Dynamic Load Balancing of the
Adaptive Fast Multipole Method in
Heterogeneous Systems

Robert Overman, Jan Prins, Laura
Miller, Michael Minion




+9)
L.

- W A
aiJU U

Time-dependent simulation of physical
systems

— Solve N-body problem
— Fast Multipole Method (FMM) - O(N)

Key points:
— Adaptive decomposition of space

— Targets heterogeneous, shared memory node
* Multi-core CPUs, Multiple Discrete GPUs

— Dynamic Load Balancing




Problem

N-body Problem
For each body x;, i € [1...N] compute F(x;)
N

F(x;) = Zf (%1 %1)
=1

Gravitational Potential

f(xl,x,) G

mlm]

U







HEEEEEEEE
ENEEENEN
ENEEEEEN
HEEEEEEE
EEEEEEEE
ENEEEEEN

Uniform

Adaptive







FMM Overview

Hierarchical Method
— Far-field
— Near-field




FMM Overview

Noati el bs pem siba lodx daprapimnakén thestatal force
diseatocalkbedits ifidvoxebuat odiltbodées in that box

\YPAV M2L & L2L eee oee M2L & L2L

o
)
)
2
v)
ge
| -
o
=
c
3
o)
(]

M2L & L2L & L2 M M2L & L2L & L2P




FMM Overview

 Nodes insufficiently separated from T form the near-field of T

 Near-field interactions for a target node T are defined in
terms of a list of sources nodes




Parallelizat

Heterogeneous division of work
— CPU handles far-field (P2M, M2M, M2L, L2L, L2P)
— GPU performs near-field (P2P)

Time Integrator and body movement on CPU
Need three types of load balance
— Far-field over multi-core CPUs

— Near-field over multiple GPUs
— CPU-GPU




CPU Load Balance

OpenMP tasking facilities
Recursively traverse octree data structure
Spawn tasks on recursion

Spawning specifics and therein load balancing
determined by OpenMP runtime




CPU Scaling

Test system (

e |Intel X7560 Nehalem-EX . ! O

'...i

e 32 cores over 4 sockets

e Each socket has 18MB L3
on chip

i
O

Results: \

O

|
3 | o =

/

- Intel’ Scalable
- Memory Buffer J

Memory

e Superlinear speedup through 16 cores
e Max of 28.6x with 32 cores




All computations for a single target particle are performed by a single CUDA thread.

Say there are three threads per CUDA block — three blocks to compute for the eight target

particles.

Threads in a block are SIMD, compute in lock step. Step serially through the source particles
szputing 54

5167
Completed

S21 S22 S23 S340 S341 53425343 S344

Threadoo
Th?"ead01
Th?"eadoz

Other blocks compute the same way. There may be unused threads.

Source particles are loaded in parallel into shared memory, one per
thread.




Load Balance Over GPUs

Total work:

|t]]s]
tel. sENF(t)
Where L is the set of leaves for the octree

NF(t) is the near field of node t
» Total work is equally divided between GPUs
such that all computations for a given target
are performed on the same GPU




GPU Scaling

* Test System

— Two Intel® Xeon® Processor X5670
e 2.93 GHz, 6 cores each
— Four Tesla C2050’s
* 3Gb GDDR5
e 448 Cuda Cores (14 SMs)
* Single Precision: 1.03 Tflop
* ECC

Plummer distribution of 10 Million particles

No. GPUs Speedup

2 1.99
3 2.96
4 3.95




CPU-GPU Load Balance

Factors determining far-field and near-field
work:

— N — problem size

— P —Terms in Multipole Expansion

— S — max nhumber of bodies per node

— Distribution — e.g. Plummer/Uniform

Solution: Can convert Far-field €<>Near-field
work by varying S parameter




Effect of S

//\ \ Say S = 760
70 250

50 25

PAANN

80 40 80 50
20 40 10 10 30 5 15 30




—@—Far Field -—m=Near Field

2400 3400 4400 5400 6400 7400

S Parameter




Effect of S

SN

400 400 400 400

_——=7 NN N

10010010010010010C100100 10010010010010010C10C100




-m-Expansion (CPU) -e=Direct (GPU)

Octree Depth==5 Octree Depth == 4

10000 15000
S Parameter

Can occur in uniform FMM with any distribution or uniform distribution in Adaptive FMM

Adaptive structure of the implementation combined with our local modifications can bridge
the performance gap between levels




Experimental comparison of 3 strategies
Pick a good S at start keep octree fixed (Strategy1)

Fixed S varying octree decomposition (Strategy?2)

Varying S and varying octree (Strategy3)
— Fast tree rebuild

—Strategyl -—Strategy2 —>Strategy3

Time Step




Make one global S modification per time step and react to
results

— Binary Search

— Incremental

Design primarily driven by GPU efficiency

— Too little work in total (no latency hiding) or

— Too little work per block
— Don’t want to predict with bad view of GPU efficiency

Slow change of workload from time step to time step




e Operate on very local regions of tree

e |gnore global S value

e Two simple operations
— Collapse
— PushDown




Collapse Operation

/N /)N

100 80 198 > 100 400 198

PAANN

100 100 100 100




PushDown Operation

/)N /N

100 400 198 > 100 80 198

PAANN

100 100 100 100




Time prediction used when applying fine grained
operations

CPU Time Prediction = Z W IER ()
Op €EF
where F = {P2M,M2M,M2L,L2L,L2P}

GPU Time Prediction = C(P2P) x M(P2P)
* C(Op) derived by observation

» After initial search phases we are confident
enough to predict — good GPU coefficient




Time Dependent Modifications — State
Machine

Solve Next Time Step

Compute Load Balance




Search

Incremental

Fine Grained Fine Grained

Succeeded Still Insufficient

b t E f S -
Observation Insufficient Time TR Sufficient

*Insufficient implies outside of 5% deviation from best time




Load Balancing Summary
Total Total | LB as % of Relative cost
Strategy | Compute LB Compute per time step
6576.17s | 1.32s 0.02% 3.91
2544.79s | 2.78s 0.11% 1.51
1651.57s | 30.98s 1.88% 1.00

Plummer distribution of 1Million particles

—Strategyl -—Strategy2 —Strategy3

I S T N O N T N I N A N A A S A S S A ¢
N7 D7 07 ©7 DT & ADT O '\90 '»Q '\99
Time Step




Shown is ratio of time observed when using local modification to time observed
when not using




Conclusions

 Time-dependent simulations N-body simulations
using FMM on heterogeneous platforms
— Accommodate arbitrary distribution of bodies

— Continuous load balancing throughout simulation
which minimizes cost of time step

— 100x speedup on one million Plummer (10CPU, 4GPU)
over best serial

e Extension to larger simulations

— Parallel in time methods such as PFASST*

*R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, P. Gibbon, “A massively space-time

31
parallel N-body solver” Supercomputing 2012




