GraphReduce: Large-Scale Graph Analytics
on Accelerator-Based HPC Systems

Shuaiwen Leon Song Dipgnjan Sengupta
Pacific Northwest National Kapil Agarwal
Lab Karsten Schwan

CERCS - Georgia Tech

Talk Outline

Motivation

Background on GAS

Hybrid Programming model
GraphReduce Architecture
Experimental Results
Conclusion

Future Work

Motivation

Why use GPUs ? - GPU-based

frameWO rkS dare OrderS Of Graphs X-Stream (ms) CuSha(ms) Speedup
magnitude faster Wil TR L

. coAuthorsDBLP 1275 11.553 110x
Previous GPU-based graph delaunay.n13 80,89 18 l6x
p rocess I 1 d oesn ’t h an I e kron_g500-logn20 46550.7 119.824 389x

y 0o o webbase-1M 3909.12 13.515 290x

datasets that doesn’t fit in
memory

® Yahoo-web graph with 1.4 billion

vertices requires 6.6 GB memory just
to store its vertex values.

Several challenges in large-
scale graph processing

® How to partition the graph ?

®* How and when to move the
partitions between host and
GPU ?

® How to best extract multi-level
parallelism in GPUs ?

Background — GAS model
Gather phase: each () (w)) () (o) (»)

vertex aggregates values a\/b
associated with its () : (») () . @
Incoming edges and (0
source vertices

0

Gather Apply Scatter

Apply phase: each vertex
updates its state using
the gather result

Scatter phase: each
vertex updates the state
of every outgoing edge.

Hybrid Prog

0

ramming Model

vertex_scatter (vertex v)
send updates over outgoing edges of v

vertex gather (vertex v)
apply updates from inbound edges of v

while not done
for all vertices v that need to scatter updates
vertex_scatter (V)
for all vertices v that have updates
vertex_gather (v)

Vertex-centric GAS

edge scatter (edge e)
send update over e

update gather (update u)
apply update u to u. destination

while not done
for all edges e
edge scatter (e)
for all updates u
update gather (u)

Edge-centric GAS

Existing systems choose either vertex- or edge-centric GAS
programming model for graph execution.

Different processing phases have different types of parallelism and

memory access characteristics

GraphReduce adopts a hybrid model with a combination of both

vertex and edge centric model

GraphReduce Architecture

UserInfoTuple

1. UserGather() {...}
2. UserApply() (...}
3. UserScatter() (...} Partitioned Shard

4. VertexDataType

Graph Data Movement Synchronization
[Partition Engine]!:>[Encine }C;{ Compute Engine J

\"‘*\ Data H ﬂCom ute
P

= T

Input Graph|

-
e
-
3 oy
.....
. -
P
Py o

GraphReduce Architecture
Contd...

Three major components
e Partition Engine

e Data Movement Engine

e Computation Engine

HYPER-Q

Partition Engine has two responsibilities

Load balanced shard creation, such that each shard contains approximately
equal number of edges

Ordering the edges in a shard based on their source or destination vertices for
efficient data movement and memory access

Data Movement Engine has following responsibilities
Moving shards in and out of limited GPU memory to process large-scale graphs

Efficiently utilize GPU hardware resources using CUDA streams and Hyper-Qs to
achieve high performance

Saturate the data transfer bandwidth of the PCI-E bus connecting the host
and the GPUs

Compute Engine

Four phases of computation Algorithm 2 Asynchronous GAS Model on GraphReduce
* Gather Map: fetches.all the updates/ ;iwhﬂe(wndi“:h{:rgcs)if
messages along the in-edges. 3 memepy-in p
© Gather Reduce: reduce all the collected ; mimtp
updates for each vertex 6: end
7. foreach shard p do
* Apply: apply the update to each vertex & mmmx)-inp
© Scatter: distribute the updated states of 10: memepy-out p
the vertices along the out-edges . ;:;mshardm
Combination of vertex and edge centric 1, o
implementation :: . memgpy-out p
. en
© Gather Map - edge centric 17: end

© Gather Reduce — vertex centric
© Apply — vertex centric

¢ Scatter — edge centric -

Experimental Setup

* Experimental Setup
® Node configuration

® Two Intel Xeon E5-2670 processors running at
2.6 GHz and 32 GB of RAM

* NVIDIA Tesla K20c GPU with 4.8 GB of DRAM

Benchmarks and Dataset

TABLE L GRAPHS

* Graph algorithms used _
graph dataset # Vertices # Edges
are BFS and PageRank
webbase-1M 1000003 3105536
delaunay n2l 2097152 6291408
wikipedia-20070206 3566907 45030389
9 real woO rld and kron_g500-logn20 1048576 44620272
Synthetic graph soc-LiveJournall (big) 4847571 68993773
datasets as shown in uk-2002 (big) 18520486 | 298113762
the table. kron_g500-logn2 1 2097152 91042010
indochina-2004 7414866 194109311
nlpkki160 8345600 118931856

Results

& PR-Graphchi

140

o o o o o
-

o

~N o (o] ©o < o~
—

(

23S Ul) W] uoNIAX3

Graph Dataset

I BFS-Graphchi
W BFS-GR

Graph Dataset

o
(o]
i

o o o o o o

o o0 OV < 9«
—

(29s u1) awi] uonndaxy

Conclusions

GraphReduce develops a graph processing framework
for input datasets that may or may not fit in GPU
memory

Adopts a combination of both edge and vertex centric
implementation of GAS programming model

Leverages CUDA streams and hardware supports like
hyper-Qs to stream data in and out of GPU for high
performance

Outperforms CPU-based out-of-core graph processing
framework across a variety of real data sets

Future Work

Extending GraphReduce framework to multiple
nodes in a cluster using communication models
like MPI

Addressing the limited on-node memory size
through the usage of SSD and other storage
devices

Processing dynamically evolving graphs

Understanding how dynamic profiling could be
integrated into GraphReduce

Thank You!

——

