗ ✔✕✖❣✗✗ ✔✕✥

✥

�✥

✁✥

✂✥

✄✥

☎✥✥

☎�✥

☎✁✥

☎✂✥

☎✄✥

�✥✥

✶
✆
✆

✷
✆
✆

✺
✆
✆

✶
✆
✆

✷
✆
✆

✺
✆
✆

✶
✆
✆

✷
✆
✆

✺
✆
✆

✶
✆
✆

✷
✆
✆

✺
✆
✆

r✝
✞
✟✠
✡
☛

☞✌✍✌✎✏✎✏✑✒✓
✏✐✍✐ ✔✕✖✏✐✍✐ ✔✕✥❣✗✗ ✔✕✖❣✗✗ ✔✕✥

⋄ simple model of volcanic
eruption

⋄ small set of active variables

⋄ for the test: repeated
evaluations

⋄ R1: Rapsodia

⋄ R2: Rapsodia inlined

⋄ A1: hov forward

⋄ A2: taping +
hov forward

⋄ Note: no “inline” directive
for Fortran, need to rely on
interprocedural
optimization

Intro to AD - Utke - May/2013 15

Parallelization

⋄ outer loop over d directions

⋄ inner loop(s) over derivative order o

⋄ identical amount of work in each direction

⋄ all coefficients depend only on operation argument (result)

⋄ no dependency between coefficients of different directions

⋄ previously investigated with OpenMP by Bücker et al.

⋄ only experimental prototypes (reuse?)

⋄ have multicore hardware
⋄ Can we parallelize:

� within the library (w/o user code changes) ?
� models with side effects?

to parallelize Rapsodia - limit the unrolling of the outer loop

Intro to AD - Utke - May/2013 16

limited unrolling

also aims at constraining code bloat, can help compiler optimization
Example: unrolled code for 4 directions:

r%v=a%v ∗ b%v
r%d1 1=a%v ∗ b%d1 1 + a%d1 1 ∗ b%v
r%d1 2=a%v ∗ b%d1 2 + a%d1 1 ∗ b%d1 1 + a%d1 2 ∗ b%v
r%d1 3=a%v ∗ b%d1 3 + a%d1 1 ∗ b%d1 2 + a%d1 2 ∗ b%d1 1 + a%d1 3 ∗ b%v
r%d2 1=a%v ∗ b%d2 1 + a%d2 1 ∗ b%v
r%d2 2=a%v ∗ b%d2 2 + a%d2 1 ∗ b%d2 1 + a%d2 2 ∗ b%v
r%d2 3=a%v ∗ b%d2 3 + a%d2 1 ∗ b%d2 2 + a%d2 2 ∗ b%d2 1 + a%d2 3 ∗ b%v
r%d3 1=a%v ∗ b%d3 1 + a%d3 1 ∗ b%v
r%d3 2=a%v ∗ b%d3 2 + a%d3 1 ∗ b%d3 1 + a%d3 2 ∗ b%v
r%d3 3=a%v ∗ b%d3 3 + a%d3 1 ∗ b%d3 2 + a%d3 2 ∗ b%d3 1 + a%d3 3 ∗ b%v
r%d4 1=a%v ∗ b%d4 1 + a%d4 1 ∗ b%v
r%d4 2=a%v ∗ b%d4 2 + a%d4 1 ∗ b%d4 1 + a%d4 2 ∗ b%v
r%d4 3=a%v ∗ b%d4 3 + a%d4 1 ∗ b%d4 2 + a%d4 2 ∗ b%d4 1 + a%d4 3 ∗ b%v

vs. partially unrolled for 4 directions using 2 slices; stay flat within slice

r%v=a%v ∗ b%v
do i=1, 2, 1
r%s(i)%d1 1=a%v∗b%s(i)%d1 1 + a%s(i)%d1 1∗b%v
r%s(i)%d1 2=a%v∗b%s(i)%d1 2 + a%s(i)%d1 1∗b%s(i)%d1 1 + a%s(i)%d1 2∗b%v
r%s(i)%d1 3=a%v∗b%s(i)%d1 3 + a%s(i)%d1 1∗b%s(i)%d1 2 + a%s(i)%d1 2∗b%s(i)%d1 1 + a%s(i)%d1 3∗b%v
r%s(i)%d2 1=a%v∗b%s(i)%d2 1 + a%s(i)%d2 1∗b%v
r%s(i)%d2 2=a%v∗b%s(i)%d2 2 + a%s(i)%d2 1∗b%s(i)%d2 1 + a%s(i)%d2 2∗b%v
r%s(i)%d2 3=a%v∗b%s(i)%d2 3 + a%s(i)%d2 1∗b%s(i)%d2 2 + a%s(i)%d2 2∗b%s(i)%d2 1 + a%s(i)%d2 3∗b%v
end do

Intro to AD - Utke - May/2013 17

limited unrolling 2

⋄ main problem: can only slice directions (not order),

⋄ iteration complexity differs between ops.

⋄ impact on register allocation differs between compilers/platforms

✥

�

✁

✂

✄

☎

✆

✝

✞

✥✟

✥✥

✥✟ ✥� ✥✂ ✥☎ ✥✝ �✟

r✠
✡
☛☞
✌
✍
✎✏
✍
✑
✏✒
✓

❞✔✕✖✗✘✙✖✗✔ ✚✕❞✔✕

s✛✥

s✛�

s✛✂

s✛✝

Intro to AD - Utke - May/2013 18

limited unrolling 3

✥

�

✁

✂

✄

☎✥

☎�

☎✁

☎✂

☎✄

�✥

✂ ✄ ☎✥ ☎� ☎✁ ☎✂ ☎✄ �✥

r✆
✝
✞✟
✠
✡
☛☞
✡
✌
☞✍
✎

♥✏✑✒✓✔ ✕✖ ✗✘✔✓✙✚✘✕♥✛

✛s☎

✛s�

✛s✁

✛s✄

✛s☎✂

What is a good choice for the number of slices?

Intro to AD - Utke - May/2013 19

limited unrolling 4

✶�

✶✁

✶✂

✥

✁

✁ � ✼ ✥ ✾ ✶✄ ✶✂ ✶☎ ✶✆ ✶✁ ✶�

❞✝✞✟✠✡✝☛☞✌

✁

�

✼

✥

✾

✶✄

✶✶

✶✂

✶☎

✶✆

✶✁

✶�

♦
✍✎
✏
✍ ✶�

✶✁

✥

�

✻ ✽ ✶✁ ✶✂ ✶�

❞✄☎✆✝✞✄✟✠✡

✺

✻

✥

✽

✾

✶✁

✶✶

✶✂

✶☛

✶�

✶✺

♦
☞✌
✍
☞

✶�

✶✁

✥

�

✻ ✥ ✾ ✶✂ ✶✄ ✶✁ ✶�

❞☎✆✝✞✟☎✠✡☛

�

✻

✼

✥

✾

✶✂

✶✶

✶✄

✶☞

✶✁

✶�

♦
✌✍
✎
✌

contours of optimal slices for
test case with

1. mostly non-linear

2. mix linear/non-linear

3. mostly linear

operations

Intro to AD - Utke - May/2013 20

limited unrolling 5
(o, d) 5 6 7 8 9 10 11 12 13 14 15

5 5 3 1 4 2 2 11 2 13 2 3
6 5 2 7 4 9 10 11 2 13 2 5
7 5 6 1 4 3 2 11 4 13 2 3
8 5 2 7 4 9 2 11 6 13 8 8
9 5 2 7 2 9 2 11 2 13 7 3

10 5 2 7 4 9 10 11 2 13 2 3
11 5 2 7 2 3 5 11 2 13 7 5
12 5 2 7 2 9 5 11 2 13 2 3
13 5 2 1 4 9 2 11 4 13 2 15
14 5 6 7 8 3 10 11 2 13 14 15
15 5 3 7 2 3 2 11 2 13 7 15

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶�

s✁✂✄☎s

✺

✻

✼

✽

✾

✶�

✶✶

✶✷

✶✸

✶✹

✶✺

♦
✆✝
✞
✆

✲�✟✼

✲�✟✻

✲�✟✺

✲�✟✹

✲�✟✸

✲�✟✷

✲�✟✶

�

�✟✶

�✟✷

Intro to AD - Utke - May/2013 21

Asynchronous parallel loops

OpenMP direction loop parallelization is not efficient on operator
level
so lets do something else (i.e. much less convenient than OpenMP)

Intro to AD - Utke - May/2013 22

Asynchronous parallel loops

OpenMP direction loop parallelization is not efficient on operator
level
so lets do something else (i.e. much less convenient than OpenMP)

fu
nc

ti
on

 e
va

lu
at

io
n

th
re

ad

a=sin(x1);

b=cos(a);

b=cos(a);

s=sqrt(a+b);

getCoeff(..);

free?

no

yes

write to
queue

yes

element

element

head
behind

free?

no

yes

no

read entry;
propagate;
mark done;

propagation thread 1

propagation thread 2

propagation thread 3

propagation thread 4

in each propagation thread:

in each overloaded operation/intrinsic

in the function evaluation thread:

vi
j

work array

queue

slice 2

slice 1

slice 3

slice 4

Intro to AD - Utke - May/2013 22

Asynchronous parallel loops

OpenMP direction loop parallelization is not efficient on operator
level
so lets do something else (i.e. much less convenient than OpenMP)

fu
nc

ti
on

 e
va

lu
at

io
n

th
re

ad

a=sin(x1);

b=cos(a);

b=cos(a);

s=sqrt(a+b);

getCoeff(..);

free?

no

yes

write to
queue

yes

element

element

head
behind

free?

no

yes

no

read entry;
propagate;
mark done;

propagation thread 1

propagation thread 2

propagation thread 3

propagation thread 4

in each propagation thread:

in each overloaded operation/intrinsic

in the function evaluation thread:

vi
j

work array

queue

slice 2

slice 1

slice 3

slice 4

use of open portable atomics lib for spinlocks is crucial

Intro to AD - Utke - May/2013 22

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1

Intro to AD - Utke - May/2013 23

reverse mode with adjoints

⋄ same association model

⋄ take a point (a0, b0, c0), compute y, pick a weight ȳ

⋄ for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w
v̄; ū+ = ∂φ

∂u
v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Utke - May/2013 23

(d a,d b,d c) contains a projection

⋄ x̄ = ȳTJ computed at x0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

Intro to AD - Utke - May/2013 24

(d a,d b,d c) contains a projection

⋄ x̄ = ȳTJ computed at x0

⋄ for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

⋄ all gradient elements cost O(1) function
evaluations

Intro to AD - Utke - May/2013 24

(d a,d b,d c) contains a projection

⋄ x̄ = ȳTJ computed at x0

⋄ for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

⋄ all gradient elements cost O(1) function
evaluations

⋄ but consider when p1 is computed and when it is
used

Intro to AD - Utke - May/2013 24

(d a,d b,d c) contains a projection

⋄ x̄ = ȳTJ computed at x0

⋄ for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
or

ag
e

⋄ all gradient elements cost O(1) function
evaluations

⋄ but consider when p1 is computed and when it is
used

⋄ storage requirements grow with the length of the
computation

⋄ typically mitigated by recomputation from
checkpoints

Intro to AD - Utke - May/2013 24

(d a,d b,d c) contains a projection

⋄ x̄ = ȳTJ computed at x0

⋄ for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
or

ag
e

⋄ all gradient elements cost O(1) function
evaluations

⋄ but consider when p1 is computed and when it is
used

⋄ storage requirements grow with the length of the
computation

⋄ typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Utke - May/2013 24

ADOL-C

⋄ http://www.coin-or.org/projects/ADOL-C.xml

⋄ operator overloading creates an execution trace (also called ’tape’)

Speelpenning example y =
∏

i

xii evaluated at xi =
i+1
i+2

double *x = new double[n];

double t = 1;

double y;

for(i=0; i<n; i++) {

x[i] = (i+1.0)/(i+2.0);

t *= x[i]; }

y = t;

delete[] x;

Intro to AD - Utke - May/2013 25

ADOL-C

⋄ http://www.coin-or.org/projects/ADOL-C.xml

⋄ operator overloading creates an execution trace (also called ’tape’)

Speelpenning example y =
∏

i

xii evaluated at xi =
i+1
i+2

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i] <<= (i+1.0)/(i+2.0);

t *= x[i]; }

t >>= y;

trace off();

delete[] x;

Intro to AD - Utke - May/2013 25

ADOL-C

⋄ http://www.coin-or.org/projects/ADOL-C.xml

⋄ operator overloading creates an execution trace (also called ’tape’)

Speelpenning example y =
∏

i

xii evaluated at xi =
i+1
i+2

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i] <<= (i+1.0)/(i+2.0);

t *= x[i]; }

t >>= y;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Intro to AD - Utke - May/2013 25

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

b a

c

*

*

a b c

t2

t2

sin

p1

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

b a
*

*

a b c

t2

t2

sin

p1

c

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

b a
*

*

a b c

t2
t3

t3 = c*p1

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

b
*

*

a b c

t2
t3

a

t3 = c*p1

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

*

*

a b c

t2
t3

t4b

t3 = c*p1

t4 = t3*a

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

*

*

a b c

t2
t3

t4b

t3 = c*p1

t4 = t3*a

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

*

a b c

t2

t5 t4

t3 = c*p1

t4 = t3*a

t5 = t3*b

Intro to AD - Utke - May/2013 26

sidebar: preaccumulation & propagation

⋄ build expression graphs (limited by aliasing, typically to a
basic block)

⋄ preaccumulate them to local Jacobians J

⋄ long program with control flow ⇒ sequence of graphs ⇒
sequence of J i

*

a b c

t2

t5 t4

t3 = c*p1

t4 = t3*a

t5 = t3*b

⋄ (t5,t4,t2) is the preaccumulated J i

⋄ minops(preacc.) ? a combinatorial problem
⇒ compile time AD optimization!

⋄ forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

⋄ adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

Intro to AD - Utke - May/2013 26

sidebar: toy example - source transformation reverse mode

code preparation

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

retrieve stored Ji & propagate:
...

oadD ptr = oadD ptr-1

oadS 6 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 6

oadD ptr = oadD ptr-1

oadS 7 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 7

Y%d = 0.0d0

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

retrieve stored Ji & propagate:
...

oadD ptr = oadD ptr-1

oadS 6 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 6

oadD ptr = oadD ptr-1

oadS 7 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 7

Y%d = 0.0d0

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline

numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

retrieve stored Ji & propagate:
...

oadD ptr = oadD ptr-1

oadS 6 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 6

oadD ptr = oadD ptr-1

oadS 7 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 7

Y%d = 0.0d0

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine
numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

driver modified for reverse mode:

program driver

use OAD active

implicit none

external head

type(active):: x, y

x%v=.5D0

y%d=1.0

our_rev_mode%tape=.TRUE.

call head(x,y)

print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

retrieve stored Ji & propagate:
...

oadD ptr = oadD ptr-1

oadS 6 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 6

oadD ptr = oadD ptr-1

oadS 7 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 7

Y%d = 0.0d0

...

Intro to AD - Utke - May/2013 27

sidebar: toy example - source transformation reverse mode

code preparation ⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine
numerical “model” program:

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

driver modified for reverse mode:

program driver

use OAD active

implicit none

external head

type(active):: x, y

x%v=.5D0

y%d=1.0

our_rev_mode%tape=.TRUE.

call head(x,y)

print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...

oadS 0 = (X%v*X%v)

Y%v = SIN(oadS 0)

oadS 2 = X%v

oadS 3 = X%v

oadS 1 = COS(oadS 0)

oadS 4 = (oadS 2 * oadS 1)

oadS 5 = (oadS 3 * oadS 1)

oadD(oadD ptr) = oadS 4

oadD ptr = oadD ptr+1

oadD(oadD ptr) = oadS 5

oadD ptr = oadD ptr+1

...

retrieve stored Ji & propagate:
...

oadD ptr = oadD ptr-1

oadS 6 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 6

oadD ptr = oadD ptr-1

oadS 7 = oadD(oadD ptr)

X%d = X%d+Y%d*oadS 7

Y%d = 0.0d0

...

Intro to AD - Utke - May/2013 27

forward vs. reverse

⋄ simplest rule: given y = f(x) : IRn 7→ IRm use reverse if
n ≫ m (gradient)

⋄ what if n ≈ m and large
� want only projections, e.g. Jẋ
� sparsity (e.g. of the Jacobian)
� partial separability (e.g. f(x) =

∑

(fi(xi)), xi ∈ Di ⋐ D ∋ x)
� intermediate interfaces of different size

⋄ the above may make forward mode feasible
(projection ȳTJ requires reverse)

⋄ higher order tensors (practically feasible for small n) →
forward mode (reverse mode saves factor n in effort only once)

⋄ this determines overall propagation direction, not necessarily
the local preaccumulation (combinatorial problem)

Intro to AD - Utke - May/2013 28

source transformation vs. operator overloading
⋄ complicated implementation of

tools
⋄ especially for reverse mode
⋄ full front end, back end,

analysis
⋄ efficiency gains from

� compile time AD
optimizations

� activity analysis
� explicit control flow reversal

⋄ source transformation based
type change & overloaded
operators appropriate for
higher-order derivatives.

⋄ efficiency depends on analysis
accuracy

⋄ simple tool implementation
⋄ reverse mode: generate &

reinterpret an execution trace
→ inefficient

⋄ implemented as a library
⋄ efficiency gains from:

� runtime AD optimization
� optimized library
� inlining (for low order)

⋄ manual type change

� � formatted I/O,
allocation,...

� matching signatures
(Fortran)

� easier with templates

higher-order derivatives ⇒ source transformation based type change

+ overloaded operators.
Intro to AD - Utke - May/2013 29

Reversal Schemes

⋄ why it is needed

⋄ major modes

⋄ alternatives

Intro to AD - Utke - May/2013 30

recap: store intermediate values / partials

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
or

ag
e

Intro to AD - Utke - May/2013 31

storage also needed for control flow trace and addresses...

original CFG ⇒ record a path through the CFG ⇒ adjoint CFG

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

⇒

Entry(1)

B(2)’

Branch(3)

B(4)’

T

iLc

 F

pB T

EndBranch(8)

B(9)’

Exit(10)

Loop(5)

B(6)’

T

pLc

F

+Lc

EndLoop(7)

pB F

⇒

Entry(10)

B(9)’’

pB

Branch(8)

B(4)’’

 T

pLc

 F

Loop(7)

B(6)’’

 T

EndBranch(3)

F

EndLoop(5)B(2)’’

Exit(1)

often cheap with structured control flow and simple address
computations (e.g. index from loop variables)

unstructured control flow and pointers are expensive

Intro to AD - Utke - May/2013 32

trace all at once = global split mode
subroutine A()

call B(); call

D(); call B();

end subroutine A

subroutine B()

call C()

end subroutine B

subroutine C()

call E()

end subroutine C

B D B

CEC

A1

1 1 2

211

A A

D B B D B

CECCEC

B

1

1 1

1 1

1

1

1

1

1

2 2

22

Sn
n-th invocation of subroutine S subroutine call

run forward order of execution

store checkpoint restore checkpoint

run forward and tape run adjoint

⋄ have memory limits - need to create tapes for short sections in
reverse order

⋄ subroutine is “natural” checkpoint granularity, different mode...

Intro to AD - Utke - May/2013 33

trace one SR at a time = global joint mode

1
C

B

A

D

E C

B

A

B

C C

B

C E

D D

E E

B

C C

B

C

1

2

1

1 1 2 2

1 1 2 2 2 2 1

1 1

1 1

1 1

1 1

taping-adjoint pairs
checkpoint-recompute pairs
the deeper the call stack - the more recomputations
(unimplemented solution - result checkpointing)
familiar tradeoff between storing and recomputation at a higher
level but in theory can be all unified.
in practice - hybrid approaches...

Intro to AD - Utke - May/2013 34

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters.

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i

⋄ run forward, store the last step, and adjoin

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

Intro to AD - Utke - May/2013 35

use of checkpointing to mitigate storage requirements
iteration

runtime

⋄ 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

⋄ run forward, store the last step, and adjoin

⋄ restore checkpoints and recompute (2 levels in this example)

⋄ reuse checkpoint space as it becomes available for new
checkpoints

⋄ optimal (binomial) scheme encoded in revolve; C++ and
F9X implementation

Intro to AD - Utke - May/2013 35

MPI - parallelization

⋄ simple MPI program needs 6 calls :

mpi init // initialize the environment

mpi comm size // number of processes in the communicator

mpi comm rank // rank of this process in the communicator

mpi send // send (blocking)

mpi recv // receive (blocking)

mpi finalize // cleanup

⋄ example adjoining blocking communication between 2
processes and interpret as assignments

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)
a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

⋄ use the communication graph as model

Intro to AD - Utke - May/2013 36

options for non-blocking reversal

⋄ ensure correctness ⇒ use nonblocking calls in the adjoint

y=0

x+=t

y=0

x+=tISEND(x,r)

WAIT(rS ,x)

RECV(y)

ISEND(x,r)

WAIT(rS ,x)

RECV(y) SEND(y)

WAIT(r)

IRECV(t,r)

SEND(y)

WAIT(r)

IRECV(t,r)

x+=t

y=0 y=0

x+=t

IRECV(y,r)

WAIT(rR)

SEND(x)

IRECV(y,r)

WAIT(r)

SEND(x)

WAIT(r) WAIT(r)

R,y ,y ISEND(y,r)

RECV(t) RECV(t)

ISEND(y,r)

⋄ transformations are provably correct

⋄ convey context ⇒ enables a transformation recipe per call
(extra parameters and/or split interfaces into variants)

⋄ promises to not read or write the respective buffer

Intro to AD - Utke - May/2013 37

collective communication

⋄ example: reduction followed by broadcast
b0 =

∑

ai followed by bi = b0∀i
⋄ conceptually simple; reduce 7→ bcast and bcast 7→ reduce

P
i

P
j

bcast(b)

bcast(b)

bcast(b)

reduce(a,b,+)

reduce(a,b,+)

reduce(a,b,+)

0P

P
i

P
j

bcast(t);a+=...

reduce(b,t,+) bcast(t);a+=...

reduce(b,t,+)
bcast(t);a+=...

reduce(b,t,+)

0
P

⋄ adjoint: t0 =
∑

b̄i followed by āi+=t0∀i
⋄ has single transformation points (connected by hyper

communication edge)

⋄ efficiency for product reduction because of increment
āi+=

∂b0
∂ai

t0,∀i

Intro to AD - Utke - May/2013 38

AD and Language Features: not-so-structured control flow

⋄ think - goto, exceptions, early return,

Intro to AD - Utke - May/2013 39

AD and Language Features: not-so-structured control flow

⋄ think - goto, exceptions, early return,

⋄ structured control flow is characterizable by some control flow
graph properties; permits structured reverse control flow!

Intro to AD - Utke - May/2013 39

AD and Language Features: not-so-structured control flow

⋄ think - goto, exceptions, early return,

⋄ structured control flow is characterizable by some control flow
graph properties; permits structured reverse control flow!

⋄ simple view: use only loops and branches and no other
control flow constructs (some things are easily fixable though, e.g. turn exits into some

error routine call ,...)

Intro to AD - Utke - May/2013 39

AD and Language Features: not-so-structured control flow

⋄ think - goto, exceptions, early return,

⋄ structured control flow is characterizable by some control flow
graph properties; permits structured reverse control flow!

⋄ simple view: use only loops and branches and no other
control flow constructs (some things are easily fixable though, e.g. turn exits into some

error routine call ,...)

⋄ example: early return from within a loop (CFG left, adjoint
CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)’’

pB

Branch(8)

B(4)’’

 T

pLc

 F

Loop(7)

B(6)’’

 T

EndBranch(3)

F

EndLoop(5)B(2)’’

Exit(1)

Entry

Intro to AD - Utke - May/2013 39

AD and Language Features: not-so-structured control flow

⋄ think - goto, exceptions, early return,

⋄ structured control flow is characterizable by some control flow
graph properties; permits structured reverse control flow!

⋄ simple view: use only loops and branches and no other
control flow constructs (some things are easily fixable though, e.g. turn exits into some

error routine call ,...)

⋄ example: early return from within a loop (CFG left, adjoint
CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)’’

pB

Branch(8)

B(4)’’

 T

pLc

 F

Loop(7)

B(6)’’

 T

EndBranch(3)

F

EndLoop(5)B(2)’’

Exit(1)

Entry

⋄ OK without the red arrow

⋄ some jumps are not permitted

⋄ unstruct. control flow � compiler
opt.

⋄ Fortran fallback: trace/replay
enumerated basic blocks; for
C++: hoist local variables inst.;

⋄ exceptions: catch to undo try

side effects
Intro to AD - Utke - May/2013 39

Checkpointing and non-contiguous data
checkpointing = saving program data (to disk)

⋄ “contiguous” data: scalars, arrays (even with stride > 1),
strings, structures,...

⋄ “non-contiguous” data: linked lists, rings, structures with
pointers,...

⋄ checkpointing is very similar to “serialization”

⋄ Problem: decide when to follow a pointer and save what we

point to

A

A

A

A

A

A

B

C DD

E
(big)

⋄ unless we have extra info this is not decidable at source
transformation time

⋄ possible fallback: runtime bookkeeping of things that have
been saved (is computationally expensive, cf. python
copy.deepcopy or pickle)

Intro to AD - Utke - May/2013 40

Semantically Ambiguous Data
⋄ e.g. union (or its Fortran counterpart equivalence)

� data dependence analysis: dependencies propagate from one variable
to all equivalenced variables

� “activity” (i.e. the need to generate adjoint code for a variable)
leaks to all equivalenced variables whether appropriate or not

� certain technical problems with the use of an active type (as in
OpenAD)

⋄ work-arrays (multiple,0 semantically different fields are put into a
(large) work-array); access via index offsets

� data dependence analysis: there is array section analysis but in
practice it is often not good enough to reflect the implied
semantics

� the entire work-array may become active / checkpointed
⋄ programming patterns where the analysis has no good way to track

the data dependencies:
� data transfer via files (don’t really want to assume all read data

depends on all written data)
� non-structured interfaces: exchanging data that is identified by a

“key” but passed as void* or something equivalent.

Intro to AD - Utke - May/2013 41

Recomputation from Checkpoints and Program Resources

think of memory, file handles, sockets, MPI communicators,...

⋄ problem when resource allocation and
deallocation happen in different
partitions (see hierarchical
checkpointing scheme in the figure on
the left)

⋄ current AD checkpointing does not

track resources
⋄ dynamic memory is “easy” as long as

nothing is deallocated before the
adjoint sweep is complete.

Intro to AD - Utke - May/2013 42

object-oriented syntactic encapsulation

⋄ syntactic encapsulation of data and methods

Intro to AD - Utke - May/2013 43

object-oriented syntactic encapsulation

⋄ syntactic encapsulation of data and methods

⋄ Fortran/C recipes recommend extraction of “numerical core”,
filtering out init/cleanup/debug code.

Intro to AD - Utke - May/2013 43

object-oriented syntactic encapsulation

⋄ syntactic encapsulation of data and methods

⋄ Fortran/C recipes recommend extraction of “numerical core”,
filtering out init/cleanup/debug code.

⋄ extraction would require (atypical) encapsulation based on
control flow

Intro to AD - Utke - May/2013 43

object-oriented syntactic encapsulation

⋄ syntactic encapsulation of data and methods

⋄ Fortran/C recipes recommend extraction of “numerical core”,
filtering out init/cleanup/debug code.

⋄ extraction would require (atypical) encapsulation based on
control flow

⋄ selective augmentation for derivatives vs. deeply structured
data types and low level containers

Intro to AD - Utke - May/2013 43

object-oriented syntactic encapsulation

⋄ syntactic encapsulation of data and methods

⋄ Fortran/C recipes recommend extraction of “numerical core”,
filtering out init/cleanup/debug code.

⋄ extraction would require (atypical) encapsulation based on
control flow

⋄ selective augmentation for derivatives vs. deeply structured
data types and low level containers

a
c

e

d
b

r1

r5

r2 r3

r4

a
c

e

d
b

r1

r5

r2 r3

r4

a

Intro to AD - Utke - May/2013 43

object-oriented syntactic encapsulation

⋄ syntactic encapsulation of data and methods

⋄ Fortran/C recipes recommend extraction of “numerical core”,
filtering out init/cleanup/debug code.

⋄ extraction would require (atypical) encapsulation based on
control flow

⋄ selective augmentation for derivatives vs. deeply structured
data types and low level containers

a
c

e

d
b

r1

r5

r2 r3

r4

a
c

e

d
b

r1

r5

r2 r3

r4

a

collaboration with Laurent Hascoët (Tapenade) at INRIA
Sophia-Antipolis

Intro to AD - Utke - May/2013 43

usage concerns (1)

⋄ availability of AD tools (forward, reverse, efficiency
implications)

Intro to AD - Utke - May/2013 44

usage concerns (1)

⋄ availability of AD tools (forward, reverse, efficiency
implications)

⋄ restrict tool use to volatile parts?
� access to the code for all components
� consider manual adjoints for static parts
� consider the math (solvers, iterative processes, sparsity, self

adjointedness, convergence criteria ...); avoid differentiating
some algorithm portions

Intro to AD - Utke - May/2013 44

usage concerns (1)

⋄ availability of AD tools (forward, reverse, efficiency
implications)

⋄ restrict tool use to volatile parts?
� access to the code for all components
� consider manual adjoints for static parts
� consider the math (solvers, iterative processes, sparsity, self

adjointedness, convergence criteria ...); avoid differentiating
some algorithm portions

⋄ effort for
� initial implementation
� validation
� efficiency (generally - what is good for the adjoint is good for

the model)
� implement volatile parts with a domain-specific language (cf.

ampl)?
� robustness

Intro to AD - Utke - May/2013 44

usage concerns (2)

⋄ adjoint robustness and efficiency are impacted by
� capability for data flow and (structured) control flow reversal
� code analysis accuracy

Intro to AD - Utke - May/2013 45

usage concerns (2)

⋄ adjoint robustness and efficiency are impacted by
� capability for data flow and (structured) control flow reversal
� code analysis accuracy
� use of certain programming language features
� use of certain inherently difficult to handle patterns

Intro to AD - Utke - May/2013 45

usage concerns (2)

⋄ adjoint robustness and efficiency are impacted by
� capability for data flow and (structured) control flow reversal
� code analysis accuracy
� use of certain programming language features
� use of certain inherently difficult to handle patterns
� smoothness of the model, utility of the cost function

Intro to AD - Utke - May/2013 45

is the model smooth?
⋄ y=abs(x); gives a kink

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

⋄ Y=REAL(Z); what about IMAG(Z)

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

⋄ Y=REAL(Z); what about IMAG(Z)

⋄ if (a == 1.0)

y = b;

else if (a == 0.0) then

y = 0;

else

y = a*b;

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

⋄ Y=REAL(Z); what about IMAG(Z)

⋄ if (a == 1.0)

y = b;

else if (a == 0.0) then

y = 0;

else

y = a*b;

intended: ẏ=a*ḃ+b*ȧ

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

⋄ Y=REAL(Z); what about IMAG(Z)

⋄ if (a == 1.0)

y = b;

else if (a == 0.0) then

y = 0;

else

y = a*b;

intended: ẏ=a*ḃ+b*ȧ

⋄ y = sqrt(a**4 + b**4);

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

⋄ Y=REAL(Z); what about IMAG(Z)

⋄ if (a == 1.0)

y = b;

else if (a == 0.0) then

y = 0;

else

y = a*b;

intended: ẏ=a*ḃ+b*ȧ

⋄ y = sqrt(a**4 + b**4);

AD does not perform

algebraic simplifica-

tion,
i.e. for a,b → 0 it does

(d
√
t

dt
)
t→+0
= +∞.

Intro to AD - Utke - May/2013 46

is the model smooth?
⋄ y=abs(x); gives a kink

⋄ y=(x>0)?3*x:2*x+2; gives a
discontinuity

⋄ y=floor(x); same

⋄ Y=REAL(Z); what about IMAG(Z)

⋄ if (a == 1.0)

y = b;

else if (a == 0.0) then

y = 0;

else

y = a*b;

intended: ẏ=a*ḃ+b*ȧ

⋄ y = sqrt(a**4 + b**4);

AD does not perform

algebraic simplifica-

tion,
i.e. for a,b → 0 it does

(d
√
t

dt
)
t→+0
= +∞.

algorithmic differentiation computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence

criteria Intro to AD - Utke - May/2013 46

nonsmooth models

observed:

⋄ INF, NaN, e.g. for
√
0± 0; smoother in [0, ε] ?

⋄ oscillating derivatives (may be glossed over by FD) or
derivatives growing out of bounds

T(0)

time

bT

delta

a

f

aCrit

1:updF1

f2 f1

2:updF2
3:updF1

4:updF2

Intro to AD - Utke - May/2013 47

nonsmooth models II

⋄ blame AD tool - verification problem

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

⋄ blame code, model’s built-in numerical approximations,
external optimization scheme or inherent in the physics?

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

⋄ blame code, model’s built-in numerical approximations,
external optimization scheme or inherent in the physics?

⋄ higher order models in mech. engineering, beam physics,
AtomFT explicit g-stop facility for ODEs, DAEs

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

⋄ blame code, model’s built-in numerical approximations,
external optimization scheme or inherent in the physics?

⋄ higher order models in mech. engineering, beam physics,
AtomFT explicit g-stop facility for ODEs, DAEs

⋄ what to do about first order

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

⋄ blame code, model’s built-in numerical approximations,
external optimization scheme or inherent in the physics?

⋄ higher order models in mech. engineering, beam physics,
AtomFT explicit g-stop facility for ODEs, DAEs

⋄ what to do about first order
� Adifor: optionally catches intrinsic problems via exception

handling

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

⋄ blame code, model’s built-in numerical approximations,
external optimization scheme or inherent in the physics?

⋄ higher order models in mech. engineering, beam physics,
AtomFT explicit g-stop facility for ODEs, DAEs

⋄ what to do about first order
� Adifor: optionally catches intrinsic problems via exception

handling
� Adol-C: tape verification and intrinsic handling

Intro to AD - Utke - May/2013 48

nonsmooth models II

⋄ blame AD tool - verification problem
� forward vs reverse (dot product check)
� compare to FD
� compare to other AD tool

⋄ blame code, model’s built-in numerical approximations,
external optimization scheme or inherent in the physics?

⋄ higher order models in mech. engineering, beam physics,
AtomFT explicit g-stop facility for ODEs, DAEs

⋄ what to do about first order
� Adifor: optionally catches intrinsic problems via exception

handling
� Adol-C: tape verification and intrinsic handling
� OpenAD (comparative tracing)

Intro to AD - Utke - May/2013 48

differentiability

piecewise differentiable function:
|x2 − sin(|y|)|
is (locally) Lipschitz continuous;
almost everywhere differentiable
(except on the 6 critical paths)

⋄ Gâteaux: if ∃ df(x, ẋ) = lim
τ→0

f(x+τ ẋ)−f(x)
τ

for all directions ẋ

⋄ Bouligand: Lipschitz continuous and Gâteaux

⋄ Fréchet: df(., ẋ) continuous for every fixed ẋ ... not generally

⋄ in practice: often benign behavior, directional derivative exists
and is an element of the generalized gradient.

Intro to AD - Utke - May/2013 49

case distinction

3

1 2

2

−1

0reference point 1

Intro to AD - Utke - May/2013 50

case distinction

3 locally analytic

3

1 2

2

−1

0reference point 1

Intro to AD - Utke - May/2013 50

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...)

or discontinuity (ceil,...) [for source transformation: also

different control flow]

3

1 2

2

−1

0reference point 1

Intro to AD - Utke - May/2013 50

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...)

or discontinuity (ceil,...) [for source transformation: also

different control flow]
1 we are exactly at a (potential) kink, discontinuity

3

1 2

2

−1

0reference point 1

Intro to AD - Utke - May/2013 50

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...)

or discontinuity (ceil,...) [for source transformation: also

different control flow]
1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) → potentially
discontinuous (can only be determined for some special cases)

3

1 2

2

−1

0reference point 1

Intro to AD - Utke - May/2013 50

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...)

or discontinuity (ceil,...) [for source transformation: also

different control flow]
1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) → potentially
discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a
different value than before (tape invalid → sparsity pattern may be

changed,...)]
3

1 2

2

−1

0reference point 1

Intro to AD - Utke - May/2013 50

sparsity (1)
many repeated Jacobian vector products → compress the Jacobian
F ′ · S = B ∈ IRm×q using a seed matrix S ∈ IRn×q

What are S and q?
Row i in F ′ has ρi nonzeros in columns v(1), . . . , v(ρi)
F ′
i = (α1, . . . , αρi) = αT and the compressed row is

Bi = (β1, . . . , βq) = βT We choose S so we can solve:

Ŝiα = β

with ŜT
i = (sv(1), . . . , sv(ρi))

αT βT

v(1) v(2) v(3)

Intro to AD - Utke - May/2013 51

sparsity (2)

direct:
⋄ Curtis/Powell/Reid: structurally orthogonal

⋄ Coleman/Moré: column incidence graph coloring)

q is the color number in column incidence graph, each column in S

represents a color with a 1 for each entry whose corresponding
column in F ′ is of that color.

4

21

3

S =









1 0
0 1
1 0
0 1









reconstruct F ′ by relocating nonzero elements (direct)

Intro to AD - Utke - May/2013 52

sparsity (3)

indirect:
⋄ Newsam/Ramsdell: q = max

i
{#nonzeros} ≤ χ

⋄ S is a (generalized) Vandermonde matrix
[

λ
j−1
i

]

, j = 1 . . . q, λi 6= λi′

⋄ How many different λi ?

same example

S =









λ0
1 λ1

1

λ0
2 λ1

2

λ0
3 λ1

3

λ0
4 λ1

4









4

21

3

S =









λ0
1 λ1

1

λ0
2 λ1

2

λ0
1 λ1

1

λ0
2 λ1

2









all combinations of columns (= rows of S): (1, 2), (2, 3), (1, 4)
improved condition via generalization approaches

related notions: partial separability, contraction points, scarcity

Intro to AD - Utke - May/2013 53

numerical libraries/frameworks (1)

⋄ interfaces implement fixed mathematical meaning

⋄ may be a “black box” (different language, proprietary)

Intro to AD - Utke - May/2013 54

numerical libraries/frameworks (1)

⋄ interfaces implement fixed mathematical meaning

⋄ may be a “black box” (different language, proprietary)

⋄ hopefully has derivatives easily implementable with the library
calls, e.g. blas,

⋄ linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

⋄ often requires single call encapsulation

Intro to AD - Utke - May/2013 54

numerical libraries/frameworks (1)

⋄ interfaces implement fixed mathematical meaning

⋄ may be a “black box” (different language, proprietary)

⋄ hopefully has derivatives easily implementable with the library
calls, e.g. blas,

⋄ linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

⋄ often requires single call encapsulation

⋄ brute force differentiation as last resort

Intro to AD - Utke - May/2013 54

numerical libraries/frameworks (1)

⋄ interfaces implement fixed mathematical meaning

⋄ may be a “black box” (different language, proprietary)

⋄ hopefully has derivatives easily implementable with the library
calls, e.g. blas,

⋄ linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

⋄ often requires single call encapsulation

⋄ brute force differentiation as last resort

⋄ always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

Intro to AD - Utke - May/2013 54

numerical libraries/frameworks (1)

⋄ interfaces implement fixed mathematical meaning

⋄ may be a “black box” (different language, proprietary)

⋄ hopefully has derivatives easily implementable with the library
calls, e.g. blas,

⋄ linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

⋄ often requires single call encapsulation

⋄ brute force differentiation as last resort

⋄ always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

⋄ efficiency considerations, see “delayed piggyback” e.g. for
iterations xk+1 = f(xk)

Intro to AD - Utke - May/2013 54

numerical libraries/frameworks (2)

⋄ no generic “differentiated” libraries (attempt for MPI)

Intro to AD - Utke - May/2013 55

numerical libraries/frameworks (2)

⋄ no generic “differentiated” libraries (attempt for MPI)

⋄ efficient implementation tied to AD tool implementation

Intro to AD - Utke - May/2013 55

numerical libraries/frameworks (2)

⋄ no generic “differentiated” libraries (attempt for MPI)

⋄ efficient implementation tied to AD tool implementation

⋄ high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

Intro to AD - Utke - May/2013 55

numerical libraries/frameworks (2)

⋄ no generic “differentiated” libraries (attempt for MPI)

⋄ efficient implementation tied to AD tool implementation

⋄ high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

⋄ advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

Intro to AD - Utke - May/2013 55

Summary

⋄ basics of AD are deceptively simple

Intro to AD - Utke - May/2013 56

Summary

⋄ basics of AD are deceptively simple

⋄ AD tools offer semi-automatic differentiation of algorithms

Intro to AD - Utke - May/2013 56

Summary

⋄ basics of AD are deceptively simple

⋄ AD tools offer semi-automatic differentiation of algorithms

⋄ specialized tools for higher order

Intro to AD - Utke - May/2013 56

Summary

⋄ basics of AD are deceptively simple

⋄ AD tools offer semi-automatic differentiation of algorithms

⋄ specialized tools for higher order

⋄ details in the code have a large impact on AD adjoint
efficiency

Intro to AD - Utke - May/2013 56

Summary

⋄ basics of AD are deceptively simple

⋄ AD tools offer semi-automatic differentiation of algorithms

⋄ specialized tools for higher order

⋄ details in the code have a large impact on AD adjoint
efficiency

⋄ problems with certain language features are also problems for
compiler optimization

Intro to AD - Utke - May/2013 56

Summary

⋄ basics of AD are deceptively simple

⋄ AD tools offer semi-automatic differentiation of algorithms

⋄ specialized tools for higher order

⋄ details in the code have a large impact on AD adjoint
efficiency

⋄ problems with certain language features are also problems for
compiler optimization

⋄ computational efficiency is improved by exploiting higher level
insights

Intro to AD - Utke - May/2013 56

	Introduction
	Outline

	motivation
	basics & examples
	simple forward
	application areas
	higher order
	simple reverse
	preaccumulation & propagation
	reverse with OpenAD
	forward vs. reverse
	source transformation vs. operator overloading

	Reversal Schemes
	why do we need them
	split mode
	joint mode
	nested checkpointing

	MPI
	basics
	nonblocking
	collective

	Language Features
	Control Flow
	Checkpointing and Data
	Resources

	Usage Concerns
	Nonsmooth Models
	Sparsity
	Numerical Methods
	Summary

