Using MIC to accelerate a typical data-intensive
application: the Breadth-first Search

Gao Tao, Lu Yutong and Suo Guang

%; National University of Defense Technology -- School of Computer
ST




pwoNop

Contents

Background
Optimizations
Experimental Results
Summary

National University of Defense Technology -- School of Computer

O




B
1. Background

* Data-intensive applications
— Draw more and more attentions
— Graph 500 is proposed, BFS is the kernel component

* The MIC coprocessor
— Be designed for highly parallel computing

* Our research
— A typical data-intensive application (BFS) on MIC

(7)) National University of Defense Technology -- School of Computer

&



The MIC architecture

Core(4 SMT, 512-bit SIMD) Core(4 SMT, 512-bit SIMD)
32K L1 I/D cache 32K L1 I/D cache
Ring Connector
| = = ™
é T T o =
s S 512K L2 | ! 512K 1.2 2 E
42 = cache/core I I cache/core 2 A
= 8 7777777777 L re ®) S
S - T T g 2
&0 = 512K L2 ' l 512K 1.2 = a8
= = | | - =
. E cache/core | | cache/core = =
I | e
Ring Connector
32K L1 I/D cache 32K L1 I/D cache
Core(4 SMT, 512-bit SIMD) Core(4 SMT, 512-bit SIMD)

National University of Defense Technology -- School of Computer




2. Optimizations

* Native optimizations
— Use multi-threads
— Use 512-bits SIMD instructions

e Offload optimizations

— Use MIC as a accelerator

% National University of Defense Technology -- School of Computer

Lz o




Data Structure

Our optimizations are based on the level-synchronous
BFS. The current queue holds vertexes will be
explored in this level and the next queue holds
vertexes should be explored in the next level.
Within each level, the algorithm scans vertexes 1n
the current queue. Neighbors, which haven’t been
explored, are inserted into the next queue.

* 1n queue : the current queue (bitmap)
* out queue : the next queue (bitmap)

* visited : the visited bitmap

e P : the predecessor map

National University of Defense Technology -- School of Computer




Native Optimizations

* Multi-thread optimizations — relax method
— Two data races conditions exist
— Traditional method uses atomic operation to make correctness
— We relax the data races and restore the bitmap at end of a level

Two predecessors race two
vertexes whose bits is in the same
value of out_gqueue

W § g

Two predecessors race the same
vertex

k
P iorj P ]
k k1 k2
Oul_guene 1 Oul_guene | |

National University of Defense Technology -- School of Computer




Native Optimizations

* SIMD optimizations

for vy € in_queue parallel do

— The relax method for all vertexes adjacent to vy do
- . vy < VecLoadNeighbors(v)
eliminates the vec_visited \"'ef‘(ialher( visited, vy)
atomic Operations mask + VecTest(vec_visited, vy)
if mask = 0 then
— SIMD instructions is | continue
used to inspect the VecStore(child, vy, mask)
. for : +— 0 to 16 do
neighbors of a if mask[ith] = 1P[child[i]]=cc then
vertex in parallel L Plchild[i] + vo —m .
VecSetBitmap(out_queue, childli])

National University of Defense Technology -- School of Computer

&



B
Offload Optimizations

* Most vertexes are expanded in middle levels

* The scanned vertexes are much more than the
expanded vertexes

100K —————— . l.
Il Scanned Vertexes
10KH DExpanded Vertexes
= 1K i |
[
>
o Y,
© 100t . |
10r |

1 2 3 4 5 6 7 8
Level

National University of Defense Technology -- School of Computer




B
Offload Algorithm

1. If the vertex amount in the current queue
exceeds a baseline, MIC is used to accelerate

2. Otherwise, only CPU is used

CPU

scan

>
in_quewe ||| |||]]|]|]11]11]11]11]11]11]

___copy

neighbours| il g
inpyt buffer

—

out_queue |]|]]]]]]]/]]1 1L

P (T

visited —{]]/]]]]]]]]]/]]|//1] 11111111] output buffer

handlayyesult

MIC

visited | ||]|]|[[[[[[1111T1111111111

\w input buffer

[~

compute
output buffer
receive

Jf Computer



3. Experimental Results

e platform
CPU MIC
name Intel(R) Xeon(R) E5-2670 | Knight Corner

clock rate 2.60GHz 1.1GHz
sockets 2 I
cores(per socket) 8 57
threads(per core) 2 4

L1 cache(per core) 32KB 32KB

L2 cache(per core) 256KB 512KB
L3 cache(per socket) 20MB -

National University of Defense Technology -- School of Computer




Relax optimization on CPU

* The Experimental Results on CPU

4X 1 08 T I T T I | T
——graph500-replicated-csc )
—o-native-relaxed

3 | - |

Q
o2 —
Ll
|_
1 | - |
0 | ] | | | | |
0 2 4 6 8 10 12 14 16

Threads
e

) National University of Defense Technology -- School of Computer

SR .
% Wy
(



Relax optimization on MIC

* The Experimental Results on MIC

x 10

——graph500-replicated-csc
——native-relaxed

10

o v
- O

TEPS(/s)

0 10 20 30 40 50 60
Threads

£ %

) National University of Defense Technology -- School of Computer

G,
&



B
SIMD optimization

* Speedup of Different Process Amount

B 1 proc each with 1 thread
1 4 procs each with 1 thread ||
[ 116 procs each with 1 thread

15 16 17 18 19 r—
SCALE

g National University of Defense Technology -- School of Computer




B
SIMD optimization

e Speedup of One Process with Different Thread Amount

3 I I T I T
Bl 1 proc with 2 threads
2 51 ] ] ] — []1 proc with 4 threads
2r "
o
5
® 15" |
0
o
w
1+ il
0.5r i
0 | | | | | |
14 18 16 17 18 19
SCALE

(%)) National University of Defense Technology -- School of Computer



B
Offload optimization

 The TEPS of Offload Algorithm

x 10’

Bl oraph500-replicated-csc
| loffload

15

T T

—
o
I

TEPS(/s)

9]

A

& 1 procs, SCALE=24 2 procs, SCALE=25 4 procs, SCALE=26
Level

National University of Defense Technology -- School of Computer



B
Offload optimization

* The Time in Every Level

8 I I T T T T I T
Bl graph500-replicated-csc
| Joffload
6 |
O
O AL _
£
}_
2 IH d
0 | | o p— | |

I Level I

g National University of Defense Technology -- School of Computer

% s
D2 ¢ 5



B
Summary

* We propose the relax and SIMD optimization
methods on MIC

* We propose the offload algorithm for CPU
and MIC hybrid computing

* We still work on this topic and have gained
some new results, which will report recently!

@) National University of Defense Technology - School of Computer




Thank youl!

A=
5” A »’(
@

National University of Defense Technology -- School of Computer



