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Automatic Differentiation in a Nutshell

Technique for computing analytic derivatives of programs (millions of loc)
Derivatives used in optimization, sensitivity analysis, inverse problems, …
AD = analytic differentiation of elementary functions + propagation by 
chain rule
– Every programming language provides a limited number of 

elementary mathematical functions
– Thus, every function computed by a program may be viewed as the 

composition of these so-called intrinsic functions
– Derivatives for the intrinsic functions are known and can be combined 

using the chain rule of differential calculus
Associativity of the chain rule leads to two main modes: forward and 
reverse (adjoint)
Can be implemented using source transformation or operator overloading



Automatic Differentiation in Nuclear System Modeling

Derivatives used for:
– Local sensitivity analysis
– Construction of first- and second-order Taylor models
– Providing weights for adaptive sampling
– Other applications??

What is feasible & practical
– Jacobians of functions with small number (1—1000) of independent 

variables (forward mode)
– Jacobians of functions with small number (1—100) of dependent 

variables (adjoint mode)
– Very (extremely) large, but (very) sparse Jacobians and Hessians 

(forward mode plus coloring)
– Jacobian-vector products (forward mode)
– Transposed-Jacobian-vector products (adjoint mode)
– Hessian-vector products (forward + adjoint modes)



Scenarios

N small: use forward mode on full computation
M small: use reverse mode on full computation
M & N large, P small: use reverse mode on A, forward mode on B&C
M & N large, K small: use reverse mode on A&B, forward mode on C
N, P, K, M large, Jacobians of A, B, C sparse: compressed forward mode
N, P, K, M large, Jacobians of A, B, C low rank: scarce forward mode
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Compressed Jacobian: choose S and compute JS



Matrix Coloring (used to determine S)
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Scenarios

N small: use forward mode on full computation
M small: use reverse mode on full computation
M & N large, P small: use reverse mode on A, forward mode on B&C
M & N large, K small: use reverse mode on A&B, forward mode on C
N, P, K, M large, Jacobians of A, B, C sparse: compressed forward mode
N, P, K, M large, Jacobians of A, B, C low rank: scarce forward mode
N, P, K, M large: Jacobians of A, B, C dense: what to do?
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What to do for very large, dense Jacobian matrices?

Jacobian matrix might be large and dense, but “effectively sparse”
– Many entries below some threshold ε (“almost zero”)
– Can tolerate errors up to δ in entries greater than ε
– Example: advection-diffusion for finite time step: nonlocal terms fall 

off exponentially
– Solution: do a partial coloring to compress this dense Jacobian: 

requires solving a modified graph coloring problem
Jacobian might be large and dense, but “effectively low rank”
– Can be well approximated by a low rank matrix
– Jacobian-vector products (and JTv) are cheap
– Adapt techniques based on sampling of F or finite difference 

approximations to Jv, [F(x+hv) – F(x)]/h
– One candidate: SVD of random Jacobian-vector products (adaptation 

of efficient subspace method--joint work with Abdel-Khalik)



Tools

Fortran 95
C/C++
Fortran 77
MATLAB



Tools: Fortran 95

TAF (FastOpt)
– Commercial tool
– Support for (almost) all of Fortran 95
– Used extensively in geophysical sciences applications

Tapenade (INRIA)
– Support for many Fortran 95 features
– Developed by a team with extensive compiler experience

OpenAD/F (Argonne/UChicago/Rice) – more later
– Support for many Fortran 95 features
– Developed by a team with expertise in combinatorial algorithms, 

compilers, software engineering, and numerical analysis
– Development driven by climate model & astrophysics code

All three: forward and reverse; source transformation



Tools: C/C++

ADOL-C (Dresden/Humboldt)
– Mature tool
– Support for all of C++
– Operator overloading; forward and reverse modes

ADIC (Argonne/UChicago)
– Support for all of C, some C++
– Source transformation; forward mode (reverse under development)
– New version (2.0) based on industrial strength compiler infrastructure
– Shares some infrastructure with OpenAD/F

TAC++ (FastOpt)
– Commercial tool (under development)
– Support for much of C/C++
– Source transformation; forward and reverse modes
– Shares some infrastructure with TAF



Tools: Fortran 77

ADIFOR (Rice/Argonne)
– Mature and very robust tool
– Support for all of Fortran 77
– Forward and (adequate) reverse modes
– Hundreds of users; ~150 citations

AdiMat (Aachen): source transformation
MAD (Cranfield/TOMLAB): operator overloading
Various research prototypes

Tools: MATLAB



Applications

Nonlinear solver (importance of analytic derivatives)
Mesh smoothing (potential for automatic code to outperform hand coding)
Simplified climate model (importance of reverse mode and compiler 
analysis)



Application: solution of nonlinear PDEs

Jacobian-free Newton-Krylov solution of model problem (driven cavity)

AD + TFQMR:
AD + BiCGStab:
FD(w=10-5 ) + GMRES:
FD(w=10-3 ) + GMRES:
AD + GMRES:
FD(w=10-5 ) + BiCGStab:
FD(w=10-7 ) + GMRES:      does not converge
FD + TFQMR: does not converge

AD = automatic differentiation
FD = finite differences
W = noise estimate for Brown-Saad
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Application: Sensitivity analysis in simplified climate model

Sensitivity of flow through Drake Passage to ocean bottom topography
– Finite difference approximations: 23 days
– Naïve automatic differentiation: 2 hours 23 minutes
– Smart automatic differentiation: 22 minutes



For More Information

Andreas Griewank, Evaluating Derivatives, SIAM, 2000.
Griewank, “On Automatic Differentiation”; this and other technical reports 
available online at: http://www.mcs.anl.gov/autodiff/tech_reports.html
AD in general: http://www.mcs.anl.gov/autodiff/, http://www.autodiff.org/
ADIFOR: http://www.mcs.anl.gov/adifor/
ADIC: http://www.mcs.anl.gov/adic/
OpenAD: http://www.mcs.anl.gov/openad/
Other tools: http://www.autodiff.org/
E-mail: hovland@mcs.anl.gov


