
GraphReduce: Large-Scale Graph Analytics
on Accelerator-Based HPC Systems

 Dipanjan Sengupta
 Kapil Agarwal
 Karsten Schwan
CERCS - Georgia Tech

Shuaiwen Leon Song
Pacific Northwest National
Lab

Talk Outline
�  Motivation

�  Background on GAS

�  Hybrid Programming model

�  GraphReduce Architecture

�  Experimental Results

�  Conclusion

�  Future Work

Motivation

�  Why use GPUs ? – GPU-based
frameworks are orders of
magnitude faster

�  Previous GPU-based graph
processing doesn’t handle
datasets that doesn’t fit in
memory
�  Yahoo-web graph with 1.4 billion

vertices requires 6.6 GB memory just
to store its vertex values.

�  Several challenges in large-
scale graph processing
�  How to partition the graph ?
�  How and when to move the

partitions between host and
GPU ?

�  How to best extract multi-level
parallelism in GPUs ?

Background – GAS model
U1 U2

v U3

U4

a b

c
d

U1 U2

v U3

U4

a b

c
d

U1 U2

v U3

U4

a b

c
d

Gather Apply Scatter

�  Gather phase: each
vertex aggregates values
associated with its
incoming edges and
source vertices

�  Apply phase: each vertex
updates its state using
the gather result

�  Scatter phase: each
vertex updates the state
of every outgoing edge.

Hybrid Programming Model

�  Existing systems choose either vertex- or edge-centric GAS
programming model for graph execution.

�  Different processing phases have different types of parallelism and
memory access characteristics

�  GraphReduce adopts a hybrid model with a combination of both
vertex and edge centric model

vertex_scatter (vertex v)
 send updates over outgoing edges of v

vertex gather (vertex v)
 apply updates from inbound edges of v

while not done
 for all vertices v that need to scatter updates
 vertex_scatter (v)
 for all vertices v that have updates
 vertex_gather (v)

edge_scatter (edge e)
 send update over e

update_gather (update u)
 apply update u to u. destination

while not done
 for all edges e
 edge_scatter (e)
 for all updates u
 update_gather (u)

Vertex-centric GAS Edge-centric GAS

GraphReduce Architecture

GraphReduce Architecture
Contd…

�  Three major components
�  Partition Engine

�  Data Movement Engine

�  Computation Engine

�  Partition Engine has two responsibilities
�  Load balanced shard creation, such that each shard contains approximately

equal number of edges

�  Ordering the edges in a shard based on their source or destination vertices for
efficient data movement and memory access

�  Data Movement Engine has following responsibilities
�  Moving shards in and out of limited GPU memory to process large-scale graphs

�  Efficiently utilize GPU hardware resources using CUDA streams and Hyper-Qs to
achieve high performance

�  Saturate the data transfer bandwidth of the PCI-E bus connecting the host
and the GPUs

!

Compute Engine

�  Four phases of computation

�  Gather Map: fetches all the updates/
messages along the in-edges.

�  Gather Reduce: reduce all the collected
updates for each vertex

�  Apply: apply the update to each vertex

�  Scatter: distribute the updated states of
the vertices along the out-edges

�  Combination of vertex and edge centric
implementation

�  Gather Map – edge centric

�  Gather Reduce – vertex centric

�  Apply – vertex centric

�  Scatter – edge centric

Experimental Setup
�  Experimental Setup
�  Node configuration
� Two Intel Xeon E5-2670 processors running at

2.6 GHz and 32 GB of RAM

� NVIDIA Tesla K20c GPU with 4.8 GB of DRAM

Benchmarks and Dataset
�  Graph algorithms used

are BFS and PageRank

�  9 real world and
synthetic graph
datasets as shown in
the table.

Results

Conclusions
�  GraphReduce develops a graph processing framework

for input datasets that may or may not fit in GPU
memory

�  Adopts a combination of both edge and vertex centric
implementation of GAS programming model

�  Leverages CUDA streams and hardware supports like
hyper-Qs to stream data in and out of GPU for high
performance

�  Outperforms CPU-based out-of-core graph processing
framework across a variety of real data sets

Future Work
�  Extending GraphReduce framework to multiple

nodes in a cluster using communication models
like MPI

�  Addressing the limited on-node memory size
through the usage of SSD and other storage
devices

�  Processing dynamically evolving graphs

�  Understanding how dynamic profiling could be
integrated into GraphReduce

Thank You!

