
An Overview of Automatic
Differentiation and Introduction
to the OpenAD/F Tool

Paul Hovland, Jean Utke

Mathematics & Computer Science Division
Argonne National Laboratory

Argonne Automatic Differentiation Group Members

Paul Hovland
Andrew Lyons (UChicago)
Sri Hari Krishna Narayanan (starts 11/08)
Boyana Norris
Ilya Safro
Jaewook Shin
Jean Utke (joint w/ UChicago)

Alumni: J. Abate, C. Bischof, S. Bhowmick, A. Griewank, P.
Khademi, J. Kim, P. Malusare, U. Naumann, L. Roh, M. Strout, B.
Winnicka

Funding

Current:
– DOE: Applied Mathematics Base Program
– DOE: Computer Science Base Program
– DOE: CSCAPES SciDAC Institute
– NASA: ECCO-II Consortium
– NSF: Collaborations in Math & Geoscience

Past:
– DOE: Applied Math
– NASA Langley
– NSF: ITR

Outline

Introduction to automatic differentiation (AD)
AD in nuclear systems modeling
Computing derivatives efficiently under various scenarios
Ideas for computing very large, very dense Jacobians efficiently
Survey of available tools
Application examples
Handoff to Utke for discussion of OpenAD/F and its application to SCALE

Automatic Differentiation in a Nutshell

Technique for computing analytic derivatives of programs (millions of loc)
Derivatives used in optimization, sensitivity analysis, inverse problems, …
AD = analytic differentiation of elementary functions + propagation by
chain rule
– Every programming language provides a limited number of

elementary mathematical functions
– Thus, every function computed by a program may be viewed as the

composition of these so-called intrinsic functions
– Derivatives for the intrinsic functions are known and can be combined

using the chain rule of differential calculus
Associativity of the chain rule leads to two main modes: forward and
reverse (adjoint)
Can be implemented using source transformation or operator overloading

Automatic Differentiation in Nuclear System Modeling

Derivatives used for:
– Local sensitivity analysis
– Construction of first- and second-order Taylor models
– Providing weights for adaptive sampling
– Other applications??

What is feasible & practical
– Jacobians of functions with small number (1—1000) of independent

variables (forward mode)
– Jacobians of functions with small number (1—100) of dependent

variables (adjoint mode)
– Very (extremely) large, but (very) sparse Jacobians and Hessians

(forward mode plus coloring)
– Jacobian-vector products (forward mode)
– Transposed-Jacobian-vector products (adjoint mode)
– Hessian-vector products (forward + adjoint modes)

Scenarios

N small: use forward mode on full computation
M small: use reverse mode on full computation
M & N large, P small: use reverse mode on A, forward mode on B&C
M & N large, K small: use reverse mode on A&B, forward mode on C
N, P, K, M large, Jacobians of A, B, C sparse: compressed forward mode
N, P, K, M large, Jacobians of A, B, C low rank: scarce forward mode

n
p k

mA B C

Compressed Jacobian: choose S and compute JS

Matrix Coloring (used to determine S)

1 2 0 0 5
0 0 3 0 0
0 2 3 4 0
1 0 0 0 0
0 0 0 4 5

1 2 0 0 5
0 0 3 0 0
0 2 3 4 0
1 0 0 0 0
0 0 0 4 5

1 2 0 0 5
0 0 3 0 0
0 2 3 4 0
1 0 0 0 0
0 0 0 4 5

1 2 0 5
3 0 0 0
3 2 4 0
1 0 0 0
0 0 4 5

1 2 5
0 0 3
4 2 3
1 0 0
4 0 5

1 2

3

4

5

1 2

3

4

5

Scenarios

N small: use forward mode on full computation
M small: use reverse mode on full computation
M & N large, P small: use reverse mode on A, forward mode on B&C
M & N large, K small: use reverse mode on A&B, forward mode on C
N, P, K, M large, Jacobians of A, B, C sparse: compressed forward mode
N, P, K, M large, Jacobians of A, B, C low rank: scarce forward mode
N, P, K, M large: Jacobians of A, B, C dense: what to do?

n
p k

mA B C

What to do for very large, dense Jacobian matrices?

Jacobian matrix might be large and dense, but “effectively sparse”
– Many entries below some threshold ε (“almost zero”)
– Can tolerate errors up to δ in entries greater than ε
– Example: advection-diffusion for finite time step: nonlocal terms fall

off exponentially
– Solution: do a partial coloring to compress this dense Jacobian:

requires solving a modified graph coloring problem
Jacobian might be large and dense, but “effectively low rank”
– Can be well approximated by a low rank matrix
– Jacobian-vector products (and JTv) are cheap
– Adapt techniques based on sampling of F or finite difference

approximations to Jv, [F(x+hv) – F(x)]/h
– One candidate: SVD of random Jacobian-vector products (adaptation

of efficient subspace method--joint work with Abdel-Khalik)

Tools

Fortran 95
C/C++
Fortran 77
MATLAB

Tools: Fortran 95

TAF (FastOpt)
– Commercial tool
– Support for (almost) all of Fortran 95
– Used extensively in geophysical sciences applications

Tapenade (INRIA)
– Support for many Fortran 95 features
– Developed by a team with extensive compiler experience

OpenAD/F (Argonne/UChicago/Rice) – more later
– Support for many Fortran 95 features
– Developed by a team with expertise in combinatorial algorithms,

compilers, software engineering, and numerical analysis
– Development driven by climate model & astrophysics code

All three: forward and reverse; source transformation

Tools: C/C++

ADOL-C (Dresden/Humboldt)
– Mature tool
– Support for all of C++
– Operator overloading; forward and reverse modes

ADIC (Argonne/UChicago)
– Support for all of C, some C++
– Source transformation; forward mode (reverse under development)
– New version (2.0) based on industrial strength compiler infrastructure
– Shares some infrastructure with OpenAD/F

TAC++ (FastOpt)
– Commercial tool (under development)
– Support for much of C/C++
– Source transformation; forward and reverse modes
– Shares some infrastructure with TAF

Tools: Fortran 77

ADIFOR (Rice/Argonne)
– Mature and very robust tool
– Support for all of Fortran 77
– Forward and (adequate) reverse modes
– Hundreds of users; ~150 citations

AdiMat (Aachen): source transformation
MAD (Cranfield/TOMLAB): operator overloading
Various research prototypes

Tools: MATLAB

Applications

Nonlinear solver (importance of analytic derivatives)
Mesh smoothing (potential for automatic code to outperform hand coding)
Simplified climate model (importance of reverse mode and compiler
analysis)

Application: solution of nonlinear PDEs

Jacobian-free Newton-Krylov solution of model problem (driven cavity)

AD + TFQMR:
AD + BiCGStab:
FD(w=10-5) + GMRES:
FD(w=10-3) + GMRES:
AD + GMRES:
FD(w=10-5) + BiCGStab:
FD(w=10-7) + GMRES: does not converge
FD + TFQMR: does not converge

AD = automatic differentiation
FD = finite differences
W = noise estimate for Brown-Saad

118
42

32
31
31

22

0 20 40 60 80 100 120 140

Time to solution (sec)

Application: Sensitivity analysis in simplified climate model

Sensitivity of flow through Drake Passage to ocean bottom topography
– Finite difference approximations: 23 days
– Naïve automatic differentiation: 2 hours 23 minutes
– Smart automatic differentiation: 22 minutes

For More Information

Andreas Griewank, Evaluating Derivatives, SIAM, 2000.
Griewank, “On Automatic Differentiation”; this and other technical reports
available online at: http://www.mcs.anl.gov/autodiff/tech_reports.html
AD in general: http://www.mcs.anl.gov/autodiff/, http://www.autodiff.org/
ADIFOR: http://www.mcs.anl.gov/adifor/
ADIC: http://www.mcs.anl.gov/adic/
OpenAD: http://www.mcs.anl.gov/openad/
Other tools: http://www.autodiff.org/
E-mail: hovland@mcs.anl.gov

