Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

Michel Steuwer, Philipp Kegel, and Sergei Gorlatch
University of Muenster, Germany
Motivation

• Popular programming approaches for Graphics Processing Units (GPUs):
 • Challenges when using OpenCL or CUDA:
 • explicit coordination of thousands of threads
 • explicit data transfers to and from GPUs
 • explicit handling of complex memory hierarchies
 • Additional challenges for multi-GPU systems:
 • explicit work balancing to keep all GPUs busy
 • explicit managing of data transfers between GPUs

⇒ low-level coding makes GPU programming complex and error-prone

Idea Provide high-level abstractions to simplify programming
SkelCL – Overview

• SkelCL is a library introducing high-level abstractions on top of OpenCL

<table>
<thead>
<tr>
<th>SkelCL</th>
<th>OpenCL API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Computations</td>
</tr>
</tbody>
</table>

• Built on top of OpenCL:
 • hardware- and vendor-independent, portable
 • access to arbitrary OpenCL devices, e.g. GPUs or multi-core CPUs

• Two high-level features:
 • Computations: conveniently expressed using *pre-implemented parallel patterns*
 • Memory: implicitly managed using *abstract vector data type*

• Goals:
 • Simplify programming by providing high-level abstractions
 • Eliminate explicit data transfers
 • Especially address multi-GPU systems
User expresses computations using pre-implemented parallel patterns, a.k.a. *algorithmic skeletons*

Skeletos are customized by application-specific functions

Four basic skeletons currently provided (f and \oplus application-specific)

Map

- $x_0 \rightarrow f \rightarrow y_0$
- $x_1 \rightarrow f \rightarrow y_1$
- \vdots
- $x_n \rightarrow f \rightarrow y_n$

Zip

- $x_0 \rightarrow y_0 \oplus \rightarrow z_0$
- $x_1 \rightarrow y_1 \oplus \rightarrow z_1$
- \vdots
- $x_n \rightarrow y_n \oplus \rightarrow z_n$

Reduce

- $x_0 \oplus \rightarrow z$
- $x_1 \oplus \rightarrow z$
- \vdots
- $x_n \oplus \rightarrow z$

Scan (Prefix Sum)

- $x_0 \rightarrow y_0$
- $x_1 \rightarrow y_1$
- \vdots
- $x_n \rightarrow y_n$
Abstract Data Type

- Abstract vector data type makes memory accessible by CPU and GPU
- For programmer’s convenience:
 - Memory is allocated automatically on the GPU
 - Implicit data transfers between the main memory and the GPU memory
- Vectors are used as input and output for skeletons
- SkelCL automatically ensure: input vectors’ data are available on GPU
- We use **lazy copying** to **minimizes data transfers**: Data is not transfered right away, but only when needed
 - Example: Output vector is used as input to another skeleton
 - The output vector’s data is not copied to host but resides in device memory
 ⇒ no data transfer needed, which leads to **improved performance**
SkelCL – First Example

Dot product

- **Calculation of the vector dot product:** \(\sum_{i=0}^{size-1} a_i \cdot b_i \)

```cpp
float dot_product(const std::vector<float>& a, const std::vector<float>& b) {
    SkelCL::init(); // initialize SkelCL

    // declare computation by customizing skeletons:
    SkelCL::Zip<float> mult("float func(float x, float y){ return x*y; }" acompanz 10027
    SkelCL::Reduce<float> sum_up("float func(float x, float y){ return x+y; }" acompanz 10027

    // create data vectors:
    SkelCL::Vector<float> A(a.begin(), a.end()),
        B(b.begin(), b.end());

    // perform calculation:
    SkelCL::Vector<float> C = sum_up(mult(A, B));
    return C.front(); // access result
}
```

- **SkelCL:** 7 lines of code
- **OpenCL:** 68 lines of code (NVIDIA programming example)
Traditionally, skeletons have fixed number of arguments
SkelCL extends this:
 • An arbitrary number of arguments can be passed to the skeleton
 ⇒ Enables more algorithms to be expressed using skeletons

Example: SAXPY calculation in BLAS (\(Y = a \times X + Y \))
 • Can be easily expressed using the zip skeleton
 • Scalar \(a \) is required in the computation and passed as additional argument:

```c
/* create skeleton with one additional argument */
Zip<float> saxpy (  
  "float func(float x, float y, float a) { return a*x+y; }"
    );

/* create input vectors */
Vector<float> X(SIZE); fillVector(X);
Vector<float> Y(SIZE); fillVector(Y);
float a = fillScalar();

/* execute skeleton, pass additional argument (a) */
Y = saxpy(X, Y, a);
```
Programming multi-GPU systems is especially complicated:
- explicit distribution of data among GPUs
- explicit data exchange between GPUs

To address this, SkelCL supports three *data distributions*:

- **single**: distribution of input vector implies automatic parallelization:
 - single — skeleton is executed on a single GPU
 - block — all GPUs cooperate in skeleton execution
 - copy — skeleton is executed on all GPUs separately
• Distribution is either set by programmer or by default

• Changing distribution at runtime ⇒ automatic data exchange. e.g.:

```cpp
// set single as initial distribution
vector.setDistribution(Distribution::single);
...

// changing from single to block distribution
vector.setDistribution(Distribution::block);
```

• All required data transfers are performed automatically by SkelCL!
Application Study: Tomography

- Application study: *List-Mode Ordered Subset Expectation Maximization* (list-mode OSEM)
- List-mode OSEM\(^1\) is a time-intensive iterative image reconstruction algorithm for computer tomography
- 3D-images are reconstructed from sets of *events* recorded by a scanner; events are split into *subsets* which are processed iteratively
- For every subset, two steps are performed:
 - All events are used to process an *error image* \((c)\)
 - The error image is then used to update a *reconstruction image* \((f)\)
- Up to several hours on a common PC \(\Rightarrow\) not practical

\(^{1}\)T. Kösters et al. EMrecon: An expectation maximization based image reconstruction framework for emission tomography data. NSS/MIC Conference Record, IEEE, 2011
The two steps require different parallelization approaches:

- **compute_error**: divide events \((e)\) across processing units, every processing unit requires copy of error image \((c)\) and reconstruction image \((f)\)
- **update**: divide error image \((c)\) and reconstruction image \((f)\)

Data partitioning and data transfers between CPU and two GPUs:

In a multi-GPU system, multiple data exchanges are required every iteration
List-mode OSEM in SkelCL

• We can easily express the identified distribution of data in SkelCL:

```cpp
for (l = 0; l < num_subsets; l++) {
    SkelCL::Vector<Event> events = read_events(l);
    events.setDistribution(Distribution::block); // divide events
    f.setDistribution(Distribution::copy); // copy recon. image
    c.setDistribution(Distribution::copy); // copy error image
    // map skeleton
    compute_error_image(index, events, events.sizes(), f, out(c));
    f.setDistribution(Distribution::block); // change distribution
    c.setDistribution(Distribution::block, add); // zip skeleton
    update_reconstruction_image(f, c, f);
}
```

• All data movements are performed automatically by SkelCL
Experimental Results

- LOC for the host part was drastically reduced: from 249 to only 32
- Runtime overhead of SkelCL is less than 5%
• **SkelCL**: a high-level programming library for single- and multi-GPU systems

 ⇒ No explicit coordination of thousands of threads
 ⇒ No explicit handling of the complex memory hierarchies

• Skeletons are flexible due to the ability to pass *additional arguments*

• *Abstract vector data type* implicitly transfers data to and from the device
 ⇒ No explicit data transfers to and from GPUs

• *Distributions* simplify parallelization across multiple GPUs
 ⇒ No explicit managing of data transfers between GPUs

• Experiments show minor overhead and significantly shorter codes

SkelCL is open-source and available at:
http://skelcl.uni-muenster.de
• Fully support heterogeneous systems

Advantage We built on top of OpenCL
⇒ SkelCL already can use *every* OpenCL device

Challenges

• Find fair work balancing between different compute devices

• Optimize skeleton implementations for different devices

• Add two-dimensional data type

• Integrate more skeletons