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Fields using GPU Accelerators at Argonne
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Computed Tomography Micro-tomography

Cosmology

Bioengineering
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GPU-Based Supercomputers
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GPU-Accelerated High Performance Computing

� GPUs are general purpose, highly

parallel processors

– High FLOPs/Watt and FLOPs/$

– Unit of execution Kernel

– Separate memory subsystem

– Prog. Models: CUDA, OpenCL, …

� Clusters with GPUs are becoming

common

– Multiple GPUs per node

– Nonuniform node architecture

– Node topology plays role in performance

� New programmability and performance 

challenges for programming models and 

runtime systems
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Heterogeneity and Intra-node GPU-GPU Xfers

� CUDA provides GPU-GPU DMA using CUDA IPC

� Same I/O hub – DMA best

� Different I/O hubs – Shared memory best

– Mismatch between PCIe and QPI ordering semantics
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MPI-ACC: Programmability and Performance

� GPU Global memory

– Separate address space

– Manually managed

� Message Passing Interface

– Most popular parallel 

programming model

– Host memory only

� Integrate accelerator  

awareness with MPI

(ANL, NCSU, VT)

– Productivity and 

performance benefits
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Current MPI+GPU Programming

� MPI operates on data in host memory only

� Manual copy between host and GPU memory serializes PCIe, Interconnect

– Can do better than this, but will incur protocol overheads multiple times

� Productivity: Manual data movement

� Performance: Inefficient, unless large, non-portable investment in tuning
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MPI-ACC Interface: Passing GPU Buffers to MPI

� Unified Virtual Address (UVA) space

– Allow device pointer in MPI routines directly

– Currently supported only by CUDA and newer NVIDIA GPUs

– Query cost is high and added to every operation (CPU-CPU)

� Explicit Interface – e.g. MPI_CUDA_Send(…), overloading

� MPI Datatypes – Compatible with MPI and many accelerator models
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MPI-ACC: Integrated, Optimized Data Movement

� Use MPI for all data movement

– Support multiple accelerators and prog. models (CUDA, OpenCL, …)

– Allow application to portably leverage system-specific optimizations

� Inter-node data movement [Aji HPCC’12]

– Pipelining: Fully utilize PCIe and network links

– GPU direct (CUDA): Multi-device pinning eliminates data copying

– Handle caching (OpenCL): Avoid expensive command queue creation

� Intra-node data movement

– Shared memory protocol [Ji ASHES’12]

• Sender and receiver drive independent DMA transfers

– Direct DMA protocol [Ji HPCC’12]

• GPU-GPU DMA transfer (CUDA IPC)

– Both protocols needed, PCIe limitations serialize DMA across I/O hubs

9



Integrated Support for User-Defined Datatypes

MPI_Send(buffer, datatype, count, to, … )
MPI_Recv(buffer, datatype, count, from, … )

� What if the datatype is noncontiguous?

� CUDA doesn’t support arbitrary noncontiguous transfers

� Pack data on the GPU [Jenkins ‘12]

– Flatten datatype tree representation

– Packing kernel that can saturate memory bus/banks

10



Intranode Communication in MPICH2 (Nemesis)

� Short Message Transport

– Shared message queue

– Large, persistent queue

– Single buffer transport

� Large Message Transport

– Point-to-point shared buffer

– Ring buffer allocated at first 

connection

– Multi-buffered transport
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Non-integrated Intranode Communication

� Communication without accelerator integration

– 2 PCIe data copies + 2 main memory copies

– Transfers are serialized
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Performance Potential: Intranode Bandwidth

� Bandwidth measurement when using manual data movement

� Theoretical node bandwidth: 6 GB/sec

– Achieved for host-host transfers

� Observed bandwidth: 1.6 – 2.8 GB/sec

– With one/two GPU buffers – one/two copies
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Eliminating Extra Copies

� Integration allows direct transfer into shared memory buffer

� LMT: sender and receiver drive transfer concurrently

– Pipeline data transfer

– Full utilization of PCIe links
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Copying Data Between Host and Device

� Three choices for selecting the right copy operation:

1. UVA-Default: Use cudaMemcpy(…, cudaMemcpyDefault)
2. Query-and-copy: UVA query buffer type

• Dispatch memcpy or cudaMemcpy

3. Parameterized-copy: Pass parameter for each buffer

• Dispatch memcpy or cudaMemcpy
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Large Message Transport Protocol

� Shared buffer mapped between 

pairs of communicating processes

– Enables pipelined transfer

– Sender and receiver drive DMA 

concurrently

� Fixed-size ring Buffer

– Set of fixed-size partitions

– R - receiver’s pointer

– S - sender’s pointer

� Partition size 

– Set to data length by Sender

– Set to zero by Receiver
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Extending LMT Protocol to Accelerators

� Sender and receiver issue 

asynchronous PCIe data transfers

– Add Ra and Sa pointers

– Mark section of R/S segment in 

use by PCIe transfers

� Proactively generate PCIe data 

transfers

– Move to the next partition

– Start new PCIe data copy

– Repeat until full or RB is empty

– Update R/S when checking PCIe 

operations later
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Experimental Evaluation

� Keeneland node architecture

– 2x Intel Xeon X5660 CPUs, 24 GB Memory, 3x Nvidia M2070 GPUs

1. Parameter optimization: shared ring buffer and message 

queue

2. Communication benchmarking: OSU latency/bw

3. Stencil2D from SHOC benchmark suite
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Eager Parameters: Message Queue Element Size
and Eager/LMT Threshold

� GPU-GPU transfer of varying size

– “Shared buf” is manual data transfer

� Large message queue can support more requests

� Eager up to 64 kB, LMT for +64 kB

– The same value as host-only 
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LMT Parameter: Shared Ring Buffer Unit Size

� Host-to-host

– Default buffer unit size 32 KB

� GPU involved

– Use 256 KB

– PCIe bandwidth favors larger 

messages

� Parameter choice requires 

knowledge of buffer locations on 

sender and receiver

– Exchange information during 

handshaking phase of LMT 

protocol
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Latency & Bandwidth Improvement

� Less impact on D2D case

– PCIe latency dominant 

� Improvement: 6.7% (D2D), 15.7% 

(H2D), 10.9% (D2H)

� Bandwidth discrepancy in 

different  PCIe bus directions

� Improvement: 56.5% (D2D), 

48.7% (H2D), 27.9% (D2H)

� Nearly saturates peak (6 

GB/sec) in D2H case
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Application Performance: Stencil2D Kernel

� Nine-point stencil computation, SHOC benchmark suite

– Halo exchange with neighboring processes

– Benefit from latency improvement 

– Relative fraction of communication time decreases with problem size

– Average execution time improvement of 4.3%
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Conclusions

� Accelerators are ubiquitous, moving target

– Exciting new opportunities for systems researchers

– Requires evolution of HPC software stack

� Integrate accelerator-awareness with MPI

– Support multiple accelerators and programming models

– Goals are productivity and performance

� Optimized Intranode communication

– Eliminate extra main memory copies

– Pipeline data flow in ring buffer

– Optimize data copying
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Questions?
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Backup Slides
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Host-side Memcpy Bandwidth
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