Parallel Multi-Temporal Remote Sensing Image Change Detection on GPU

Huming Zhu

Xidian University

zhuhum@mail.xidian.edu.cn

2012.5

SAR image processing

- Synthetic Aperture Radar
- SAR is a radar system which produces high resolution images using signal processing techniques

Change detection

 Detecting regions of change is of widespread interest due to a large number of applications in diverse disciplines such as remote sensing, medical diagnosis, and video surveillance.

Application

motivation

- propose a new change detection algorithm for remote sensing image(Log-FLICM)
- In order to reduce the computational time in image change detection, this project tries to perform the computation in parallel using the general purpose graphics processing unit
- (GPGPU)

- > GPU is a type of highly parallel, multi-threaded and multi-core processor;
- > GPGPU is quite suitable for computing intensive data parallel;
- Jun. 2007, NVIDIA released CUDA;
- Dec. 2008, Khronos Group released OpenCL1.0;
- Aug. 2009, AMD launched ATI Stream SDK v2.0 Beta which supported X86 processor, the OpenCL program models of data parallel and task parallel are included

XDU XIDIAN UNIVERSITY OpenCL **OpenCL** Programming Context Memory Command Programs Kernels Objects Queue __kernel vold kernel vold sqr images cori dobal float float arg[0] value kernel void sqr(__global float *input, __global float "output) arg[1] value Out of In size_t id = get_global_id(0); Order Order output[id] = input[id] * buffers Queue Queue input[id]; Send to Compile Create data & arguments execution

support for many processors a open standard

Change detection process

UNIVERSITY

Log-FLICM Algorithm

Log-FLICM Algorithm

Step1.	Read the two-temporal remote sensing image
Step2.	Generate difference image using log-ratio
	operation at the two-temporal remote sensing
	image
Step3.	Set the number $c = 2$ of the cluster prototypes,
	fuzzification parameter m and the stopping
	condition \mathcal{E} .
Step4.	Initialize randomly the fuzzy partition
-	motivity $T_{T}(0)$
	mau ix O · · ·
Step5.	Set the loop counter $b = 0$.
Step6.	Calculate the cluster prototypes using (5).
Step7.	Compute membership values using (6).
Step8.	If $\max \left\{ U^{(b)} - U^{(b+1)} \right\} < \varepsilon$ then stop,
	otherwise, set $b = b + 1$ and go to step 4.
Step9.	Analysis of the change detection map.

PLog-FLICM

 As shown in the figure , the diagram of parallel generation of difference image on GPU, the two temporal remote sensing images can be divided into many Workgroups, and every pixel of the image can correspond to the Workitem at each Workgroup. The workitem at each Workgroup produces the difference base on the formula

to generate the difference image.

In order to clustering the difference image better at the next step, we will normalize the difference image. In the process of normalization, it will involve the maximum and minimum calculation on difference matrix. So we employ the reduction technique to deal with it.

Experimental Environment

	Host	Device		
Product Name	HP xw9400 workstation	Product Name	AMD Radeon™ HD 6870	
OS	Windows XP Pro. x64 Edition OS China	Engine Speed	900MHz	
CPU	4× Dual-Core AMD Opteron 2220 2.80GHz	Processing Elements	1120	
Memory	32GB	Memory	1GB GDDR5	
		Memory Bandwidths	134.4 GB/s	
		PCI	PCI Express® 2.1 x16	

AMD Accelerated Parallel Processing (APP) SDK v2 which supports OpenCL 1.1; Programming Environment: Microsoft Visual Studio 2010; Serial programming : Host;

Parallel programming : Host + Device;

XDU XIDIAN UNIVERSITY

false negatives (FN): The number of pixels that are detected as changed area in reference but detected as unchanged area in the result; false positives (FP): The number of pixels that detected as unchanged area in reference image but detected as changed area in result; overall error (OE):: The sum of FN and FP; percentage correct classification (PCC), it can be defined by:

PCC = ((TP+TN)/(TP+FP+TN+FN))

Here **TP** is short for true positives, which is the number of pixels that are detected as the changed area in both the reference image and the result. TN is short for true negatives, which is the number of pixels that are detected as the unchanged area in both the reference image and the result.

Datasets-- Ottawa

DU XIDIAN Datasets-- Yellow River Estuary

(a) acquired in June, 2008.

(b) acquired in June, 2009.

TEST-Dataset	Group (image t1 and t2)	Image size (height wide)	Capacity
	Group1	512 512	257KB
Veller Diver Fetuerr	Group2	1024 1024	1MB
Yellow River Estuary	Group3	2048 2048	4MB
	Group4	4096 4096	16MB

XDU NIVERSITY Change detection maps of the Ottawa

(b)

(a)

(a) Log-KI (b) Log-GGKI (c) Log-FLICM (d) PLog-FLICM

Experimental Result

(a) Log-KI (b) Log-GGKI (c) Log-FLICM, (d) PLog-FLICM

Experimental Result

Comparison of the change detection results

Dataset	Methods	FP	FN	OE	PCC
	Log-KI	641	1442	2083	96.72%
0#*****	Log-GGKI	592	1477	2069	96.73%
Ottawa	Log-FLICM	52	1542	1594	97.47%
	PLog-FLICM	56	1540	1596	97.46%

XDU XIDIAN UNIVERSITY		Spee					
Iterations = 1							
	Dataset	Group (image t1 and t2	CPU(/s)	GPU(/s)	Speedup		
	Yellow River Estuary	Group1 (512 512)	2.984	0.047	63.49	-	
		Group2 (1024 1024)	12.000	0.11	109.09	-	
		Group3 (2048 2048)	48.047	0.453	106.06		
		Group4 (4096 4096)	191.454	2.422	79.05		

XDU XIDIAN UNIVERSITY		Speedup				
		Iteratio	ons = 10			
	Dataset	Group (image t1 and t2)	CPU(/s)	GPU(/s)	Speedup	
	Yellow River Estuary	Group1 (512 512)	72.906	0.516	141.29	
		Group2 (1024 1024)	293.406	1.875	156.48	
		Group3 (2048 2048)	1176.204	8.828	133.24	
		Group4 (4096 4096)	4691.375	49	95.74	

Conclusion

- >Propose a new change detection algorithm in remote sensing image and its parallel version on GPU;
- > The design flow and implement details on GPU are present about PLog-FLICM;
- > The parallel design on producing difference image and FLICM clustering is implemented;
- The proposed algorithm is very effective;
- Gain good accelerating performance on Yellow River Estuary dataset.

Thank you!

