Dynamically balanced
synchronization-avoiding
LU factorization
with
multicore and GPUs

Simplice DONFACK* Stanimire TOMov! Jack DONGARRA?

presenter: Piotr LUSZCZEK®

“formerly: University of Tennessee, currently: CSCS Lugano, Switzerland

TUniversity of Tennessee

tUniversity of Tennessee, Oak Ridge National Laboratory, and University of Manchester
SUniversity of Tennessee

HPC Hardware Zoo

e Intel

- x86 tick-tock: = Nehalem = Westmere = Sandy Bridge = |vy Bridge =
Haswell w Broadwell

- MIC/Phi core-counts: Knights Corner: 57, 62, ...
e AMD

- X86 architectures:; = Bulldozer = Piledriver

- x86 models: = Barcelona = Shanghai = Istanbul = Magny-Cours = War-
saw = Seattle

e NVIDIA: = Tes|a w» Fermi w Kepler

e Per-core flop/s: 10, 20, 40
e Per-socket flop/s: 100 - 600

e Per-accelerator flop/s: 500 - 1500

Balance between CPU and accelerator; 2x - 10X

AsHES 2014 May 19, 2014 2/19

Motivation for Communication Avoiding Algorithm

e Running time is a function of :

- Time for arithmetic operations = Total(flops) x time/flop.

- Time for moving data =
Total(messages) x latency + Total(bytes) / bandwidth.

e Exponentially growing gaps between communication and computation.

- Annual improvements predictions [FOSC'04].

time/flop Bandwidth Latency
y Network 26% 15%
9% DRAM 23% 5%

AsHES 2014 May 19, 2014 3/19

Communication avoiding algorithms:

e aim at reducing communication by doing some redundant computations.
- Work more, talk less.
e are becoming a part of the numerical algorithm design.
Communication avoiding LU (CALU):

e removes the bottleneck in classic LU by performing the panel as a reduction
operation.

- Tournament pivoting replaces partial pivoting.

e factorizes the panel twice.

AsHES 2014 May 19, 2014 4/19

CALU [Grigori, Demmel, Xiang '08]

The main difference with classic approach lies on the panel factorization.
The panel factorization is performed in two steps.

e A preprocessing step aims at identifying at low communication cost good pivot
rows.

e The pivot rows are permuted in the first positions of the panel and LU without
pivoting of the panel is performed.

e The update of the trailing matrix is performed as in classic LU (Gaussian
Elimination with Partial Pivoting - GEPP).

e The main difference lies on the panel factorization. In classic approach as
ScalLAPACK, panel is factorized column by column, while with CALU it is factor-
ized block by block using a reduction tree.

e The algorithm was first introduce for QR. The obvious generalization of CAQR
to CALU was not stable in practice. CALU uses a new pivoting strategy.

e CALU is stable in practice (and so is classic LU).

AsHES 2014 May 19, 2014 5/19

CALU’s Tournament Pivoting

W, W, W, o Wo W, [, W

2 4 (24_..24 4 1) = (4 1 4 1
P, [0 1 2 0 2 0| — ——r (] 2 4 (
0 - = T : - - [°

> 0 =II,L,U, ' 4 1=H0L0 /o 4, 4 9 =11,L,U, L4

| 2 s 0 | 4 Good pivots for

o= = : factorizing W

W, I W, /

4 1

1|

/ Ir—

W W | W. _1 B _:

0 1 '1_4] — |1 4 (4 2
P, |1 4 (02 0 2 Lo, 4

2 =ILLU, o =Ll

0 0 s 4 2

0 2 0 2

o

W, /
4 7

=1,Lu, \9 2

[—

O

AsHES 2014 May 19, 2014 6/19

Communication Avoiding Algorithm Lowers Bounds

e General lower bounds for all direct linear algebra.

- Total(bytes moved) = Q(%) = Q(75)

- Total(messages) = Q(%\%’ps)) [Ballard, Demmel, Holtz, Schwartz "11]

e Performance model of CALU, PDGETRF with optimal layout for general matrix.
M=0(%)

PDGETRF CALU Optimal Lower
bounds
Total(messages) nlogP 3vPlog3P Q(+vP)
+3v/PlogP

Total(words) \T}—; log P \T}—; log P Q(\T}—%)

Total(flops) %“Tf %“Tf %%
3
+0(P I(T)Lg2 P)

AsHES 2014 May 19, 2014 7/19

MAGMA's Approach to LU Factorization

e MAGMA = Matrix Algebra on GPU and Multicore Architectures

e Hybrid LU factorization in MAGMA

- Panel are factorized on the CPUs.

- Update of the trailing submatrices are performed on the GPUs.

Example of execution of magma dgetrf() on a square matrix in 4 steps.
matrix/data view: DAG view:

C
P I I k-x-‘
U) GPU
G] GRU
=
]
Step0 Step 1 Tim eStep 2 Step 3 Step 4
e Load imbalance between CPUs and GPUs.
e Efficient updates and optimal use
of the GPUs. e Poor multicore scalability.

AsHES 2014

May 19, 2014 8/19

CALU for MAGMA

First goal

e Adapt and evaluate CALU as panel factorization in MAGMA.

Approach

e Replace standard panel factorization in MAGMA with CALU.

e Increase then panel block size B to improve the load balance.

e Introduce two (algorithmic) block sizes:

- panel block size B, and
- internal block size ib for CALU.

AsHES 2014 May 19, 2014

9/19

MAGMA approach with CALU as panel: Initial results

First performance results on AMD Opteron 6172
e 4 sockets
e 12 cores @2.1Ghz
e Peak performance CPU: 403.2Gflops/s
e NVIDIA Fermi GPU: 504 Gflops/s

e Total: 907.2G flops/s.

Performance on pluto um:g 48 cores: Tall skinny Performance of CALU on AMD opteron 6172, Tesla S2050 using 1
matrices with N=1024
20 250 GPU
35 - il +—h
200

30 = magma_dgetrf &“
- 25 » 150 -
-E 20 $ _—-y magma_calu (24x2) § /—/- == magma_dgetrf {24 cores)
g . © 100 —@— magma_calu (16 cores)

50 - magma_calu(24 cores)
of

B - T T T T T 1
T ! 0 2000 4000 6000 8000 10000 12000
50000 100000 Matrix size
Matrix size

._,

[=] [%3] (=]

©
Q

Fast panel factorization technique is not enough.

AsHES 2014 May 19, 2014 10/19

Balanced Approach to Accelerated CALU

e The matrix is partitioned into two parts for the CPUs and the GPU.
e Each factorized panel is asynchronously sent to the GPU.

e A block column is dynamically sent to the CPUs during the runtime to balance
work.

C il n % """"""""
U I § B ,

il i i ||

_ I ||]
G
P
U H m CP!

Step0 Step 1 Tine Step?2 Step3 Step4 T Critical path
—
a. Example of execution. b. Corresponding DAG.
P P g

AsHES 2014 May 19, 2014 11/19

Performance of Asynchronous CALU with Fixed Parameters

Variants of CALU on AMD Opteron 6172 using 12 cores and 1 GPU:
Performance of CALU on AMD opteron 6172 using 12 cores and 1 GPU for

M=N=10112
300
250
200
w
)
_3' 150 W magma_dgetrf
e
© W magma_calu_sync
100

m calu_async
50

1 2 4 8 16 32
Number of block colums in the CPUs part

Results on: <~ AMD Opteron 6172 <> 4 sockets <> 12 cores @2.1Ghz <> Peak
performance CPU: 403.2Gflops/s <> NVIDIA Fermi GPU: 504 Gflops/s < Total: 907.2
Gflops/s.

How to determine the initial amount of work for the CPUs part?

AsHES 2014 May 19, 2014 12/19

Performance Model Parameters

Global parameters:

e d — the number of block column in the CPU’s part.
e P — the number of processors for the CPU's part.

e g, and g, — the peak performance of one CPU and one GPU respectively.
At each step of the factorization K, temporal parameters:

e Ny — the number of block column of the remaining matrix.

e Wepus and Wepy — the amount of work required to compute the CPU’s part
and GPU's part, respectively.

e Tcpys and Tgpy — the time required to complete Wepys and Wepy, respectively.

AsHES 2014 May 19, 2014 13/19

Performance Model's Details

Initial matrix decomposition:

GPU

,d blocks columns

(N—d) blocks columns

e
oy -

W

Wepus = W1pane1 + (d — 1)W1update and Tepus = vgipéfs
Wepru = (Nk — d)Wiupdate and Tgru = %
By solving Tcpus = Tgpu, We obtain:
d Pog,
Nx Pgi+ 9

Ni represents the percentage of the matrix to assign to the CPUs.
K

AsHES 2014 May 19, 2014 14/19

Performance Model's Prediction

wu)] ~J
o o o

I
O

=]
o o

Estimated percentage of the matrix for CPUs
J
Lo] [an]

Estimation of the percentage of the matrix for the CPUs part using

1GPU
== |ntel Xeon E5-2670, Tesla M2090
== AMD opteron 6180, Tesla S2050
=—4— AMD opteron 6172, Tesla S2050
T T T I 1
10 20 30 40 50

Number of processors

o AMD Opteron 6172: 4x12 cores @2.1Ghz; Peak performance CPU: 403.2 Gflops/s, GPU: 504 Gflops/s, Total: 907.2 Gflops/s.
e AMD Opteron 6180: 4x12 cores @2.5Ghz; Peak performance CPU: 480.0 Gflops/s, GPU: 504 Gflops/s, Total: 984.0 Gflops/s.

o Intel Xeon E5-2670: 2x8 cores @2.6Ghz; Peak performance CPU: 332.8 Gflops/s, GPU: 665 Gflops/s, Total: 997.8 Gflops/s.

AsHES 2014

May 19, 2014

15/19

Scalability Experiments

Scalability of CALU on AMD opteron 6172 using 1 GPU for M=N=10112
330
280
—4—magma_dgetrf
"‘E-r_ 230 =@l—magma_calu_sync
é ——calu_async (d=8 panels)
180 e c3lU_async (d=16 panels)
=== calu_async (d=26% matrix)
130 —=calu_async (d=estimated)
80 !
0 10 20 30 40 50
Number of processors

e AMD Opteron 6172: 4x12 cores @2.1Ghz; Peak performance CPU: 403.2 Gflops/s,
GPU: 504 Gflops/s, Total: 907.2 Gflops/s.

AsHES 2014 May 19, 2014 16/19

Performance of Asynchronous CALU with Estimated Parameters

Performance of CALU for square matrices.

Performance of CALU on AMD opteron 6180 using 48 cores and 1 GPU Performance of CALU on Intel Xeon, Tesla M2090 using 16 cores and 1
500 - GPU
500
400
400
- 300 » M
S
K & 300
S 2
200 —————— *
=—4—magma_dgetrf 200 —4#—magma_dgetrf
/ =—fl—magma_calu_sync
100 ! g
. calu_async (d=estimated) 100 calu_async (d=estimated)
—+—MKL_dgetrf (48 cores) /
0 - T T T 1 0 hd T T T 1
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Matrix size Matrix size

e AMD Opteron 6180: 4x12 cores @2.5Ghz; Peak performance CPU: 480.0 Gflops/s,
GPU: 504 Gflops/s, Total: 984.0 Gflops/s.

e Intel Xeon E5-2670: 2x8 cores @2.6Ghz; Peak performance CPU: 332.8 Gflops/s,
GPU: 665 Gflops/s, Total: 997.8 Gflops/s.

AsHES 2014 May 19, 2014 17/19

Scalability of Asynchronous CALU for Tall-and-Skinny Matrices

Performance and scalability using 48 cores.

Performance of CALU on AMD opteron 6172 using 48 cores and 1 GPU
for tall skinny matrices with N=1024

Scalability of CALU on AMD opteron 6172 using 1 GPU: Tall skinny
matrix M=20000, N=1024

90 80
80 70
20 —— magma_dgetrf 50 —4— magma_dgetrf
—l— magma_calu_sync(24x2)
60
calu_async{d=estimated) 50 —ll—magma_calu_sync
d
£50 H =
e o540 calu_async (d=estimated)
Sa0 5 ﬁ -
a 30 4
0 A ——o—0 & *
< . 20 ¥
20 -]
" 10
10 i
o 0 : : : : : ‘ ‘ .
o i : i ‘ ‘ ' 0 6 12 18 24 30 36 42 48
0 20000 40000 60000 80000 100000 120000
Matrix size Number of processors

Results on: <~ AMD Opteron 6172 <> 4 sockets <> 12 cores @2.1Ghz <> Peak
performance CPU: 403.2Gflops/s <> NVIDIA Fermi GPU: 504 Gflops/s < Total: 907.2

Gflops/s.

AsHES 2014

May 19, 2014

18/19

Summary, Conclusions, and Future Work
Contributions:

e Accelerated CALU LU factorization for a wide range of CPU-GPU hardware
combinations.

e Efficient and scalable implementation for tens of CPU cores.

e Simple model that makes the algorithm self-adapting in practice.

Possible extensions:

e Integrate dynamic load-balancing using runtime schedulers such as QUARK.

e Extend the approach to other algorithms

- Recursive parallel panel LU, RRLU, QR, CAQR.

- Two-sided factorizations: symmetric eigenvalues, SVD reduction.
x Please attend my Friday’s talk.

- Support for multiple GPUs.

- Support for hetergeneous accelerator configurations.
x Please attend my Tuesday's talk.

AsHES 2014 May 19, 2014 19/19

