HMC-S1m 2.0: A Simulation Platform for
Exploring Custom Memory Cube Operations

John D. Leidel, Yong Chen
May 23, 2016
AsHES 2016

TEXAS TECH
UNIVERSITY

Overview

Introduction & Overview

CMC Simulation

Sample CMC Mutexes

Future Research

Hybrid Memory Cube Device Simulation

INTRODUCTION &
OVERVIEW

GC64 Driving Research

 Driving force behind the
GC64 architecture _
research is the ability to e | Lot |
find and exploit memory S i roquss G
bandwidth
 Exhaustive search on TR |
forthcoming memory meovors | aMOunt| Software Managed Scatonpac
technologies M ntertace | ntertace| " tertace

Traditional DDR/GDDR devices ‘ ‘
did not provide sufficient
accessibility and bandwidth ‘ P

i Hybrid Memory CUbe HMC Device GoblinCeore-64 HMC Device
devices were chosen

Intro to Hybrid Memory Cube

* Technology

« Through-silicon-via [TSV] design that combines logic layer and
DRAM layers

- Packetized interface specification the behaves similar to a
network device

- Routing capabilities built into the device logic layer

* Device-to-device routing

* Hybrid Memory Cube Consortium

« Standards body to drive the public HMC specification.
e Similar in function to JEDEC for DDR memory
« http://www.hybridmemorycube.org/

HMC TSV Technology

e Substrate

« Contains the physical pin-
out for data, power and DRAM Layers
ground .

- SERDES
* Logic Layer

« Contains the logic necessary
to perform:

. Routing

* Arbitration (weakly ordered) Logic Layer

* Addressing
AMO

[
¢ DRAM LayeI’S H. M. C. Consortium. Hybrid memory cube specification 2.1,
2015.

« Contains the DRAM arrays

Substrate

HMC-Sim Overview

Our architecture research required
access to a configurable HMC

simulation platform

None existed that were: 1) open source and/or
2) available without an NDA

We exhaustively studied the HMC a00

Stream Triad Crossbar Latency

" 4Link_2GB_16TH —+—

specification and developed HMC- 100 § Aink 208_2TH —— |
Sim based upon the spec ooo Ak 4GB DTH

4Link_4GB_64TH —=—

8Link_4GB_16TH

i 8Link_4GB_32TH —a—

400 % 8Link_4GB_64TH
8Link_8GB_16TH —=—

HMC Sim Design Requirements w00 B aghasion Sink e o1

NIy YN 8Link_8GB_64TH —— |

...as opposed to a individual device SKU

500 §

Count
o

Configurable for different host CPUs (link 200
connectivity, clock frequency, packet |
configuration, etc) 100 §
Configuration for different device SKU’s 0¥

0 1et+06 2e+06 3e+06 4e+06 Se+06 6e+06 7e+06 8e+06 9e+06 1e+07

Support for device-to-device routing Clok Tick

Simulation of all the internal queuing arbitration
stages as defined by the spec

Cycle-based simulation

Discrete logging capabilities

Packaged as a library (can be integrated into
other high-level simulators)

HMC-Sim 1.0

Developed the first open
source HMC simulation

platform

Designed to explore how different
applications affect memory
throughput & latency

Becoming the standard for HMC
modeling and simulation

Permits us to model
different concurrency
mechanisms to determine
the best mixture of
parallelism and bandwidth
across different algorithms
and applications

Count

Count

60

50

40

30

Stream Triad RD64

" 4Link_2GB_16TH —+—
4Link_2GB_32TH —s—
ALink_2GB_64TH —x— |
dLink_4GB_16TH —&—
4Link_4GB_32TH

dLink_4GB_64TH —s— |
8Link_4GB_16TH

8Link_4GB_32TH —=&—

8Link_4GB_64TH

JFpr BLink_8GB_16TH —=—
. W 8Link_8GB_32TH
i s ink_8GB_64TH —— |

6 S5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

e ot &0 M
0 1et06 2e+06 3e+06 4e+0

Stream Triad WR64

" 4Link_2GB_16TH —+—
4Link_2GB_32TH —s— |
4Link_2GB_64TH —+—
dLink_4GB_16TH —a— |
dLink_4GB_32TH
dLink_4GB_64TH —s— |
8Link_4GB_16TH

8Link_4GB_32TH —=— |
8Link_4GB_64TH
8Link_8GB_16TH —v— |

vt e BLINK_BGB
SO in<_5CE.

32TH
64TH —o— |

0 1et06 2e+06 3e+06 4e+06 5e+06 6et+06 7e+06 8e+06 9e+06 1e+07

Clock Tick

HMC-Sim 2.0

« Several users of HMC-Sim requested a number of new

features in future revisions:

Support for Gen2 HMC specification

Gen2 specification’s inclusive support for atomic memory operations
Gen2 packet specification

Custom Memory Cube (CMC) exploration

 CMC Exploration

What if we could implement new operations in the HMC logic layer?
What if these operations were NOT just simple memory operations?

Additional Atomic operations, transactional operations, arithmetic
reductions, logical reductions, processing near memory, etc

If we could have any operation embedded in the HMC logic layer, what
would it be?

Custom Memory Cube Operation Simulation

CMC SIMULATION

CMC Support Requirements

APl Compatibility: » Discrete Tracing

Existing integration with - HMC-Sim 1.0 had extensive
other simulators shouldn’t be support for logging, CMC ops

broken (Sandia SST) 1 d thi Ul
« External Implementation: WIE heed This as we

CMC implementer should « Separable Implementation
focus on CMC, not learning « Current HMC-Sim is BSD
HMC-Sim internals licensed. We want to make

« Creative Experimentation sure users can develop/
No limitation to the user’s distribute their CMC ideas
creativity in implementing separate from the simulator
CMC ops . .

. Utilize Existing HMC Packet ~ * No Simulation

Formatting Perturbation

Existing crack/decode logic - No perturbation to existing

should be maintained simulation results!

CMC Support Architecture

« We explicitly map all the
unused HMC opcodes to

CMC* ops
70 potential CMC opcodes o N Sﬂﬁﬁé [ZZZ%%?L?Z

« We provide a template | iy

infrastructure to construct a o omcz

single CMC operation mapped to - GGz |-+ ThSomeciics

a single opcode in a shared Gvicor {1

library i
« We provide one additional API P cme pata

interface to load the CMC Structures & Funciion

shared library at runtime Abhmesim.a

 Runtime processing is
otherwise the same for CMC
operations!

CMC Library Architecture

The CMC library requires the

user to define structure of

the CMC operation:

- CMC Name (string): used for
logging

- Request command enum
(from the list of 70)

- Request & Response packet
lengths

- Response command enum
(can be custom response)

One function must be

implemented by the user:

- hmcsim_execute_cmc()

Everything else is provided

in our example CMC
implementation

hmc_rgst_t rgst

uint32_t cmd

int (*cmc_register)(hmc_rgst_t *,
uint32_t *, uint32_t *,
uint32_t *,
hmc_response_t *,
uint8_t *);

uint32_t rgst_len

uint32_t rsp_len

hmc_response_t rsp_cmd

uint8_t rsp_cmd_code

uint32_t active

void *handle

int (*cmc_execute)(void *,
uint32_t, uint32_t,
uint32_t, uint32_t,
uint64_t, uint32_t,
uint64_t, uinté4_t,
uinté4_t *, uinté4_t *);

void (*cmc_str)(char *);

Data Structures

Function Pointers

hmc_cmc_t

CMC Tutorial:

CMC Registration

extern int hmcsim_load_cmc(struct hmesim_t *hme, char *cmc);

No

!

Is HMC-Sim

\ 4

return error |<€—

Initialized?

Begin
Registering
CMC Library

v

Initiate Dynamic Loader

dlopen(char *cmc,
RTLD_NOW)

y Yes

Shared Lib
Loaded?

Register CMC Function
Pointers

disym(handle,FUNC)

int (*cmc_register)(hmc_rgst_t *,
uint32_t *, uint32_t *,
uint32_t *,
hmc_response_t *,
uint8_t *);

v

Execute Registration
Function

int (*cmc_register)

()

int (*cmc_execute)(void *,
uint32_t, uint32_t,
uint32_t, uint32_t,
uint64_t, uint32_t,
uint64_t, uint64_t,
uinté4_t *, uinté4_t *);

void (*cmc_str)(char *);

v

Save Data to
hmc_cmc_t

return success |«

Structure

CMC Processing

HMC Vault Request
Queue

v

extern int hmcsim_process_rqst(...)

O

return error
A

!

Decode
Packet Header
& Tail

v

Find Available
Response
Queue Slot

+ Yes

Available?

Examine the
request
command
code

+ Yes

Process CMC
Command

Is CMC
Command

struct hme_cmc_t
cmcl]

Active?

Retrieve
Execution
Function
Pointer

No

Process
Normal
HMC
Command

A

Register
Response

Execute CMC
Command

\

Using
Function
Pointer

return success |[€—

Locking Primitives as CMC Operations

CMC MUTEXES

CMC Mutexes

 We implemented several
CMC commands as initial
tests

 What if we could
accelerate traditional
mutex operations?
HMC _LOCK
HMC_TRYLOCK
HMC_UNLOCK

« Designed to perform
pthread-style mutex

operations

**does not block on
HMC_LOCK

Thread/Task ID Lock

64 63 0

Each HMC mutex payload is a 16-byte
memory location
Lower 8 bytes: LOCK region
Upper 8 bytes: Thread/Task ID
« “Owner” of the LOCK region
» Relative to the user’s process
space
16-bytes is wasteful... but
* 16-bytes in the minimum request
size for normal HMC RD/WR
requests
« Minimal logic overhead required
to implement our mutexes

CMC Mutex Implementation

. Request Request Response Response
Operation Pseudocode Command Enum Command Length Command Length
IF (ADDR[63:0] == 0){ ADDR[127:64 =
hmc_lock TID; ADDR[63:0]=1; RET 1}ELSE{ RET CMC125 125 2 FLITS WR_RS 2
0}
IF (ADDR[63:0] == 0){ADDR[127:64
hme_trylock ZDDR[TE{ ¢ 4]}E‘A£I§EDF[63:O]=1; gg CMC126 126 2 FLITS RD_RS 2
ADDR[127:64] }
IF (ADDR[127:64] TID &&
hmc_unlock | ADDR[63:0] == 1){ ADDR[63:0] = CMC127 127 2 FLITS WR_RS 2
0; RET 1}ELSE{ RET O }
HMC_LOCK HMC_TRYLOCK HMC_UNLOCK
if(LOCK == 0){ if(LOCK == 0){ if(TID == MY_TID
TID = MY_TID; TID = MY_TID; && LOCK == 1){
LOCK = 1; LOCK = 1; LOCK = 0;
return 1; return TID; return 1;
lelsef lelse{ lelsef
return O; return TID; return 0;

Attempt to perform naive spin-wait
locks on a single mutex location

Deliberate hot-spotting

Scale the number of parallel threads/
tasks from 2-100

Execute the tests for different HMC
configurations

4LINK-4GB
SLINK-8GB

Record:

Min_Cycle: Minimum number of
cycles for any thread to obtain the lock
Max_Cycle: Maximum number of
cycles for any thread to obtain the lock

Avg Cycle: Average number of cycles
for all threads to obtain the lock

Algorithm 1 CMC Mutex Algorithm

for Nthreads do
HMC_LOCK(ADDR)
if LOCK_SUCCESS then
HMC_UNLOCK(ADDR)
else
HMC_TRYLOCK(ADDR)
while LOCK_FAILED do
HMC_TRYLOCK(ADDR)
end while
HMC_UNLOCK(ADDR)
end if
end for

CMC Mutex Min and Max Cycle

Results

HMC-SIM Minimum Lock Cycle Counts

12 | o r—

al 8L-6G Minimum Lock Cycle Count . Cycle counts are in HMC logic

10 - - cycles (not host cycles)
A 4LINK-4GB device has slightly

| higher maximum latency

Cycle Counts

| Identical minimum latencies
5 -]
4 | | | |
0 20 40 60 80 100
Thread Count HMC-SIM Maximum Lock Cycle Counts
400 .
AL-4GB Maximum Lock Cycle Count —
350 |- 8L-8GB Maximum Lock Cycle Count *** B
r"#jﬁt}r
300 | e A
- S
Device Min Cycle | Max Cycle | Avg Cycle g 250 - %ﬁ,@"’#‘ i
Count Count Count & o0 v
4Link-4GB | 6 392 226.48 @ m%ﬁrfm
8Link-8GB | 6 387 221.48 S 150 7
100 _
50]
| |
60 80 100

Thread Count

Cycle Counts

250

200

150

100

50

HMC-SIM Average Lock Cycle Counts

T T I
4L-4GB Average Lock Cycle Count —+—
8L-8GB Average Lock Cycle Count - ﬁ
ﬁﬁ?&ﬁ
A —

5

40 60 80 100
Thread Count

8LINK-8GB device has slightly
lower average and maximum
latencies

For latency-sensitive
applications dependent upon
primitive locking operations
(embedded applications), the
additional queuing capacity
with more links is helpful
The weak ordering of the HMC
device promotes sub-linear
scaling for both device
configurations!

Additional Possibilities in CMC Exploration

FUTURE RESEARCH

Z RN

Future CMC Simulation Research

Currently packaged with
HMC-Sim:
\ Atomic Popcount
HMC Lock
HMC Trylock
What cher common CHMC Unlock
operations would be . HMC Full Empty Bit Ops**
interesting to simulate as Other Interesting Operations:
CMC operations? . Reductions
Sorting

Bitwise Atomics

Processing Near Memory

Cycles

Cycles

8 Link Average Barrier Latency

400

350 |

300

250 -

200 |

150 |

100 |

50 -

eeeeeeeeeeeeeee

= L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Number of Threads

Simulating Fine-Grained
Locking Primitives:

Similar to MTA/XMT style full-
empty (tag) bit operations

Performs read-modify-write on
lock bits and data payloads with a
single command

Splits the storage in the HMC
array into tag bit vectors and data
payloads for better concurrency

Supports full complement of tag-
bit operations

Publication accepted for MemSys
2016

Questions

John Leidel

Yong Chen

HMC-Sim Development and Tutorials:

TEXAS TECH UNIVERSITY"

