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application: the Breadth-first Search
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1. Background

* Data-intensive applications
— Draw more and more attentions
— Graph 500 is proposed, BFS is the kernel component

* The MIC coprocessor
— Be designed for highly parallel computing

* Our research
— A typical data-intensive application (BFS) on MIC
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The MIC architecture
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2. Optimizations

* Native optimizations
— Use multi-threads
— Use 512-bits SIMD instructions

e Offload optimizations

— Use MIC as a accelerator
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Data Structure

Our optimizations are based on the level-synchronous
BFS. The current queue holds vertexes will be
explored in this level and the next queue holds
vertexes should be explored in the next level.
Within each level, the algorithm scans vertexes 1n
the current queue. Neighbors, which haven’t been
explored, are inserted into the next queue.

* 1n queue : the current queue (bitmap)
* out queue : the next queue (bitmap)

* visited : the visited bitmap

e P : the predecessor map
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Native Optimizations

* Multi-thread optimizations — relax method
— Two data races conditions exist
— Traditional method uses atomic operation to make correctness
— We relax the data races and restore the bitmap at end of a level

Two predecessors race two
vertexes whose bits is in the same
value of out_gqueue
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Native Optimizations

* SIMD optimizations

for vy € in_queue parallel do

— The relax method for all vertexes adjacent to vy do
- . vy < VecLoadNeighbors(v)
eliminates the vec_visited \"'ef‘(ialher( visited, vy)
atomic Operations mask + VecTest(vec_visited, vy)
if mask = 0 then
— SIMD instructions is | continue
used to inspect the VecStore(child, vy, mask)
. for : +— 0 to 16 do
neighbors of a if mask[ith] = 1P[child[i]]=cc then
vertex in parallel L Plchild[i] + vo —m .
VecSetBitmap(out_queue, childli])
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Offload Optimizations

* Most vertexes are expanded in middle levels

* The scanned vertexes are much more than the
expanded vertexes
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Offload Algorithm

1. If the vertex amount in the current queue
exceeds a baseline, MIC is used to accelerate

2. Otherwise, only CPU is used
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3. Experimental Results

e platform
CPU MIC
name Intel(R) Xeon(R) E5-2670 | Knight Corner

clock rate 2.60GHz 1.1GHz
sockets 2 I
cores(per socket) 8 57
threads(per core) 2 4

L1 cache(per core) 32KB 32KB

L2 cache(per core) 256KB 512KB
L3 cache(per socket) 20MB -
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Relax optimization on CPU

* The Experimental Results on CPU
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Relax optimization on MIC

* The Experimental Results on MIC
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B
SIMD optimization

* Speedup of Different Process Amount

B 1 proc each with 1 thread
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SIMD optimization

e Speedup of One Process with Different Thread Amount
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Offload optimization

 The TEPS of Offload Algorithm
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Offload optimization

* The Time in Every Level
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Summary

* We propose the relax and SIMD optimization
methods on MIC

* We propose the offload algorithm for CPU
and MIC hybrid computing

* We still work on this topic and have gained
some new results, which will report recently!
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