
A Multi-level Optimization method for Stencil Computation
on the Domain that is bigger than Memory Capacity of GPU

Presentation: Guanghao Jin

Guanghao Jin
Tokyo Institute of Technology

JST-CREST

jingh@matsulab.is.titech.ac.jp

Toshio Endo
Tokyo Institute of Technology

JST-CREST

endo@is.titech.ac.jp

Satoshi Matsuoka
Tokyo Institute of Technology

JST-CREST

NII

matsu@is.titech.ac.jp

2

Stencil computation (SC) is widely applied in scientific and engineering simulations.

Stencil computation

SC performs nearest neighbor computation on a spatial domain,
updating each domain point based on its nearest neighbors,
SC sweeps through the entire domain multiple times, called time steps.

Fluid computation

7-point stencil

Dx

Dy

Dz

3

Usual method on GPU

Copy to GPU

Copy back

Compute
T1T0

Compute
Tn

Copy domain
to GPU

Copy result
to CPU

Initialize

Compute

If smaller than GPU
memory capacity

The domain is initialized on CPU and sent to GPU.

There are various flavors of iterative sweeps of stencil computation.
The most commonly used technique is double buffering,
which uses two grids, one designated for reading domain
while the other is designated for writing result of domain
in the current time step. For the next time step,
the roles of the grids are swapped,
and the grid that was written to is now read from.

The final result will be copied from GPU to CPU.

The domain is limited by the memory capacity of GPU
As the domain grows for accuracy reason,
more GPUs have to be employed to extend memory capacity.

Time loop

Finalize

4

TSUBAME 2.0
The main part of TSUBAME2.0 consists of 1,408 Hewlett-Packard Proliant SL390s nodes. Each
node has two sockets of 6-core Intel Xeon X5670 CPU (Westmere-EP) 2.93 GHz
and 54GB DDR3 host memory. Each node is equipped with three Tesla M2050 GPUs which is
attached to distinct PCI Express bus 2.0 x16 (8GB/s). Each GPU has 3 GB GDDR5 SDRAM
device memory.

6core
Xeon X5670

70.4GF/s

6core
Xeon X5670

70.4GF/s

32GB/s QPI
25.6GB/s

PCIe 2.0 x16
8GB/s

QDR InfiniBand 4GB/s

IOH

IOH

DDR3
memory
24GB

3GB

GPU 2: Tesla M2050

14core
Fermi

515GF/s

3GB

GPU 1: Tesla M2050

14core
Fermi

515GF/s

GDDR5
3GB

GPU 0: Tesla M2050

14core
Fermi

515GF/s

150GB/s

DDR3
memory
30GB

Shared
memory
54GB

It is great challenge that how to use both device memory and host memory efficiently.
Enable the computation on the Domain that is bigger than Memory Capacity of GPU.
We start this research from single GPU case.

The Domain that is bigger than Memory Capacity of GPU Bigger domain
The Domain that is smaller than Memory Capacity of GPU Smaller domain

5

Copy sub-domain
to GPU

Initialize

Compute

If bigger than GPU
memory capacity

We separate the domain by Z direction to simplify the explanation.
Separate the whole domain into sub-domains and copy each sub-d
omain(with ghost boundary) to GPU to compute 1 time step’s result.
Then it has to copy the result back and copy next sub-domain(with
ghost boundary) to continue.

Naive method copies each sub-domain to GPU to compute 1 time s
tep and copy the result back. So, it causes frequent communication
(via PCI-Express) between CPU and GPU.

Copy to GPU

Copy back

Compute
initial result

T 0 T 1

Naive method

Naive method for bigger domain

Separate domain
to sub-domains

Copy result
to CPU

Usual method

Finalize

Sub-domain
loop

Time loop

Summary
Objective
Enable the computation on the domain that is bigger than GPU memory capacity.
Reach high performance at the same time
• Improve efficiency of GPU shared memory、GPU device memory、CPU memory.

How to
To improve locality, adopt 2-level temporal-blocking method
• Temporal-blocking to reduce communication via PCI
• Temporal-blocking for GPU kernel to reduce access times of global.
Furthermore, reduce redundant computation and communication.
Parallel communication with computation.

7

Temporal-blocking method
Multi-sub-domain Multi-time method(MM)

For GPU kernel
computing 2 time steps in 1 kernel as Figure explains.
It can reduce the cost of loading global memory.
As shared memory of GPU is limited, the time steps that can be computed in 1 kernel should be 2.

When it copies sub-domain to each GPU,
it will copy more ghost boundaries
to compute more time steps in local to
reduce communication times. initial result

Compute sub-domain i

Copy to

Copy back
CPU GPU

T0 T1 T2

T0 T1 T2

Shared memory
of block on GPU2D-Spatial blocking

8

Optimization methods for bigger domain
T0

T4
T2

T0

T2

T4

Sub-domain 0 Sub-domain 1

ghost boundaries

Sub-domain

XY planes

MM
It separates the whole domain into sub-domains.
When copies sub-domain, it will copy more ghost boundaries
to compute more time steps in local .

MMT
MM ＋ Temporal-blocking method for GPU kernel
※MM and MMT remain
redundant communication (ghost boundaries)
and computation (intermediate steps) problem.

Initialize

Compute

Separate domain to
sub-domains

Copy result
to CPU

Copy sub-domain with
more ghost boundaries

to GPU

Finalize

Time loop

Sub-domain
loop

Time
loop

9

Buffer-copy method

 MM and MMT method have overlapped part between current and next.
 It store some overlapped part at current and reuse at next.

(1) It stores 4 overlapped XY-planes at every 2 time steps along the borderline
(divides overlapped and un-overlapped parts) when computes current sub-domain

(2) When compute next sub-domain, it supplies 4 overlapped XY-planes to
the correspondent un-overlapped part at every 2 time steps.

 By this way, it can figure out the correct result of un-overlapped part after every 2 time steps
till final time step.

Sub-domain 1

T2

T0

T2

Sub-domain 0

T4
T2

Buffer on GPU

T0

T2

T0
T0

T2

T4

T0

T4
T2

T0

T2

T4

Sub-domain 0
(current)

Sub-domain 1
(next)

10

MMTB (MMT+ buffer-copy)
For(i = 0 ; i < TTI ; i += TTS)

For (j = 0 ; j < NSD; j += 1){
// If sub-domain is in the middle
Copy un-overlapped initial from CPU to GPU;
For(k = 0; k < TTS; k += 2){

Supply 4 XY-planes from buffer;
Read Un-overlapped part & 4 XY-planes,

Compute 2 time steps in 1 kernel;
Store 4 XY-planes to buffer for next sub-domain;
Swap the grids; }

Copy result from GPU to CPU;}}

MMT vs. MMTB

Computation Communication

Initialize

Compute

Separate domain
to sub-domains

Copy result
to CPU

Copy un-overlapped
part to GPU

Read 4 XY-planes
from buffer

Save 4 XY-planes
to buffer

Finalize

Sub-domain
loop

Time
loop

Time
loop

11

M-MMTB
Although MMTB only computes un-overlapped part,
it occupies more space than it needs as Figure explains.
Memory-saving method shifts the result to fill the blank
at each kernel.

MMTB Memory-saving method

T 0 T 4T 2 T 6 T 0 T 4T 2 T 6

G0 G0G1 G1 G0 G0G1 G1

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

We call this method as M-MMTB (memory-saving + MMTB).
Saving the memory space is attractive because we can
use the saved space to contain more ghost boundaries, or
to adopt bigger sub-domains.
Both of them are expected to improve performance.

Initialize

Compute and shift

Separate domain
to sub-domains

Copy result
to CPU

Copy un-overlapped
part to GPU

Read 4 XY-planes
from buffer

Save 4 XY-planes
to buffer

Finalize

Sub-domain
loop

Time
loop

Time
loop

12

MP-MMTB
MP-MMTB is further optimized by overlapping between
computation and PCI-Express communication.
It assigns 2 additional buffers to perform communication
during the computation.
B1 accepts initial of the next sub-domain.
B2 sends the result of former sub-domain.

B2

Copy former result from B2 to CPU

Copy next initial from CPU to B1

B1
G0 G1 G0

B1 B2
G0 G1 G0

B1 B2
G0 G1 G0

Initialize

Separate domain
to sub-domains

Receive
next initial

Compute with
buffer-copy

memory-saving

Send
former result

Compute with
buffer-copy

memory-saving

Compute with
buffer-copy

memory-saving

Finalize

Sub-domain
loop

Time
loop

Time
loop

13

We evaluate our proposed methods on single GPU (NVIDIA Tesla “Fermi” M2050, 14 streaming m
ulti-processor) of TSUBAME2.0. The host memory is 54 GB and device memory is 3 GB.
We select 7-point stencil computation for 3D diffusion equation.

Environment

Performance evaluations

MP-MMTB vs. M-MMTB: 240×240×240 ～ 2160×2160×2160
As Figure shows, MP-MMTB has better performance than M-MMTB since it
can parallel the computation and communication.

14

MP-MMTB vs. Other methods
 MP-MMTB has more than 1.35 times better performance than other methods on an average.
 MP-MMTB has better performance than usual method on the smaller domains and

16.74 times better performance than naive method on the bigger domains.

Performance evaluations

15

Limitation
GPU memory is shared by
2 grids (inside computation)
2 buffers (communication)
1 buffer (buffer-copy)

Dx × Dy × (Dz / NSD +4) × 4 + Dx × Dy × TTS × 2 ≤ GPU memory capacity (1)
TTS < Dz / NSD (2)

Domain grows

Less ghost boundaries
Separate to more sub-domains

Performance falls

16

In this paper,
we propose a multi-level optimization method for the stencil computation on
the domain that is bigger than the memory capacity of GPU while reaches high performance.

 It applies 2-level temporal-blocking method to enable fast computation on bigger domain
 Utilizes Buffer-copy method to reduce redundant cost.
 Applies memory-saving method to save space.
 Parallel communication and computation to achieve higher performance.

To achieve scalability, we will do research about multi-GPU case .

Conclusion

Question?

18

Ghost boundary

※ If the domain is divided into sub-domains, each
sub-domain needs adjacent points which may belong to the
other sub-domains. We call these adjacent points on the other
sub-domains as ghost boundaries.

Ghost boundaries

Ghost boundaries

Iteration

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18

