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The increasing role of runtime systems

Code reusabillity

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony  StarSs
Anthil Gk OpenMP

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
* E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

 Some application may benefit from
relying on multiple libraries
- Potentially using different
underlying runtime systems...
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The increasing role of runtime systems
Code reusabillity
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« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
* E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

 Some application may benefit from
relying on multiple libraries . And the performance ’
—~ of the application Py

- Potentially using different
underlying runtime systems...

I@W_



Struggle for resources

Interferences between parallel libraries

« Parallel libraries typically allocate
and bind one thread per core
Problems:

« Resource over-subscription

e Resource under-subscription
Solutions:

« Stand-alone allocation

 Hand-made allocation

activate

pansl
update

assemble

o] =] [=] [=] [=]

clean

_______

 Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc...
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Example: gr_mumps
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Composability problem
How to deal with it?

TBB worker threads I ntel TB B thhe
r ‘ Application
RML ‘ Component A
EEE A Component
" Arena ‘ 2oses _';_] ____________________
slots Sched Sched Sched Lithe
L) oMp i Openct | o Callback
Task dlspatcher Interface

i nstances
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Application threads l ' Han'[ﬂwqm C:ﬂl"ﬁ I '
threads
* Advanced environments allow partitioning of hardware resources
- Intel TBB
» The pool of workers are split in arenas
- Lithe

* Resource sharing management interface
» Harts are transferred between parallel libraries
 Main challenge: Automatically adjusting the amount of resources allocated to each library
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Our approach: Scheduling Contexts

Toward code composability
Push Push

B

Isolate concurrent parallel codes
Similar to lightweight virtual machines

sl

EEEEE

CPU GPU
workers workers



Our approach: Scheduling Contexts

Toward code composability
Push Push

» [solate concurrent parallel codes
« Similar to lightweight virtual machines

o Contexts may expand and shrink
- Hypervised approach
* Resize contexts

. Shre resources e

- Maximize overall throughput s s s s s S
CPU GPU
- Use dynamic feedback both from workers workers
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ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts
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Using StarPU as an experimental platform

A runtime system for *PU architectures

. for studying resource negociation
 The StarPU runtime system ying J

- Dynamically schedule tasks on all -
processing units

e See a pool of heterogeneous
processing units “ —

- Avoid unnecessary data transfers .

between accelerators
e Software VSM for

heterogeneous machines ”

I‘W—-_



Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

* Accept tasks that may have
multiple |rnp.lementat|ons | — parallel
- Potential inter-dependencies Compilers Libraries

HPC Applications

e Leads to a directed acyclic

graph of tasks
» Data-flow approach

cpu
f gpu
spu

(Arw, Br, Cr)

Drivers (CUDA, OpenCL)
CPU GPU MIC

* Open, general purpose
scheduling platform
- Scheduling policies = plugins
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Tasks scheduling
How does it work?

 When a task is submitted, it first goes
Into a pool of “frozen tasks” until all
dependencies are met Push

 Then, the task is “pushed” to the
scheduler

» |dle processing units actively poll for
work (“pop”)

 What happens inside the scheduler is...
up to you!

o RRRL

- mct, work stealing, eager, priority CPU GPU

workers workers
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Scheduling contexts to isolate parallel codes
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Scheduling Contexts in StarPU

Extension of StarPU

 “Virtual” StarPU machines
- Feature their own scheduler

- Minimize interferences
- Enforce data locality

StarPU
 Allocation of resources | Memory _Scheduyling Engine _
nagment Scheduling Contest 1 : chaduling Cantext 2
- Explicit: (DSM) 5 B 8 B

 Programmer’s input

GPU driver ICPU driver

- Supervised:

e Tips on the number of resources
e Tips on the number of flops
- Shared processing units
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Scheduling contexts in StarPU
Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};
int resources2[4] =
{CPU_3, CPU_4, CPU_5, CPU 6}

/* define the scheduling policy and the table
of resource ids */

Push

Thread 1 : : Thread 2

Push

sched ctxl =
starpu_create_sched_ctx(“mct",resourcesl,3);

sched_ctx2 =

MCT

ﬂ
|

ﬂ
s

ﬂ
s

ﬂ
|

D
s

Greedy

I
)

starpu_create_sched_ctx("greedy",resources2,4);
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Scheduling contexts in StarPU

Easily use contexts in your application
int resources1[3] = {CPU_1, CPU_2, GPU_1};

int resources2[4] = - Thread 1 Thread 2
{CPU 3. CPU 4, CPU_5, CPU_6}:

Push Push

/* define the scheduling policy and the table Hert Greedy

of resource ids */ [] [] D ﬂ ﬂ D D
S N S| I T S

sched ctxl =
starpu_create_sched_ctx("heft",resourcesl,3);

sched:ctxz :_ : | B

starpu_create_sched_ctx("greedy",resources2,4);

/I'thread 1: I/l thread 2:
[* define the context associated to kernel 1 */

[* define the context associated to kernel 2 */
starpu_set sched_ctx(sched_ctx1);

starpu_set_sched_ctx(sched_ctx2);

[* submit the set of tasks of the parallel kernel
1*/
for(i=0; i< ntasksl; i++)

starpu task submit(tasksl1[i]);

lh'u'a,—-

[* submit the set of tasks of parallel kernel 2*/
for(i=0; i< ntasks2; i++)
starpu_task_submit(tasks2][i]);




Experimental evaluation
Platform and Application

9 CPUs (two Intel hexacore processors, 3 cores devoted to execute
GPU drivers) + 3 GPUs
« MAGMA Linear Algebra Library
- StarPU Implementation
- Cholesky Factorization kernel
e FEuler3D solver
- Computational Fluid Dynamic benchmark

- Rodinia benchmark suite

- Iterative solver for 3D Euler equations
for compressible fluids
- StarPU Implementation MAGMA — Cholesky Factorization



Composing Magma and the Euler3D solver

o Computational Fluid Dynamic:

Domain decomposition parallelization
Independent tasks per iteration
Dependencies between iterations
Strong affinity with GPUs

2 sub-domains: 2 GPUs

20

18

16

14

e Cholesky Factorization: 1
Scalable on both CPUs & GPUs ¢ 1
1GPU & 9 CPUs "
Large number of tasks 6

e Contexts’ benefits :

.hu’a,—-
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Enforcing locality constraints

Different parallel kernels

CFD And Cholesky
Factorization

No contexts
19.8

2 contexts
14.2
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Micro -benchmark:

9 Cholesky factorizations in parallel
Gain performance from data locality

. . = Serial E ti
« Mixing parallel kernels: 60 52 = 1 Context: 8 CPUS / 3GPUS
443 m 3 contexts .:3x(3 CPUs /1 GPU)
- Unnecessary data transfers 50 =9 Contexts: 9 x (1 CPUs / 0.3 GPUs)
34.8
between Host Memory & GPU 4 -
memory -> blocking waits 30

-  GPU Memory flushes
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Micro -benchmark:

9 Cholesky factorizations in parallel
Gain performance from data locality

m Serial Execution : 87 GB

e Mixing parallel kernels: 60 52 =1 Conor § CPUs 1 3GPUS 11368
=3 contexts : 3 x (3 CPUs ;
- Unnecessary data transfers s | %3 =9 Contexts: 9 x (1 CPUs / 0.3 GPUS) : 41GB
between Host Memory & GPU « o ot
memory -> blocking waits %
- GPU Memory flushes £ 20
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The Hypervisor

What if static dimensioning doesn’t work?

e l|dea:
- Dynamically resize scheduling
contexts
- Different resizing policies

e Optimization criteria:
- Minimize resources’ idle time
- Maximize the instant speed of the

resources/contexts Hypervisor
L . . Resizing Engine
- Minimize total execution of the
application
 Workload of the application
provided

 Linear programs to evaluate the
best distribution of the resources
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Dealing with non scalable kernels

ldleness-based policy
CFD decomposed in 2 sub-domains

Static distribution: . 53.08
- CFD: 3 GPUs

Cholesky Factorization: 9 CPUs

50

40
Hypervisor’s intervention:
- CFD: 2GPUs

Cholesky Factorization: 1 GPU & 9
CPUs

10

0 -

= Static distribution of resources

m Dynamically adjusted distribution of resources
b
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Feedback of the application

Application-driven policy

« 2 streams of parallel kernels

e 1 of them pops in from time to time (the green one) o 20

* The hypervisor: assigns some CPUs to the intruder  °°

19
18.5

17.5

Time (S)
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= Overlapping contexts

m Dynamically adjusted distribution of
resources




Facing irregular applications
Speed-based resizing policies

« Evaluate the speed of contexts

 Compute the number of resources of each type
of architecture needed by each context
-  How many GPUs/CPUs ?
- To execute in a minimal amount of time

( (‘v’c € C,Na,cVa + Ng,cv3 > th )\

1
max subject to [ A Z Na,c = Na
tmam CEC
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Facing irregular applications
Speed-based resizing policies

« Evaluate the speed of contexts

 Compute the number of resources of each type
of architecture needed by each context
-  How many GPUs/CPUs ?

-  To execute in a minimal amount of time
NGPUs in Context ¢

NCPUs in Context c Workload of
Context c
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Facing irregular applications
Speed-based resizing policies

« Evaluate the speed of contexts

 Compute the number of resources of each type
of architecture needed by each context
-  How many GPUs/CPUs ? 20

-  To execute in a minimal amount of time
NGPUs in Context c

NCPUs in Context ¢ \ Workload of __

Context ¢
vcec va+‘ﬁ > t@TT 5

1 ) 0
max subject to E Na,c = ’na
lmax ceC " Incorrect Distribution of

resources over contexts
\ A ( E ng.c=mng

B Speed-based policy corrects the
initial distribution of resources
ceC )

24.8
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Conclusion & Future Work

l&l

Scheduling Contexts allow using multiple parallel libraries
simultaneously

- Currently implemented in StarPU runtime system

- A Hypervisor dynamically shrinks / extends contexts

Future Work
- New metrics to guide resizing
- More intelligent sharing of resources (GPUSs)

- Extend scheduling contexts to other parallel environments

- And much more!



