Composing multiple StarPU applications
over heterogeneous machines:
a supervised approach

Andra Hugo

With Abdou Guermouche, Pierre-André Wacrenier, Raymo nd Namyst

Inria, LaBRI, University of Bordeaux
RUNTIME
INRIA Group
INRIA Bordeaux Sud-Ouest

The increasing role of runtime systems

Code reusabillity

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony StarSs
Anthil Gk OpenMP

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
* E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

 Some application may benefit from
relying on multiple libraries
- Potentially using different
underlying runtime systems...

T —

The increasing role of runtime systems
Code reusabillity

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony StarSs
Anthil Gk OpenMP

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
* E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

 Some application may benefit from
relying on multiple libraries . And the performance ’
—~ of the application Py

- Potentially using different
underlying runtime systems...

I@W_

Struggle for resources

Interferences between parallel libraries

« Parallel libraries typically allocate
and bind one thread per core
Problems:

« Resource over-subscription

e Resource under-subscription
Solutions:

« Stand-alone allocation

 Hand-made allocation

activate

pansl
update

assemble

o] =] [=] [=] [=]

clean

 Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc...

cPUL) cPU2 J) cpu3) (crua Gpu |

Example: gr_mumps
I&szu&,-

Struggle for resources

Interferences between parallel libraries

« Parallel libraries typically allocate
and bind one thread per core
Problems:

« Resource over-subscription

e Resource under-subscription
Solutions:

« Stand-alone allocation

 Hand-made allocation

o] =] [=] [=] [=]

 Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc...

cPUL) cPU2 J) cpu3) (crua Gpu |

=> Composability problem Example: gr_mumps
Iéw_

Composability problem
How to deal with it?

TBB worker threads I ntel TB B thhe
r ‘ Application
RML ‘ Component A
EEE A Component
" Arena ‘ 2oses _';_] ____________________
slots Sched Sched Sched Lithe
L) oMp i Openct | o Callback
Task dlspatcher Interface

i nstances

3358 331

L]Ihe leﬂme

0s
Y Ill I.“ I‘1. ’L‘ 4 '1“ T .: T 1n‘
Application threads l ' Han'[ﬂwqm C:ﬂl"ﬁ I '
threads
* Advanced environments allow partitioning of hardware resources
- Intel TBB
» The pool of workers are split in arenas
- Lithe

* Resource sharing management interface
» Harts are transferred between parallel libraries
 Main challenge: Automatically adjusting the amount of resources allocated to each library

I&L'zéz.-

Our approach: Scheduling Contexts

Toward code composability
Push Push

B

Isolate concurrent parallel codes
Similar to lightweight virtual machines

sl

EEEEE

CPU GPU
workers workers

Our approach: Scheduling Contexts

Toward code composability
Push Push

» [solate concurrent parallel codes
« Similar to lightweight virtual machines

o Contexts may expand and shrink
- Hypervised approach
* Resize contexts

. Shre resources e

- Maximize overall throughput s s s s s S
CPU GPU
- Use dynamic feedback both from workers workers

TRE--

T

l&;

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

T

l&l

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

Using StarPU as an experimental platform

A runtime system for *PU architectures

. for studying resource negociation
 The StarPU runtime system ying J

- Dynamically schedule tasks on all -
processing units

e See a pool of heterogeneous
processing units “ —

- Avoid unnecessary data transfers .

between accelerators
e Software VSM for

heterogeneous machines ”

I‘W—-_

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

* Accept tasks that may have
multiple |rnp.lementat|ons | — parallel
- Potential inter-dependencies Compilers Libraries

HPC Applications

e Leads to a directed acyclic

graph of tasks
» Data-flow approach

cpu
f gpu
spu

(Arw, Br, Cr)

Drivers (CUDA, OpenCL)
CPU GPU MIC

* Open, general purpose
scheduling platform
- Scheduling policies = plugins

I"'m&—-_

Tasks scheduling
How does it work?

 When a task is submitted, it first goes
Into a pool of “frozen tasks” until all
dependencies are met Push

 Then, the task is “pushed” to the
scheduler

» |dle processing units actively poll for
work (“pop”)

 What happens inside the scheduler is...
up to you!

o RRRL

- mct, work stealing, eager, priority CPU GPU

workers workers

I"'m&—-_

T

l&l

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

Scheduling Contexts in StarPU

Extension of StarPU

 “Virtual” StarPU machines
- Feature their own scheduler

- Minimize interferences
- Enforce data locality

StarPU
 Allocation of resources | Memory _Scheduyling Engine _
nagment Scheduling Contest 1 : chaduling Cantext 2
- Explicit: (DSM) 5 B 8 B

 Programmer’s input

GPU driver ICPU driver

- Supervised:

e Tips on the number of resources
e Tips on the number of flops
- Shared processing units

I‘W—-_

Scheduling contexts in StarPU
Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};
int resources2[4] =
{CPU_3, CPU_4, CPU_5, CPU 6}

/* define the scheduling policy and the table
of resource ids */

Push

Thread 1 : : Thread 2

Push

sched ctxl =
starpu_create_sched_ctx(“mct",resourcesl,3);

sched_ctx2 =

MCT

ﬂ
|

ﬂ
s

ﬂ
s

ﬂ
|

D
s

Greedy

I
)

starpu_create_sched_ctx("greedy",resources2,4);

R

Scheduling contexts in StarPU

Easily use contexts in your application
int resources1[3] = {CPU_1, CPU_2, GPU_1};

int resources2[4] = - Thread 1 Thread 2
{CPU 3. CPU 4, CPU_5, CPU_6}:

Push Push

/* define the scheduling policy and the table Hert Greedy

of resource ids */ [] [] D ﬂ ﬂ D D
S N S| I T S

sched ctxl =
starpu_create_sched_ctx("heft",resourcesl,3);

sched:ctxz :_ : | B

starpu_create_sched_ctx("greedy",resources2,4);

/I'thread 1: I/l thread 2:
[* define the context associated to kernel 1 */

[* define the context associated to kernel 2 */
starpu_set sched_ctx(sched_ctx1);

starpu_set_sched_ctx(sched_ctx2);

[* submit the set of tasks of the parallel kernel
1*/
for(i=0; i< ntasksl; i++)

starpu task submit(tasksl1[i]);

lh'u'a,—-

[* submit the set of tasks of parallel kernel 2*/
for(i=0; i< ntasks2; i++)
starpu_task_submit(tasks2][i]);

Experimental evaluation
Platform and Application

9 CPUs (two Intel hexacore processors, 3 cores devoted to execute
GPU drivers) + 3 GPUs
« MAGMA Linear Algebra Library
- StarPU Implementation
- Cholesky Factorization kernel
e FEuler3D solver
- Computational Fluid Dynamic benchmark

- Rodinia benchmark suite

- Iterative solver for 3D Euler equations
for compressible fluids
- StarPU Implementation MAGMA — Cholesky Factorization

Composing Magma and the Euler3D solver

o Computational Fluid Dynamic:

Domain decomposition parallelization
Independent tasks per iteration
Dependencies between iterations
Strong affinity with GPUs

2 sub-domains: 2 GPUs

20

18

16

14

e Cholesky Factorization: 1
Scalable on both CPUs & GPUs ¢ 1
1GPU & 9 CPUs "
Large number of tasks 6

e Contexts’ benefits :

.hu’a,—-

4

2

Enforcing locality constraints

Different parallel kernels

CFD And Cholesky
Factorization

No contexts
19.8

2 contexts
14.2

_

Micro -benchmark:

9 Cholesky factorizations in parallel
Gain performance from data locality

. . = Serial E ti
« Mixing parallel kernels: 60 52 = 1 Context: 8 CPUS / 3GPUS
443 m 3 contexts .:3x(3 CPUs /1 GPU)
- Unnecessary data transfers 50 =9 Contexts: 9 x (1 CPUs / 0.3 GPUs)
34.8
between Host Memory & GPU 4 -
memory -> blocking waits 30

- GPU Memory flushes

Ll |_I]] | LIl |1l] N N O O 1 I

Micro -benchmark:

9 Cholesky factorizations in parallel
Gain performance from data locality

m Serial Execution : 87 GB

e Mixing parallel kernels: 60 52 =1 Conor § CPUs 1 3GPUS 11368
=3 contexts : 3 x (3 CPUs ;
- Unnecessary data transfers s | %3 =9 Contexts: 9 x (1 CPUs / 0.3 GPUS) : 41GB
between Host Memory & GPU « o ot
memory -> blocking waits %
- GPU Memory flushes £ 20
10

Ll |_I]] | LIl |1l] N N O O 1 I

T

l&l

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

The Hypervisor

What if static dimensioning doesn’t work?

e l|dea:
- Dynamically resize scheduling
contexts
- Different resizing policies

e Optimization criteria:
- Minimize resources’ idle time
- Maximize the instant speed of the

resources/contexts Hypervisor
L . . Resizing Engine
- Minimize total execution of the
application
 Workload of the application
provided

 Linear programs to evaluate the
best distribution of the resources

I"'m&—-_

Dealing with non scalable kernels

ldleness-based policy
CFD decomposed in 2 sub-domains

Static distribution: . 53.08
- CFD: 3 GPUs

Cholesky Factorization: 9 CPUs

50

40
Hypervisor’s intervention:
- CFD: 2GPUs

Cholesky Factorization: 1 GPU & 9
CPUs

10

0 -

= Static distribution of resources

m Dynamically adjusted distribution of resources
b
TR~

_

Feedback of the application

Application-driven policy

« 2 streams of parallel kernels

e 1 of them pops in from time to time (the green one) o 20

* The hypervisor: assigns some CPUs to the intruder °°

19
18.5

17.5

Time (S)

17
NI

IR 16.5
16

T TIIT I | | -~
T T T - 155

= Overlapping contexts

m Dynamically adjusted distribution of
resources

Facing irregular applications
Speed-based resizing policies

« Evaluate the speed of contexts

 Compute the number of resources of each type
of architecture needed by each context
- How many GPUs/CPUs ?
- To execute in a minimal amount of time

((‘v’c € C,Na,cVa + Ng,cv3 > th)\

1
max subject to [A Z Na,c = Na
tmam CEC

I"'w&f_

Facing irregular applications
Speed-based resizing policies

« Evaluate the speed of contexts

 Compute the number of resources of each type
of architecture needed by each context
- How many GPUs/CPUs ?

- To execute in a minimal amount of time
NGPUs in Context ¢

NCPUs in Context c Workload of
Context c

>‘ +.6 Sl

1
max ()subject to /\ Z No,c = ’na

max

ooEme o

Facing irregular applications
Speed-based resizing policies

« Evaluate the speed of contexts

 Compute the number of resources of each type
of architecture needed by each context
- How many GPUs/CPUs ? 20

- To execute in a minimal amount of time
NGPUs in Context c

NCPUs in Context ¢ \ Workload of __

Context ¢
vcec va+‘ﬁ > t@TT 5

1) 0
max subject to E Na,c = ’na
lmax ceC " Incorrect Distribution of

resources over contexts
\ A (E ng.c=mng

B Speed-based policy corrects the
initial distribution of resources
ceC)

24.8

15

-

Conclusion & Future Work

l&l

Scheduling Contexts allow using multiple parallel libraries
simultaneously

- Currently implemented in StarPU runtime system

- A Hypervisor dynamically shrinks / extends contexts

Future Work
- New metrics to guide resizing
- More intelligent sharing of resources (GPUSs)

- Extend scheduling contexts to other parallel environments

- And much more!

