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Challenges

Which portion of input is processed
by which device ?

Static Partitioning input is a good
solution to obtain high performance
on heterogeneous platforms.

However, compute capability of
each entity is different &
performance of device is dependent
on nature of input.

Simple/Static partitioning is not
optimal.

Is it possible to come up with
partitioning techniques for
heterogenous platforms and
applications ?

)

Core™i7 J




Our Goal

- To propose a novel heterogeneous algorithm for sparse
matrix-matrix multiplication that,

- not only, balances load across heterogeneous devices
IN computing platform.

- but also, assigns "right” work to the "right" processor.



Sparse Matrix

- Matrix iIn which most of the elements are zero.
- le.nnz=kK*n

- Example




Real-World Matrices

Usually datasets in Data
Mining, Social Network
Analysis & Communication
Networks are very large.




Nature of
Matrices

Real-world

These graphs are highly

Irregular & scale-free with

a power-law degree

distribution.
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Sparse Matrix-Matrix Multiplication

- Compute C = A x B, where A, B are two sparse matrices.
- Why is it hard in a heterogeneous setting 7
- Sparse nature of matrix makes it hard for programmers

to exploit CPU’s cache hierarchy (tiling) to achieve
oerformance.

- lrreqular computation implies thread load imbalance &
hence not suitable for GPUSs.



Row-Row Formulation

K. Ma:
Multip
for SP

'am et. al, proved row-row formulation of matrix
ication out performs usual row-column formulation

MM in GPUSs.
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HH-CPU

- Classify each row of sparse matrix into high dense and
low dense. Now we can write SPMM as,

C=AxB
=> C = (AH + A X (BH + BL)
=> C=AuXBH+A_.xXBL+ AxxBL + AL XBH

- Each multiplication above has certain properties that
helps us to map it to a device that performs better.
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CPU, GPU
Ar, Bn, Br.
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Phase Il :: Contd

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]

GPU :: Compute Ay = By.
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“hase |V

CPU, GPU :: Combine results of Phases Il & 111
GPU to CPU :: Transfer the partial results from GPU to

CPU.
AH X BH + AL x BL + An X BL + AL X BH
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Timeline Diagram
Phase | Phase | Phase |l Phase |V
CPU _ An X By AL X By _
GPU Mark AL X BL An X BL Merge



Implementation Detalls

- Sparse matrices A, B are stored in CSR format.

- We multiply A x A instead of A x B due to dataset unavailability. However we
show results for A x B in synthetically generated data for experiments.

- We consider only CPU & GPU for simplicity in the heterogeneous system.
- Phase 1 :: Thresholds (ta, tg) are empirically obtained.

- Phase 2, 3 :: We use modified version of Row_Row_SPMM developed by K.
Matam et. al for SPMM of partial matrices.

- Phase 3 :: Work units of CPU & GPU in work queue model is empirically
determined a-priori.

- Phase 4 :: Standard primitives like Mark, Scan & Merge are used.



—Xperimental Setup

- CPU :: Intel i7 980
- GPU :: Nvidia Tesla K20c (Kepler)

- CPU - GPU Link :: PCI Express version 2.0 link that
supports data transfer bandwidth of 8 GB/s.

- CUDA API Version 4.1 for Programming



Dataset (Scale-free & &)
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Results :: Trade-Off
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=xperiments with Synthetic Datasets
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- Why not apply work queue
completely ?

- CPU, GPU works with bunch of
rows (work-units) until all rows
are finished.

GPUENnd

GPU Start

- Now, always amount of time
taken by CPU & GPU is (almost)

equal.
- Is it optimal ? Time ,
CPU m—
- No, since the rows processed GPU _
by CPU & GPU are random, it '
might not be suited for the Almost Equal

device and hence not optimal.
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CPU Start

Sorted Work Queue cPUEn

- Sort the rows such that nnz
decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is GPUEnd
suited for GPUs as input is almost
regular. GPU Start

- Again amount of time taken by CPU
& GPU is (almost) equal.

Time

- Is it optimal ?

CPU

- No, since amount of computation ;
P GPU _

done by each thread is primarily
dependant on the non-zeros in the Almost Equal
"B" matrix. This partition technique

still leads to thread divergence inside

a warp / block.
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Work Queue Vs HH-CPU
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Future Work

- Study analytical technigues to identify the threshold in
Phase | of Algorithm HH-CPU

- Similar algorithm can be designed for CSRMM, which
multiplies a sparse matrix A with a dense matrix B.
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