
Composing multiple StarPU applications Composing multiple StarPU applications
over heterogeneous machines:

a supervised approach

Andra Hugo
With Abdou Guermouche, Pierre-André Wacrenier, Raymo nd Namyst

Inria, LaBRI, University of Bordeaux

RUNTIME
INRIA Group
INRIA Bordeaux Sud-Ouest

The increasing role of runtime systems
Code reusability

• Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

• Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore

complex hardware

Cilk OpenMP

IntelTBB

Anthill
Harmony

KAAPI StarPU

StarSs

Runtime - 2

complex hardware
• E.g. MKL/OpenMP,

MAGMA/StarPU
- To avoid reinventing the wheel!

• Some application may benefit from
relying on multiple libraries
- Potentially using different

underlying runtime systems…

DAGuE Charm++
Qilin

The increasing role of runtime systems
Code reusability

• Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

• Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore

complex hardware

Cilk OpenMP

IntelTBB

Anthill
Harmony

KAAPI StarPU

StarSs

Runtime - 3

complex hardware
• E.g. MKL/OpenMP,

MAGMA/StarPU
- To avoid reinventing the wheel!

• Some application may benefit from
relying on multiple libraries
- Potentially using different

underlying runtime systems…

DAGuE Charm++
Qilin

And the performance
of the application=>

Struggle for resources
Interferences between parallel libraries

• Parallel libraries typically allocate
and bind one thread per core
Problems:

• Resource over-subscription
• Resource under-subscription

Solutions:
• Stand-alone allocation
• Hand-made allocation

Runtime - 4

• Hand-made allocation

• Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc…

CPU 1CPU 1 CPU 2CPU 2 CPU 3CPU 3 CPU 4CPU 4 GPU GPU

Example: qr_mumps

Struggle for resources
Interferences between parallel libraries

• Parallel libraries typically allocate
and bind one thread per core
Problems:

• Resource over-subscription
• Resource under-subscription

Solutions:
• Stand-alone allocation
• Hand-made allocation

Runtime - 5

=> Composability problem
CPU 1CPU 1 CPU 2CPU 2 CPU 3CPU 3 CPU 4CPU 4 GPU GPU

Example: qr_mumps

• Hand-made allocation

• Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc…

Composability problem
How to deal with it?

Intel TBB Lithe

Runtime - 6

• Advanced environments allow partitioning of hardware resources
- Intel TBB

• The pool of workers are split in arenas
- Lithe

• Resource sharing management interface
• Harts are transferred between parallel libraries

• Main challenge: Automatically adjusting the amount of resources allocated to each library

Our approach: Scheduling Contexts
Toward code composability

• Isolate concurrent parallel codes

• Similar to lightweight virtual machines
Context B

Push

Context A

Push

Runtime - 7

CPU
workers

GPU
workers

Our approach: Scheduling Contexts
Toward code composability

• Contexts may expand and shrink

- Hypervised approach

Context B
Push

Context A

Push
• Isolate concurrent parallel codes

• Similar to lightweight virtual machines

Runtime - 8

• Resize contexts

• Share resources

- Maximize overall throughput

- Use dynamic feedback both from

application and runtime

CPU
workers

GPU
workers

Hypervisor

Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts

Runtime - 9

Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts

Runtime - 10

Using StarPU as an experimental platform
A runtime system for *PU architectures

for studying resource negociation
• The StarPU runtime system

- Dynamically schedule tasks on all

processing units

• See a pool of heterogeneous

processing units

A = A+B

CPU

CPU

CPU

CPU M.GPU

Runtime

- Avoid unnecessary data transfers

between accelerators

• Software VSM for

heterogeneous machines

M.

CPU CPU

M.GPU

CPU

CPU

CPU

CPU

M.A

B
B

M.GPU

M.GPU

- 11

Parallel
Compilers

HPC Applications

Parallel
Libraries

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

• Accept tasks that may have

multiple implementations

- Potential inter-dependencies

• Leads to a directed acyclic

graph of tasks

• Data-flow approach

CPU

StarPU

Drivers (CUDA, OpenCL)

Runtime

• Open, general purpose

scheduling platform

- Scheduling policies = plugins

GPU MIC

(ARW, BR, CR)

f
cpu
gpu
spu

- 12

Tasks scheduling
How does it work?

• When a task is submitted, it first goes
into a pool of “frozen tasks” until all
dependencies are met

• Then, the task is “pushed” to the
scheduler

• Idle processing units actively poll for
Scheduler

Push

Runtime

• Idle processing units actively poll for
work (“pop”)

• What happens inside the scheduler is…
up to you!

• Examples:
- mct, work stealing, eager, priority CPU

workers
GPU

workers

Pop Pop

- 13

Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts

Runtime - 14

Scheduling Contexts in StarPU
Extension of StarPU

• “Virtual” StarPU machines

- Feature their own scheduler

- Minimize interferences

- Enforce data locality

• Allocation of resources

Runtime - 15

- Explicit:

• Programmer’s input

- Supervised:

• Tips on the number of resources

• Tips on the number of flops

- Shared processing units

Scheduling contexts in StarPU
Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};
int resources2[4] =
{CPU_3, CPU_4, CPU_5, CPU_6};

/* define the scheduling policy and the table
of resource ids */

sched_ctx1 =
starpu_create_sched_ctx(“mct",resources1,3);

MCT

Runtime

sched_ctx2 =
starpu_create_sched_ctx("greedy",resources2,4);

- 16

Scheduling contexts in StarPU
Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};
int resources2[4] =
{CPU_3, CPU_4, CPU_5, CPU_6};

/* define the scheduling policy and the table
of resource ids */

sched_ctx1 =
starpu_create_sched_ctx("heft",resources1,3);

Runtime

// thread 2:
/* define the context associated to kernel 2 */
starpu_set_sched_ctx(sched_ctx2);

/* submit the set of tasks of parallel kernel 2*/
for(i = 0; i < ntasks2; i++)

starpu_task_submit(tasks2[i]);

sched_ctx2 =
starpu_create_sched_ctx("greedy",resources2,4);

// thread 1:
/* define the context associated to kernel 1 */
starpu_set_sched_ctx(sched_ctx1);

/* submit the set of tasks of the parallel kernel
1*/
for(i = 0; i < ntasks1; i++)

starpu_task_submit(tasks1[i]);

- 17

Experimental evaluation
Platform and Application

• 9 CPUs (two Intel hexacore processors, 3 cores devoted to execute

GPU drivers) + 3 GPUs

• MAGMA Linear Algebra Library

- StarPU Implementation

- Cholesky Factorization kernel

• Euler3D solver

Runtime - 18

- Computational Fluid Dynamic benchmark

- Rodinia benchmark suite

- Iterative solver for 3D Euler equations

for compressible fluids

- StarPU Implementation MAGMA – Cholesky Factorization

Composing Magma and the Euler3D solver
Different parallel kernels

16

18

20

No contexts
19.8

2 contexts
14.2

CFD And Cholesky
Factorization

• Computational Fluid Dynamic:
- Domain decomposition parallelization
- Independent tasks per iteration
- Dependencies between iterations
- Strong affinity with GPUs
- 2 sub-domains: 2 GPUs

Runtime - 19

0

2

4

6

8

10

12

14

T
im

e(
s)

• Cholesky Factorization:
- Scalable on both CPUs & GPUs
- 1GPU & 9 CPUs
- Large number of tasks

• Contexts’ benefits :
- Enforcing locality constraints

Micro -benchmark:
9 Cholesky factorizations in parallel

Gain performance from data locality

• Mixing parallel kernels:

- Unnecessary data transfers

between Host Memory & GPU

memory -> blocking waits

- GPU Memory flushes

T
im

e
(s

)

10

20

30

40

50

60

44.3

52

34.8 34.4

Serial Execution
1 Context: 9 CPUs / 3GPUs
3 contexts : 3 x (3 CPUs / 1 GPU)
9 Contexts: 9 x (1 CPUs / 0.3 GPUs)

Runtime - 20

0

• Mixing parallel kernels:

- Unnecessary data transfers

between Host Memory & GPU

memory -> blocking waits

- GPU Memory flushes
10

20

30

40

50

60

44.3

52

34.8 34.4

Serial Execution : 87 GB
1 Context: 9 CPUs / 3GPUs : 113 GB
3 contexts : 3 x (3 CPUs / 1 GPU) : 37 GB
9 Contexts: 9 x (1 CPUs / 0.3 GPUs) : 41GB

T
im

e
(s

)

Micro -benchmark:
9 Cholesky factorizations in parallel

Gain performance from data locality

Runtime - 21

0

Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts

Runtime - 22

• Idea:
- Dynamically resize scheduling

contexts
- Different resizing policies

• Optimization criteria:
- Minimize resources’ idle time
- Maximize the instant speed of the

The Hypervisor
What if static dimensioning doesn’t work?

Runtime

- Maximize the instant speed of the
resources/contexts

- Minimize total execution of the
application
• Workload of the application

provided
• Linear programs to evaluate the

best distribution of the resources

- 23

Dealing with non scalable kernels
Idleness-based policy

• CFD decomposed in 2 sub-domains

• Static distribution:

- CFD: 3 GPUs

- Cholesky Factorization: 9 CPUs

• Hypervisor’s intervention:
40

50

60
53.08

Runtime

- CFD: 2GPUs

- Cholesky Factorization: 1 GPU & 9

CPUs

- 24

T
im

e
(s

)

0

10

20

30

14.11

Static distribution of resources

Dynamically adjusted distribution of resources

Feedback of the application
Application-driven policy

T
im

e
(s

)

• 2 streams of parallel kernels

• 1 of them pops in from time to time (the green one)

• The hypervisor: assigns some CPUs to the intruder

17

17.5

18

18.5

19

19.5

20
19.70

17.20

Runtime - 25

15.5

16

16.5

17

Overlapping contexts

Dynamically adjusted distribution of
resources

Facing irregular applications
Speed-based resizing policies

• Evaluate the speed of contexts

• Compute the number of resources of each type

of architecture needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time

Runtime - 26

Facing irregular applications
Speed-based resizing policies

• Evaluate the speed of contexts

• Compute the number of resources of each type

of architecture needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time
nGPUs in Context c

Runtime - 27

nCPUs in Context c Workload of
Context c

Facing irregular applications
Speed-based resizing policies

• Evaluate the speed of contexts

• Compute the number of resources of each type

of architecture needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time
nGPUs in Context c

15

20

25

24.8

17.29

Runtime - 28

nCPUs in Context c Workload of
Context c

0

5

10

Incorrect Distribution of
resources over contexts
Speed-based policy corrects the
initial distribution of resources

Conclusion & Future Work

• Scheduling Contexts allow using multiple parallel libraries

simultaneously

- Currently implemented in StarPU runtime system

- A Hypervisor dynamically shrinks / extends contexts

• Future Work

Runtime

- New metrics to guide resizing

- More intelligent sharing of resources (GPUs)

- Extend scheduling contexts to other parallel environments

- …

- And much more!

- 29

