A Novel Heterogeneous Algorithm for Multiplying
Scale-Free Sparse Matrices

Kiran Raj Ramamoorthy, Dip Sankar Banerjee, Kannan Srinathan and Kishore
Kothapalli.

C-STAR, llIT Hyderabad.

Outline

- Inspiration :: Heterogeneous Platform & Challenges

- Introduction :: Sparse Matrix-Matrix Multiplication (SPMIM)

- Earlier Work :: Row-Row (K. Matam et. al)

- Our Approach :: HH-CPU

- Implementation :: Notes

- Results :: Datasets (SNAP, Synthetic ...), Experiments & Discussion
- Other Approaches :: \Work Queue & its variations

- Conclusion :: Future Work & References

Heterogeneous Platform

GPU

Send Code

Send Results

Heterogeneous Platform

Send Code
... }
I .. SendData e . I
eererseemmeeeeeessssseemeeeeeeesssssee Data Transfer e . |
Data Transfer
4. .. } I
I SO .. - £ 4 1L, . |
I Data Transfer
4 .. }

Challenges

Which portion of input is processed
by which device ?

Static Partitioning input is a good
solution to obtain high performance
on heterogeneous platforms.

However, compute capability of
each entity is different &
performance of device is dependent
on nature of input.

Simple/Static partitioning is not
optimal.

Is it possible to come up with
partitioning techniques for
heterogenous platforms and
applications ?

)

Core™i7 J

Our Goal

- To propose a novel heterogeneous algorithm for sparse
matrix-matrix multiplication that,

- not only, balances load across heterogeneous devices
IN computing platform.

- but also, assigns "right” work to the "right" processor.

Sparse Matrix

- Matrix iIn which most of the elements are zero.
- le.nnz=kK*n

- Example

Real-World Matrices

Usually datasets in Data
Mining, Social Network
Analysis & Communication
Networks are very large.

Nature of
Matrices

Real-world

These graphs are highly

Irregular & scale-free with

a power-law degree

distribution.

100000

#Rows

100

10

Dense Row

Dense Rows

NNZ —

Sparse Matrix-Matrix Multiplication

- Compute C = A x B, where A, B are two sparse matrices.
- Why is it hard in a heterogeneous setting 7
- Sparse nature of matrix makes it hard for programmers

to exploit CPU’s cache hierarchy (tiling) to achieve
oerformance.

- lrreqular computation implies thread load imbalance &
hence not suitable for GPUSs.

Row-Row Formulation

K. Ma:
Multip
for SP

'am et. al, proved row-row formulation of matrix
ication out performs usual row-column formulation

MM in GPUSs.

CG)=2, o AGH*B()

34 8

O _

O _

Example

Row-Row Formulation

34 8

O _

O _

Example

Row-Row Formulation

34 8

O _

O _

C(1,:)=27*[8 0 O]

Example

Row-Row Formulation

o

o O O N -

‘I\)—LOO

C(1,

ROW-

w

0 ol o 3 4
1 18 0 0
0 B=, 0 0 6
4 sl 0 7 0

)=2*[8 0 0] +1"

Row Formulation

AXxXB =

Example

‘AI\DOS;‘

W N O

—h
‘ooocncn‘

o

o O O N -

‘I\)—LOO

w

0 ol o 3 4
1 18 0 0
0 B=, 0 0 6
4 10 7 0

AXxXB =

C(1,:)=2"[8 0 0]+1"][0 O ©]

ROW-

Row Formulation

Example

‘AI\DOS;‘

W N O

—h
‘ooocncn‘

o

|
0 2 0 o[2 3 4 16
0 0 1 18 0 o0 0
1 0 ol B=.10 o 6| AXB=],
2 0 0 4 o 7 o 4

CH1,)=2*[800]+1*[0 0 6]=[16 O 6]

Row-Row Formulation = example

W N O

—h
‘ooocncn‘

o

|
0 2 0 o[2 3 4 16
0 0 1 18 0 o0 0
1 0 ol B=.10 o 6| AXB=],
2 0 0 4 o 7 o 4

CH1,)=2*[800]+1*[0 0 6]=[16 O 6]
C@2,)=1*[006]+1*[0 7 0]=[0 7 6]

Row-Row Formulation = example

W N O

—h
‘ooocncn‘

o

o O O N -

‘I\)—LOO

C(1,)=2*[8 00]+1*[0 0 6]
C,)=1*[0 0 6
C@B,)=1*[2 3 4

ROW-

w

|-|>O—LO
N

|OOOOI\)‘

N O O W

*

+ 1

+1°

Row Formulation

|OCDO-I>‘

0 7 O]

006

AXxXB =

‘AI\DOS;‘

[16 0 6]
0 7 6]
2 3 10]

Example

W N O

—h
‘ooocncn‘

o

‘I\)—LOO

|OOOOI\)‘

N O O W

*

+ 1

+1°

Row Formulation

|OCDO-I>‘

28 0 0]+1*[0 0 6
100 6
=123 4
223 4+4%[07 0] =

070
006

AXxXB =

‘Al\:oa‘

[16 O 6]
0 7 6]
2 3 10]
4 34 8]

Example

W N O

—h
‘ooocncn‘

Thread Load Imbalance

HH-CPU

- Classify each row of sparse matrix into high dense and
low dense. Now we can write SPMM as,

C=AxB
=> C = (AH + A X (BH + BL)
=> C=AuXBH+A_.xXBL+ AxxBL + AL XBH

- Each multiplication above has certain properties that
helps us to map it to a device that performs better.

xample

4
1
12
0

/

6 12 7

5 _

O _

xample

'3 2 2 1
0 0 0 O
6 10 7 2

Ax X BH

O 0 0 O
3 2 2 1

Bh =

O 0 0 O

3 2 2 1

AH =

xample

@]
Al O M~ O
+ - % o
73 o o 07
|1
700157
- O QN O
AN —~ QN O
700307
|1
M
70015_
- O QN O I
71
AN — QN O T
M
70030_)
T
I <
<)

10

/

6 12 7

5 _

O _

xample

7102

2
0

AH X BH
0
6 10 7

2

O 7

0

0
O 0 O O
0 0 0 25

AL X BL

O O
O 0 0 O
0 5

BL =

0

0
O 0 0O

xample

12

2

2

An X By

3

10

O 0O O O
0 2 0 5

/

6 12 7

Anx X BL

0 O

3
O 0 0O

5 _

O _

xample

BL =

0O 0 0 O
3 2 2 1

AH =

xample

12

2

2

An X By

3

10

O 0O O O
O 0 O O

/

6 12 7

AL X BH

O 0 0 O

3 2 2 1

5 _

O _

xample

Bh =

0 O

3
O 0 0O

xample

12

2

2

An X By

3

10

xample

12

12

2

2

An X By

3

Phase |

CPU, GPU
Ar, Bn, Br.

2> Identify thresholds t4, tg and the matrices Amn,

Phase |

CPU, GPU :: Identify thresholds t4, tp and the matrices Amn,
Ar, Bn, Br.

;[A

Phase |

CPU, GPU :: Identify thresholds t4, tp and the matrices Amn,
A1, Bu, Br.

;[A

Phase |

CPU, GPU :: Identify thresholds t4, tp and the matrices Amn,
A1, Bu, Br.

;[A

Phase |

CPU, GPU :: Identify thresholds t4, tp and the matrices Amn,
A1, Bu, Br.

;[A

Phase |

- In parallel,
CPU :: Compute Ay~ By.
GPU :: Compute Ay = By,

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

AH: """""" BH:
AI_: BL:

Phase |

- In parallel,
CPU :: Compute Ay By.
GPU :: Compute Ay = By.

AH: """""" BH:
AI_: BL:

Phase |l

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]
GPU :: Compute Ay« By.

Phase |l

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]
GPU :: Compute Ay = By.

Phase |l

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]
GPU :: Compute Ay = By.

Phase Il :: Contd

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]

GPU :: Compute Ay = By.

AL

CPU Start

CPU End

GPU End
GPU Start

Phase Il :: Contd

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]

GPU :: Compute Ay = By.

AL

CPU Start

CPU End

GPU End
GPU Start |

Phase Il :: Contd

- In parallel,
CPU :: Compute A; « By. [WorkQueue Mode]

GPU :: Compute Ay = By.

AL

CPU Start
da X BH —

CPU End

GPU End
GPU Start

“hase |V

CPU, GPU :: Combine results of Phases Il & 111
GPU to CPU :: Transfer the partial results from GPU to

CPU.
AH X BH + AL x BL + An X BL + AL X BH

.
. e
., .
* .
» .
" .
* .
* .
. .
" .
* .
* .
- .
* .
* .
* .
- .
. .
. .
. .
G .
. - .
L} . .
. - .
. - .
. .
. .
. .
. .
. .
. .
. .
- .
- .
. .
. .
- .
b .
. .
. .
. .
L .
. .
., P
» "

Timeline Diagram
Phase | Phase | Phase |l Phase |V
CPU _ An X By AL X By _
GPU Mark AL X BL An X BL Merge

Implementation Detalls

- Sparse matrices A, B are stored in CSR format.

- We multiply A x A instead of A x B due to dataset unavailability. However we
show results for A x B in synthetically generated data for experiments.

- We consider only CPU & GPU for simplicity in the heterogeneous system.
- Phase 1 :: Thresholds (ta, tg) are empirically obtained.

- Phase 2, 3 :: We use modified version of Row_Row_SPMM developed by K.
Matam et. al for SPMM of partial matrices.

- Phase 3 :: Work units of CPU & GPU in work queue model is empirically
determined a-priori.

- Phase 4 :: Standard primitives like Mark, Scan & Merge are used.

—Xperimental Setup

- CPU :: Intel i7 980
- GPU :: Nvidia Tesla K20c (Kepler)

- CPU - GPU Link :: PCI Express version 2.0 link that
supports data transfer bandwidth of 8 GB/s.

- CUDA API Version 4.1 for Programming

Dataset (Scale-free & &)

Matrix Rows NNZ (04

scircuit 1,70,998 | 9,568,936 | 3.55

internet 1,24,651 | 2,07,214 4.63
 dblp2010 | 3,26,186 | 16,15400 579
"""" email-Enfon | 36,692 | 367,662 2.1

wiki-Vote 8,297 1,03,689 | 3.88

cit-Patents 37,74,768|1,65,18,948 3.90

web-Google

10° ;

5 HD = 6834 s

107 1 Threshold = 25

»w 104 |
;10
3
0‘210 ;
* 10° -

10"

100 .
LOLOLULOLLOLULOLLOLW OO
ALOONOALULNOANULNOAWL LWL

T —r—r— QA ANANANMMODMOM T
NNZ
roadNet-CA
107

HD = 468149 mmmm

6 |
10 Threshold = 3
» 10°
2 10% |
(@]
T 10° -
T
10" | I I
100 - e
o

— N O F 10 © I~ 0 O

NNZ

| -
2 q B 0700
©
LL 2 B vO-i1aNpeo.
=)
W k B elenun-degd
N
T I 0! 0zdiap
@) L
S v I ouo!
| -
+— ()
n_ﬂu M A B e\puoD-ed m
m B swveredo S
3 ; B oion-Dim
. ~
m ____ RUBSIEE
— R B °1000D-08m
©
D A D uoiu3-|rews
> P
O v I \1-oseagom
" o o o o o
S o O () O o
w dn peadsg
D
~

2rofiling

Results

Phase | ==

Phase Il -
Phas

IV]

Phase || s

4096

1024 |
256

(sw) swi]

0.25 |
0.0625

sjusjed-11o
910A-DIM
uoJu3-|rews
0l0z2-digp
Joulalul
vO-19Npeol
1e|APUOD-BD
Lee|leinun-ded
a|6005)-gam
VvX02dod

N L-9Seqgem

1IN2JIOS

Matrix Instance

Results :: Trade-Off

Time (msec)

Time (msec)

ca-CondMat
120 ——————— Bhose B
100 Phase 3 e
80 Total Time
60
40 ---------------------------------------
20 t+ s
0
O O O O O O O O O o
AN D < IO O N 00 O
Threshold
web-Google
3500 Bhase 3
3000 Phase 3
2500 ™ Total Time
2000 ¢
1500 |
1000 |

Threshold

Time (msec)

Time (msec)

2000
1600 ¢
1200 |
800
400 ¢
0 oo
O O O O O O O O O o
~ N O < IO © N~ 0O O
Threshold
roadNet-CA
1000 hase D e
800 Phase 3 e

600 |
400 |
200 |

0

Total Time

o'

wy

O~ ANMTLWO OMN~NOWO O
—

Threshold

=xperiments with Synthetic Datasets

Speed Up

35
5.5
6.5

Alpha

CPU Start
EEEEEER

Work Queue Nl EEEEEEEE
EEE EEEEE

- Why not apply work queue
completely ?

- CPU, GPU works with bunch of
rows (work-units) until all rows
are finished.

GPUENnd

GPU Start

- Now, always amount of time
taken by CPU & GPU is (almost)

equal.
- Is it optimal ? Time ,
CPU m—
- No, since the rows processed GPU _
by CPU & GPU are random, it '
might not be suited for the Almost Equal

device and hence not optimal.

Work Queue el EEEEEEEE

EEEEN

HEEEE

. Why not apply work queue oPUEnd HEERERER

completely ? HEEEEEEERE

HEEEN HE

- CPU, GPU works with bunch of BEEEE -

rows (work-units) until all rows GPU End = HEEE BEBE
are finished.

GPustart EEEEE

- Now, always amount of time
taken by CPU & GPU is (almost)

equal.
- Is it optimal ? Time ,
CPU m—
- No, since the rows processed GPU _
by CPU & GPU are random, it '
might not be suited for the Almost Equal

device and hence not optimal.

Work Queue orvstart lll=====
CPUENnd .-.-

- Why not apply work queue HEEEEERR
completely ? e 1111111

| " 111 HE

- CPU, GPU works with bunch of BEEEE -
rows (work-units) until all rows GPU Start BEEEE BEBE

are finished. BHEERERER

- Now, always amount of time
taken by CPU & GPU is (almost)

equal.
- Is it optimal ? Time ,
CPU m—
- No, since the rows processed GPU _
by CPU & GPU are random, it '
might not be suited for the Almost Equal

device and hence not optimal.

Work Queue 5 EENEEEEE
EEEEN

HEEEE

. Why not apply work queue HEEEEERN
completely ? HEEEEEEERE

| HEEEN HE

- CPU, GPU works with bunch of 1T 111 B
rows (work-units) until all rows HEEE BER
are finished. 1111

- Now, always amount of time
taken by CPU & GPU is (almost)

equal.
- Is it optimal ? Time ,
CPU m—
- No, since the rows processed GPU _
by CPU & GPU are random, it '
might not be suited for the Almost Equal

device and hence not optimal.

CPU Start

Sorted Work Queue cPUEn

- Sort the rows such that nnz
decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is GPUEnd
suited for GPUs as input is almost
regular. GPU Start

- Again amount of time taken by CPU
& GPU is (almost) equal.

Time

- Is it optimal ?

CPU

- No, since amount of computation ;
P GPU _

done by each thread is primarily
dependant on the non-zeros in the Almost Equal
"B" matrix. This partition technique

still leads to thread divergence inside

a warp / block.

CPU Start

Sorted Work Queue cPUEn

- Sort the rows such that nnz
decreases. CPUs are better suited
for top portion of the matrix as they GPUEnd —
are dense and can exploit cache
hierarchy while bottom portion is GPU Start
suited for GPUs as input is almost
regular.

- Again amount of time taken by CPU
& GPU is (almost) equal.

Time

- Is it optimal ?

CPU

- No, since amount of computation ;
P GPU _

done by each thread is primarily
dependant on the non-zeros in the Almost Equal
"B" matrix. This partition technique

still leads to thread divergence inside

a warp / block.

CPU Start

Sorted Work Queue cPUEn

- Sort the rows such that nnz GPUEnd —

decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is
suited for GPUs as input is almost
regular.

GPU Start

- Again amount of time taken by CPU
& GPU is (almost) equal.

Time

- Is it optimal ?

CPU

- No, since amount of computation ;
P GPU _

done by each thread is primarily
dependant on the non-zeros in the Almost Equal
"B" matrix. This partition technique

still leads to thread divergence inside

a warp / block.

CPU Start

Sorted Work Queue PUE

GPU Start -~
- Sort the rows such that nnz 2

decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is
suited for GPUs as input is almost
regular.

- Again amount of time taken by CPU
& GPU is (almost) equal.

Time

- Is it optimal ?

CPU

- No, since amount of computation ;
P GPU _

done by each thread is primarily
dependant on the non-zeros in the Almost Equal
"B" matrix. This partition technique

still leads to thread divergence inside

a warp / block.

Work Queue Vs HH-CPU

1l —

22 =3
OI®)

R .
L L

33 =
SO

29 —
-

—

e

—

——

,

o o < ©® o -

dnpeadg

obeloany
Sjusled-io
SJOA-IM
uoJug-|lews
0L0g-digp
IETIIEI]
1e\NPUOD-BD
a|6o0n)-gam
IN L-9SBqgam

1IN2JI0S

Matrix Instance

Future Work

- Study analytical technigues to identify the threshold in
Phase | of Algorithm HH-CPU

- Similar algorithm can be designed for CSRMM, which
multiplies a sparse matrix A with a dense matrix B.

References

- D. A. Bader and K. Madduri. GTgrpah: A suite of synthetic graph generators.
Available at https://sdm.lbl.gov/-kamesh/software/GTgraph/

- A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse matrix-
matrix multiplication. In Proc. ICPP, pp 503-510, 2008.

- S. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture- and \Workload-
aware algorithms for Spare Matrix- Vector Multiplication, Under submission, 2014.

- K. Matam, S. Indarapu, and K. Kothapalli. Sparse Matrix Matrix Multiplication on
Modern Architectures, in Proc. of HIPC, 2012.

- NVIDIA cuSPARSE Library, https://developer.nvidia.com/cusparse

- Stanford Network Analysis Platform dataset , http://www.cise.ufl.edu/ research/
sparse/matrices/SNAP/

https://developer.nvidia.com/cusparse

Thank You

