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The increasing role of runtime systems
Code reusability

• Many HPC applications rely on 
specific parallel libraries
- Linear algebra, FFT, Stencils

• Efficient implementations sitting on 
top of dynamic runtime systems
- To deal with hybrid, multicore 

complex hardware

Cilk OpenMP

IntelTBB

Anthill
Harmony

KAAPI StarPU

StarSs
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complex hardware
• E.g. MKL/OpenMP, 

MAGMA/StarPU
- To avoid reinventing the wheel!

• Some application may benefit from 
relying on multiple libraries
- Potentially using different 

underlying runtime systems…

DAGuE Charm++
Qilin
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And the performance
of the application=>



Struggle for resources
Interferences between parallel libraries

• Parallel libraries typically allocate 
and bind one thread per core
Problems: 

• Resource over-subscription
• Resource under-subscription

Solutions:
• Stand-alone allocation
• Hand-made allocation

Runtime - 4

• Hand-made allocation

• Examples: 
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc…

CPU 1CPU 1 CPU 2CPU 2 CPU 3CPU 3 CPU 4CPU 4 GPU GPU 

Example: qr_mumps
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=> Composability problem
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Composability problem
How to deal with it?

Intel TBB Lithe
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• Advanced environments allow partitioning of hardware resources
- Intel TBB

• The pool of workers are split in arenas
- Lithe

• Resource sharing management interface
• Harts are transferred between parallel libraries

• Main challenge: Automatically adjusting the amount of resources allocated to each library



Our approach: Scheduling Contexts
Toward code composability

• Isolate concurrent parallel codes

• Similar to lightweight virtual machines
Context B

Push

Context A

Push
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Our approach: Scheduling Contexts
Toward code composability

• Contexts may expand and shrink

- Hypervised approach

Context B
Push

Context A

Push
• Isolate concurrent parallel codes

• Similar to lightweight virtual machines
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• Resize contexts

• Share resources

- Maximize overall throughput

- Use dynamic feedback both from 

application and runtime

CPU
workers

GPU
workers

Hypervisor



Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 
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Using StarPU as an experimental platform
A runtime system for *PU architectures

for studying resource negociation
• The StarPU runtime system

- Dynamically schedule tasks on all 

processing units

• See a pool of heterogeneous 

processing units

A = A+B

CPU

CPU

CPU

CPU M.GPU

Runtime

- Avoid unnecessary data transfers 

between accelerators

• Software VSM for 

heterogeneous machines

M.

CPU CPU

M.GPU

CPU

CPU

CPU

CPU

M.A

B
B

M.GPU

M.GPU

- 11



Parallel
Compilers

HPC Applications

Parallel 
Libraries

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

• Accept tasks that may have 

multiple implementations

- Potential inter-dependencies

• Leads to a directed acyclic 

graph of tasks

• Data-flow approach

CPU

StarPU

Drivers (CUDA, OpenCL)

Runtime

• Open, general purpose 

scheduling platform

- Scheduling policies = plugins

GPU MIC

(ARW, BR, CR)

f
cpu
gpu
spu
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Tasks scheduling
How does it work?

• When a task is submitted, it first goes 
into a pool of “frozen tasks” until all 
dependencies are met

• Then, the task is “pushed” to the 
scheduler

• Idle processing units actively poll for 
Scheduler

Push

Runtime

• Idle processing units actively poll for 
work (“pop”)

• What happens inside the scheduler is… 
up to you!

• Examples: 
- mct, work stealing, eager, priority CPU

workers
GPU

workers

Pop Pop
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Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 
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Scheduling Contexts in StarPU
Extension of StarPU

• “Virtual” StarPU machines

- Feature their own scheduler

- Minimize interferences

- Enforce data locality

• Allocation of resources
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- Explicit:

• Programmer’s input

- Supervised:

• Tips on the number of resources

• Tips on the number of flops

- Shared processing units



Scheduling contexts in StarPU
Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};
int resources2[4] = 
{CPU_3, CPU_4, CPU_5, CPU_6};

/* define the scheduling policy and the table 
of resource ids */

sched_ctx1 = 
starpu_create_sched_ctx(“mct",resources1,3);

MCT

Runtime

sched_ctx2 = 
starpu_create_sched_ctx("greedy",resources2,4);
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Scheduling contexts in StarPU
Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};
int resources2[4] = 
{CPU_3, CPU_4, CPU_5, CPU_6};

/* define the scheduling policy and the table 
of resource ids */

sched_ctx1 = 
starpu_create_sched_ctx("heft",resources1,3);

Runtime

// thread 2:
/* define the context associated to kernel 2 */
starpu_set_sched_ctx(sched_ctx2);

/* submit the set of tasks of parallel kernel 2*/
for( i = 0; i < ntasks2; i++)

starpu_task_submit(tasks2[i]);

sched_ctx2 = 
starpu_create_sched_ctx("greedy",resources2,4);

// thread 1:
/* define the context associated to kernel 1 */
starpu_set_sched_ctx(sched_ctx1);

/* submit the set of tasks of the parallel kernel 
1*/
for( i = 0; i < ntasks1; i++)

starpu_task_submit(tasks1[i]);
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Experimental evaluation
Platform and Application

• 9 CPUs (two Intel hexacore processors, 3 cores devoted to execute 

GPU drivers) + 3 GPUs

• MAGMA Linear Algebra Library

- StarPU Implementation

- Cholesky Factorization kernel

• Euler3D solver
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- Computational Fluid Dynamic benchmark

- Rodinia benchmark suite

- Iterative solver for 3D Euler equations 

for compressible fluids

- StarPU Implementation MAGMA – Cholesky Factorization



Composing Magma and the Euler3D solver
Different parallel kernels

16

18

20

No contexts 
19.8

2 contexts 
14.2

CFD And Cholesky 
Factorization

• Computational Fluid Dynamic:
- Domain decomposition parallelization
- Independent tasks per iteration
- Dependencies between iterations
- Strong affinity with GPUs
- 2 sub-domains: 2 GPUs
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• Cholesky Factorization:
- Scalable on both CPUs & GPUs
- 1GPU & 9 CPUs
- Large number of tasks

• Contexts’ benefits :
- Enforcing locality constraints



Micro -benchmark: 
9 Cholesky factorizations in parallel

Gain performance from data locality

• Mixing parallel kernels:

- Unnecessary data transfers

between Host Memory & GPU 

memory -> blocking waits

- GPU Memory flushes

T
im

e 
(s

)

10

20

30

40

50

60

44.3

52

34.8 34.4

Serial Execution
1 Context: 9 CPUs / 3GPUs
3 contexts : 3 x (3 CPUs / 1 GPU)
9 Contexts: 9 x ( 1 CPUs / 0.3 GPUs)
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Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 

Runtime - 22



• Idea:
- Dynamically resize scheduling 

contexts
- Different resizing policies

• Optimization criteria:
- Minimize resources’ idle time
- Maximize the instant speed of the 

The Hypervisor
What if static dimensioning doesn’t work?

Runtime

- Maximize the instant speed of the 
resources/contexts

- Minimize total execution of the 
application
• Workload of the application 

provided
• Linear programs to evaluate the 

best distribution of the resources
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Dealing with non scalable kernels
Idleness-based policy

• CFD decomposed in 2 sub-domains

• Static distribution:

- CFD: 3 GPUs

- Cholesky Factorization: 9 CPUs

• Hypervisor’s intervention:
40

50

60
53.08

Runtime

- CFD: 2GPUs

- Cholesky Factorization: 1 GPU & 9 

CPUs
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Feedback of the application
Application-driven policy
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• 2 streams of parallel kernels

• 1 of them pops in from time to time (the green one)

• The hypervisor: assigns some CPUs to the intruder
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Overlapping contexts

Dynamically adjusted distribution of 
resources



Facing irregular applications
Speed-based resizing policies

• Evaluate the speed of contexts

• Compute the number of resources of each type 

of architecture needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time
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nCPUs in Context c Workload of 
Context c
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nCPUs in Context c Workload of 
Context c
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Incorrect Distribution of 
resources over contexts
Speed-based policy corrects the 
initial distribution of resources



Conclusion  & Future Work

• Scheduling Contexts allow using multiple parallel libraries 

simultaneously

- Currently implemented in StarPU runtime system

- A Hypervisor dynamically shrinks / extends contexts

• Future Work

Runtime

- New metrics to guide resizing

- More intelligent sharing of resources (GPUs)

- Extend scheduling contexts to other parallel environments

- …

- And much more!
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