
HMC-Sim 2.0: A Simulation Platform for
Exploring Custom Memory Cube Operations

John D. Leidel, Yong Chen

May 23, 2016

AsHES 2016

1

Overview

•  Introduction & Overview

•  CMC Simulation

•  Sample CMC Mutexes

•  Future Research

2

INTRODUCTION &
OVERVIEW

Hybrid Memory Cube Device Simulation

3

GC64 Driving Research

•  Driving force behind the
GC64 architecture
research is the ability to
find and exploit memory
bandwidth

•  Exhaustive search on
forthcoming memory
technologies
•  Traditional DDR/GDDR devices

did not provide sufficient
accessibility and bandwidth

•  Hybrid Memory Cube
devices were chosen

4

Texas Tech University

Figure 4: GC64 Socket

1.3.6 Node

The GC64 node architecture consists of one or more GC64 socket modules that
reside on a single node addressing domain. These modules may be locally in-
terconnected or physically co-located on a singular PCB.

TR 2015-001 9

http://gc64.org

Intro to Hybrid Memory Cube

•  Technology
•  Through-silicon-via [TSV] design that combines logic layer and

DRAM layers
•  Packetized interface specification the behaves similar to a

network device
•  Routing capabilities built into the device logic layer

•  Device-to-device routing

•  Hybrid Memory Cube Consortium
•  Standards body to drive the public HMC specification.
•  Similar in function to JEDEC for DDR memory
•  http://www.hybridmemorycube.org/

5 / 22

HMC TSV Technology

•  Substrate
•  Contains the physical pin-

out for data, power and
ground

•  SERDES
•  Logic Layer

•  Contains the logic necessary
to perform:

•  Routing
•  Arbitration (weakly ordered)
•  Addressing
•  AMO

•  DRAM Layers
•  Contains the DRAM arrays

6 / 22

H. M. C. Consortium. Hybrid memory cube specification 2.1,
2015.

HMC-Sim Overview
•  Our architecture research required

access to a configurable HMC
simulation platform
•  None existed that were: 1) open source and/or

2) available without an NDA

•  We exhaustively studied the HMC
specification and developed HMC-
Sim based upon the spec
•  …as opposed to a individual device SKU

•  HMC-Sim Design Requirements

•  Configurable for different host CPUs (link
connectivity, clock frequency, packet
configuration, etc)

•  Configuration for different device SKU’s
•  Support for device-to-device routing
•  Simulation of all the internal queuing arbitration

stages as defined by the spec
•  Cycle-based simulation
•  Discrete logging capabilities
•  Packaged as a library (can be integrated into

other high-level simulators)

7

HMC-Sim 1.0

•  Developed the first open
source HMC simulation
platform
•  Designed to explore how different

applications affect memory
throughput & latency

•  Becoming the standard for HMC
modeling and simulation

•  Permits us to model
different concurrency
mechanisms to determine
the best mixture of
parallelism and bandwidth
across different algorithms
and applications

8

HMC-Sim 2.0

•  Several users of HMC-Sim requested a number of new
features in future revisions:
•  Support for Gen2 HMC specification
•  Gen2 specification’s inclusive support for atomic memory operations
•  Gen2 packet specification
•  Custom Memory Cube (CMC) exploration

•  CMC Exploration

•  What if we could implement new operations in the HMC logic layer?
•  What if these operations were NOT just simple memory operations?
•  Additional Atomic operations, transactional operations, arithmetic

reductions, logical reductions, processing near memory, etc
•  If we could have any operation embedded in the HMC logic layer, what

would it be?

9

CMC SIMULATION
Custom Memory Cube Operation Simulation

3

CMC Support Requirements

•  API Compatibility:
•  Existing integration with

other simulators shouldn’t be
broken (Sandia SST)

•  External Implementation:
•  CMC implementer should

focus on CMC, not learning
HMC-Sim internals

•  Creative Experimentation
•  No limitation to the user’s

creativity in implementing
CMC ops

•  Utilize Existing HMC Packet
Formatting
•  Existing crack/decode logic

should be maintained

11

•  Discrete Tracing
•  HMC-Sim 1.0 had extensive

support for logging, CMC ops
will need this as well

•  Separable Implementation
•  Current HMC-Sim is BSD

licensed. We want to make
sure users can develop/
distribute their CMC ideas
separate from the simulator

•  No Simulation
Perturbation
•  No perturbation to existing

simulation results!

CMC Support Architecture

•  We explicitly map all the
unused HMC opcodes to
CMC* ops
•  70 potential CMC opcodes

•  We provide a template
infrastructure to construct a
single CMC operation mapped to
a single opcode in a shared
library

•  We provide one additional API
interface to load the CMC
shared library at runtime

•  Runtime processing is
otherwise the same for CMC
operations!

12

libhmcsim.a

HMC Data
Structures &
Commands

CMC Data
Structure &

Function
Pointers

RD16
RD32
.
.

WR16
WR32
.
.

CMC04
CMC05

.

.

CMC05
CMC04

CMC20
CMC07

CMC21
CMC22
CMC23

.

.

libMY_CMC_1.so
libMY_CMC_2.so

libSomeCMC.so

Figure 1. CMC Functional Overview

2) User Library Structure: The external CMC shared
library created by a user that implements the data
structures and processing behind a single CMC op-
eration

C. Internal Structure

The internal structure of the HMC-Sim 2.0 core library
infrastructure requires several updates and additions in order
to accommodate the user-defined CMC functionality. These
updates were concentrated on two main areas: the data
structures necessary to enumerate an arbitrary set of CMC
operations and the logic necessary to handle the registration
and processing of the external CMC operations. Each of
the aforementioned updates were patched into the existing
HMC-Sim source code in a manner that did not perturb the
existing packet processing methodology.

1) CMC Data Structures: The first area of concern within
the core HMC-Sim library that required attention was the
core data structures necessary to express both traditional
HMC operations and the extended CMC operations. The
existing HMC-Sim codebase makes use of a set of enu-
merated types to describe the request packet types and the
response packet types. This made executing normal HMC
requests much more convenient than manually constructing
the packets using their true binary encodings. For example,
the 64 byte write request is enumerated as WR64. This
feature proved useful for adding support for the CMC
operations. Each of the seventy unused command codes was
added to the hmc rqst t enumerated type table as CMCnn,
where nn describes the corresponding decimal command
code. In this manner, all possible unused command codes
are now enumerated as potential CMC operations.

Alongside the basic enumerated request types, we also
add a single additional enumerated response type to the
hmc response t enumerated types. The response command
code field is eight bits in width, so there exists sufficient
encoding space for non-traditional response codes. We add

hmc_cmc_t

Data Structures Function Pointers

int (*cmc_register)(hmc_rqst_t *,
 uint32_t *, uint32_t *,

uint32_t *,
 hmc_response_t *,
 uint8_t *);

int (*cmc_execute)(void *,
 uint32_t, uint32_t,
 uint32_t, uint32_t,
 uint64_t, uint32_t,
 uint64_t, uint64_t,

 uint64_t *, uint64_t *);

void (*cmc_str)(char *);

hmc_rqst_t rqst
uint32_t cmd

uint32_t rqst_len
uint32_t rsp_len

hmc_response_t rsp_cmd
uint8_t rsp_cmd_code

uint32_t active
void *handle

Figure 2. CMC Internal Structure

a single additional enumerated type, RSP CMC, that permits
the external CMC library implementation to define a non-
traditional response packet command code. CMC imple-
mentors have the ability to define entirely custom response
commands that are arbitrarily loaded at runtime.

In addition to the basic enumerated request and response
support, we constructed a separate data structure to store
all the necessary information associated with a single CMC
operation. As depicted in Figure 2, the hmc cmc t structure
is designed as a generic data structure that is manipulated
when a user requests to load a new CMC operation into an
HMC-Sim simulation context. Each potential CMC opera-
tion is allocated a unique hmc cmc t structure.

Each structure instance contains the respective CMC
request enum (rqst) and its associated decimal command
code (cmd). In addition to the request enum and code, the
structure also contains a value (rqst len) that describes the
length of the incoming request packet in FLITS. A single
HMC FLIT represents 128 bits of packet data. The request
length recorded in the CMC structure describes the total
packet length, which includes the packet header and tail. As
such, the minimum packet request size is one FLIT. The
maximum request packet is 17 flits, analogous to a 256 byte
write request.

The hmc cmc t structure also contains data relevant to
the respective CMC response data. The first field, rsp len,
contains the total length of the response packet sent back
to a host processor when a packet request is complete.
The response packet is optional as the CMC operation may
describe the request as being posted. The maximum response
packet size is 17 flits, analogous to a 256 byte read request.

Alongside the packet response size, the structure also
records the response command (rsp cmd) if necessary. As
stated above, we permit the CMC library implementation to

CMC Library Architecture

•  The CMC library requires the
user to define structure of
the CMC operation:
•  CMC Name (string): used for

logging
•  Request command enum

(from the list of 70)
•  Request & Response packet

lengths
•  Response command enum

(can be custom response)
•  One function must be

implemented by the user:
•  hmcsim_execute_cmc()

•  Everything else is provided
in our example CMC
implementation

13

libhmcsim.a

HMC Data
Structures &
Commands

CMC Data
Structure &

Function
Pointers

RD16
RD32
.
.

WR16
WR32
.
.

CMC04
CMC05

.

.

CMC05
CMC04

CMC20
CMC07

CMC21
CMC22
CMC23

.

.

libMY_CMC_1.so
libMY_CMC_2.so

libSomeCMC.so

Figure 1. CMC Functional Overview

2) User Library Structure: The external CMC shared
library created by a user that implements the data
structures and processing behind a single CMC op-
eration

C. Internal Structure

The internal structure of the HMC-Sim 2.0 core library
infrastructure requires several updates and additions in order
to accommodate the user-defined CMC functionality. These
updates were concentrated on two main areas: the data
structures necessary to enumerate an arbitrary set of CMC
operations and the logic necessary to handle the registration
and processing of the external CMC operations. Each of
the aforementioned updates were patched into the existing
HMC-Sim source code in a manner that did not perturb the
existing packet processing methodology.

1) CMC Data Structures: The first area of concern within
the core HMC-Sim library that required attention was the
core data structures necessary to express both traditional
HMC operations and the extended CMC operations. The
existing HMC-Sim codebase makes use of a set of enu-
merated types to describe the request packet types and the
response packet types. This made executing normal HMC
requests much more convenient than manually constructing
the packets using their true binary encodings. For example,
the 64 byte write request is enumerated as WR64. This
feature proved useful for adding support for the CMC
operations. Each of the seventy unused command codes was
added to the hmc rqst t enumerated type table as CMCnn,
where nn describes the corresponding decimal command
code. In this manner, all possible unused command codes
are now enumerated as potential CMC operations.

Alongside the basic enumerated request types, we also
add a single additional enumerated response type to the
hmc response t enumerated types. The response command
code field is eight bits in width, so there exists sufficient
encoding space for non-traditional response codes. We add

hmc_cmc_t

Data Structures Function Pointers

int (*cmc_register)(hmc_rqst_t *,
 uint32_t *, uint32_t *,

uint32_t *,
 hmc_response_t *,
 uint8_t *);

int (*cmc_execute)(void *,
 uint32_t, uint32_t,
 uint32_t, uint32_t,
 uint64_t, uint32_t,
 uint64_t, uint64_t,

 uint64_t *, uint64_t *);

void (*cmc_str)(char *);

hmc_rqst_t rqst
uint32_t cmd

uint32_t rqst_len
uint32_t rsp_len

hmc_response_t rsp_cmd
uint8_t rsp_cmd_code

uint32_t active
void *handle

Figure 2. CMC Internal Structure

a single additional enumerated type, RSP CMC, that permits
the external CMC library implementation to define a non-
traditional response packet command code. CMC imple-
mentors have the ability to define entirely custom response
commands that are arbitrarily loaded at runtime.

In addition to the basic enumerated request and response
support, we constructed a separate data structure to store
all the necessary information associated with a single CMC
operation. As depicted in Figure 2, the hmc cmc t structure
is designed as a generic data structure that is manipulated
when a user requests to load a new CMC operation into an
HMC-Sim simulation context. Each potential CMC opera-
tion is allocated a unique hmc cmc t structure.

Each structure instance contains the respective CMC
request enum (rqst) and its associated decimal command
code (cmd). In addition to the request enum and code, the
structure also contains a value (rqst len) that describes the
length of the incoming request packet in FLITS. A single
HMC FLIT represents 128 bits of packet data. The request
length recorded in the CMC structure describes the total
packet length, which includes the packet header and tail. As
such, the minimum packet request size is one FLIT. The
maximum request packet is 17 flits, analogous to a 256 byte
write request.

The hmc cmc t structure also contains data relevant to
the respective CMC response data. The first field, rsp len,
contains the total length of the response packet sent back
to a host processor when a packet request is complete.
The response packet is optional as the CMC operation may
describe the request as being posted. The maximum response
packet size is 17 flits, analogous to a 256 byte read request.

Alongside the packet response size, the structure also
records the response command (rsp cmd) if necessary. As
stated above, we permit the CMC library implementation to

CMC Tutorial:
http://gc64.org/?page_id=140

CMC Registration
extern int hmcsim_load_cmc(struct hmcsim_t *hmc, char *cmc);

Is HMC-Sim
Initialized?

return error

No

Begin
Registering
CMC Library

Yes

Initiate Dynamic Loader
dlopen(char *cmc,

RTLD_NOW)

Shared Lib
Loaded?

No

Yes

void (*cmc_str)(char *);

int (*cmc_execute)(void *,
 uint32_t, uint32_t,
 uint32_t, uint32_t,
 uint64_t, uint32_t,
 uint64_t, uint64_t,

 uint64_t *, uint64_t *);

int (*cmc_register)(hmc_rqst_t *,
 uint32_t *, uint32_t *,

uint32_t *,
 hmc_response_t *,
 uint8_t *);

Register CMC Function
Pointers

dlsym(handle,FUNC)

Execute Registration
Function

int (*cmc_register)
(...)

Save Data to
hmc_cmc_t

Structure
return success

14 / 22

CMC Processing

extern int hmcsim_process_rqst(...)

HMC Vault Request
Queue

Decode
Packet Header

& Tail

Find Available
Response
Queue Slot

Available?return error
No

Yes

Examine the
request

command
code

CMC
Command

?

No

Yes

Process CMC
Command

Is CMC
Command

Active?

Process
Normal
HMC

Command

Response
Required?

Register
Response

return success

Yes

No

No

Retrieve
Execution
Function
Pointer

struct hmc_cmc_t
cmc[]

Execute CMC
Command

Using
Function
Pointer 15 / 22

CMC MUTEXES
Locking Primitives as CMC Operations

3

CMC Mutexes

•  We implemented several
CMC commands as initial
tests

•  What if we could
accelerate traditional
mutex operations?
•  HMC_LOCK
•  HMC_TRYLOCK
•  HMC_UNLOCK

•  Designed to perform
pthread-style mutex
operations
•  **does not block on

HMC_LOCK

17

Table V
CMC MUTEX OPERATIONS

Operation Pseudocode Command Enum Request
Command

Request
Length

Response
Command

Response
Length

hmc lock
IF (ADDR[63:0] == 0){ ADDR[127:64 =
TID; ADDR[63:0]=1; RET 1}ELSE{ RET
0 }

CMC125 125 2 FLITS WR RS 2

hmc trylock

IF (ADDR[63:0] == 0){ADDR[127:64
= TID; ADDR[63:0]=1; RET
ADDR[127:64]}ELSE{ RET
ADDR[127:64] }

CMC126 126 2 FLITS RD RS 2

hmc unlock
IF (ADDR[127:64] == TID &&
ADDR[63:0] == 1){ ADDR[63:0] =
0; RET 1}ELSE{ RET 0 }

CMC127 127 2 FLITS WR RS 2

Thread/Task ID Lock
127 64 63 0

Figure 4. HMC Mutex Data Structure

a well-defined user API and/or compiler intrinsic to
induce the aforementioned CMC operations from high-
level user code.

As mentioned above, the CMC mutex operations are
loosely modeled after the traditional pthread locking API’s
present in traditional Linux/UNIX systems. We also note
that the target memory space for the locking operations is
a 16 byte data block, as opposed to a single mutex variable
(Figure 4). Given that the minimum granularity of DRAM
request is 16 bytes, there are no inherent performance
advantages for reducing the lock data structure to less
than 16 bytes. Furthermore, the additional data structure
capacity permits us to encode additional information that
may become useful for some algorithms or applications. In
doing so, we define the encoding space to be split into two
64 bit payloads. The least significant 64 bits encodes the
lock value. Any nonzero value indicates that the lock has
been set. We reserve the ability to encode more expressive
locks (such as soft locks) in this space in the future. The
most significant 64 bits encode a thread or task ID (visible
to the user application) of the parallel unit that currently
owns the lock. If the lock in the least significant 64 bits
is not set, then the state of the most significant 64 bits is
assumed to be undefined.

In order to operate on the aforementioned mutex data
structure, we define three CMC operations that permit the
user to lock, try-and-lock and unlock the data structure,
respectively. Despite the common naming convention, our
locking primitives differ in their request and return argu-
ments from the traditional pthread mutex equivalents. The
locking primitive, hmc lock, sends a single block of data as
an argument to the request that contains the thread or task
ID for the respective unit of parallelism that dispatches the
operation. The hmc lock operation will attempt to lock the

target data structure and write its respective thread ID in to
the most significant 64 bits of the lock struct. If the operation
is successful, the return payload will contain a positive value.
If it is not successful, the operation will not modify the data
and will return zero in its response payload. Conversely, the
hmc trylock operation will perform a similar task. However,
rather than return the success or failure of the operation, the
response payload will contain the thread or task ID of the
unit of parallelism that currently holds the lock. It is up
to the encountering thread to check the response payload
against its respective thread ID. Finally, the hmc unlock
command requires the same thread ID as a request argument
and attempts to unlock the target data structure only if the
thread ID currently resident in memory is equivalent to the
value sent in the request payload. The response for the
hmc unlock operation follows the same response convention
as the hmc lock operation. We summarize our CMC mutex
operations with respect to the HMC 2.0/2.1 specification in
Table V.

B. Simulation Overview
We construct a series of simulations in order to examine

the efficacy of our aforementioned mutex operations. In
order to do so, we construct a basic parallel algorithm that is
commonly used to protect critical sections in parallel code.
The algorithm utilizes three CMC operations in order to
obtain the critical lock. The same lock structure is utilized
for all threads, regardless of the three types of parallelism.
While this will undoubtedly induce a memory hot spot once
the degree of parallelism reaches a sufficient level, our test
serves to elicit the efficacy of the CMC infrastructure and
the scalability of the HMC queuing structures. We further
describe the algorithm implemented in our test as follows:

We implemented and executed the aforementioned algo-
rithm using two different HMC Gen2 configurations that
include a 4Link-4GB device and an 8Link-8GB device. Both
configurations were initialized to contain a maximum block
size of 64 bytes (which subsequently does not affect our
respective simulation), a request queue depth of 64 slots and
a logic-layer crossbar queue depth of 128 slots. We varied
the number of threads from two to one hundred threads for

•  Each HMC mutex payload is a 16-byte
memory location

•  Lower 8 bytes: LOCK region
•  Upper 8 bytes: Thread/Task ID

•  “Owner” of the LOCK region
•  Relative to the user’s process

space
•  16-bytes is wasteful… but

•  16-bytes in the minimum request
size for normal HMC RD/WR
requests

•  Minimal logic overhead required
to implement our mutexes

CMC Mutex Implementation

18

Table V
CMC MUTEX OPERATIONS

Operation Pseudocode Command Enum Request
Command

Request
Length

Response
Command

Response
Length

hmc lock
IF (ADDR[63:0] == 0){ ADDR[127:64 =
TID; ADDR[63:0]=1; RET 1}ELSE{ RET
0 }

CMC125 125 2 FLITS WR RS 2

hmc trylock

IF (ADDR[63:0] == 0){ADDR[127:64
= TID; ADDR[63:0]=1; RET
ADDR[127:64]}ELSE{ RET
ADDR[127:64] }

CMC126 126 2 FLITS RD RS 2

hmc unlock
IF (ADDR[127:64] == TID &&
ADDR[63:0] == 1){ ADDR[63:0] =
0; RET 1}ELSE{ RET 0 }

CMC127 127 2 FLITS WR RS 2

Thread/Task ID Lock
127 64 63 0

Figure 4. HMC Mutex Data Structure

a well-defined user API and/or compiler intrinsic to
induce the aforementioned CMC operations from high-
level user code.

As mentioned above, the CMC mutex operations are
loosely modeled after the traditional pthread locking API’s
present in traditional Linux/UNIX systems. We also note
that the target memory space for the locking operations is
a 16 byte data block, as opposed to a single mutex variable
(Figure 4). Given that the minimum granularity of DRAM
request is 16 bytes, there are no inherent performance
advantages for reducing the lock data structure to less
than 16 bytes. Furthermore, the additional data structure
capacity permits us to encode additional information that
may become useful for some algorithms or applications. In
doing so, we define the encoding space to be split into two
64 bit payloads. The least significant 64 bits encodes the
lock value. Any nonzero value indicates that the lock has
been set. We reserve the ability to encode more expressive
locks (such as soft locks) in this space in the future. The
most significant 64 bits encode a thread or task ID (visible
to the user application) of the parallel unit that currently
owns the lock. If the lock in the least significant 64 bits
is not set, then the state of the most significant 64 bits is
assumed to be undefined.

In order to operate on the aforementioned mutex data
structure, we define three CMC operations that permit the
user to lock, try-and-lock and unlock the data structure,
respectively. Despite the common naming convention, our
locking primitives differ in their request and return argu-
ments from the traditional pthread mutex equivalents. The
locking primitive, hmc lock, sends a single block of data as
an argument to the request that contains the thread or task
ID for the respective unit of parallelism that dispatches the
operation. The hmc lock operation will attempt to lock the

target data structure and write its respective thread ID in to
the most significant 64 bits of the lock struct. If the operation
is successful, the return payload will contain a positive value.
If it is not successful, the operation will not modify the data
and will return zero in its response payload. Conversely, the
hmc trylock operation will perform a similar task. However,
rather than return the success or failure of the operation, the
response payload will contain the thread or task ID of the
unit of parallelism that currently holds the lock. It is up
to the encountering thread to check the response payload
against its respective thread ID. Finally, the hmc unlock
command requires the same thread ID as a request argument
and attempts to unlock the target data structure only if the
thread ID currently resident in memory is equivalent to the
value sent in the request payload. The response for the
hmc unlock operation follows the same response convention
as the hmc lock operation. We summarize our CMC mutex
operations with respect to the HMC 2.0/2.1 specification in
Table V.

B. Simulation Overview
We construct a series of simulations in order to examine

the efficacy of our aforementioned mutex operations. In
order to do so, we construct a basic parallel algorithm that is
commonly used to protect critical sections in parallel code.
The algorithm utilizes three CMC operations in order to
obtain the critical lock. The same lock structure is utilized
for all threads, regardless of the three types of parallelism.
While this will undoubtedly induce a memory hot spot once
the degree of parallelism reaches a sufficient level, our test
serves to elicit the efficacy of the CMC infrastructure and
the scalability of the HMC queuing structures. We further
describe the algorithm implemented in our test as follows:

We implemented and executed the aforementioned algo-
rithm using two different HMC Gen2 configurations that
include a 4Link-4GB device and an 8Link-8GB device. Both
configurations were initialized to contain a maximum block
size of 64 bytes (which subsequently does not affect our
respective simulation), a request queue depth of 64 slots and
a logic-layer crossbar queue depth of 128 slots. We varied
the number of threads from two to one hundred threads for

HMC_LOCK
if(LOCK == 0){
 TID = MY_TID;
 LOCK = 1;
 return 1;
}else{
 return 0;
}

HMC_TRYLOCK
if(LOCK == 0){
 TID = MY_TID;
 LOCK = 1;
 return TID;
}else{
 return TID;
}

HMC_UNLOCK
if(TID == MY_TID
 && LOCK == 1){
 LOCK = 0;
 return 1;
}else{
 return 0;
}

CMC Mutex Experimentation

•  Attempt to perform naïve spin-wait
locks on a single mutex location

•  Deliberate hot-spotting
•  Scale the number of parallel threads/

tasks from 2-100
•  Execute the tests for different HMC

configurations
•  4LINK-4GB
•  8LINK-8GB

•  Record:
•  Min_Cycle: Minimum number of

cycles for any thread to obtain the lock
•  Max_Cycle: Maximum number of

cycles for any thread to obtain the lock
•  Avg_Cycle: Average number of cycles

for all threads to obtain the lock

Algorithm 1 CMC Mutex Algorithm
for Nthreads do

HMC LOCK(ADDR)
if LOCK SUCCESS then

HMC UNLOCK(ADDR)
else

HMC TRYLOCK(ADDR)
while LOCK FAILED do

HMC TRYLOCK(ADDR)
end while
HMC UNLOCK(ADDR)

end if
end for

Figure 5. Minimum Lock Cycles

each of the respective configurations. From each simulation,
we recorded the following data values (in addition to the
core HMC-Sim tracing):

• MIN CYCLE: The minimum number of cycles required
for any of the threads to perform the algorithm.

• MAX CYCLE: The maximum number of cycles re-
quired for any of the threads to perform the algorithm.

• AVG CYCLE: The average number of cycles required
for all the respective threads for the given simulation
to perform the algorithm.

C. Simulation Results
After executing the aforementioned simulations, we find

that the 4Link and 8Link HMC devices delivered very
similar performance. The minimum, maximum and average
HMC-Sim cycle counts are actually identical between both
the 4Link and 8Link device configurations for thread counts
from two to fifty. We attribute this similarity to the identi-
cal queueing structure for both configurations and the hot
spotting induced from utilizing a single lock structure.

However, when the simulations grew beyond fifty threads,
we begin to see perturbations in the results. As the thread
count grows, the distributions of requests across the ad-
ditional 8 links and their associated request and crossbar

Figure 6. Maximum Lock Cycles

Table VI
CMC MUTEX OPERATIONS

Device Min Cycle
Count

Max Cycle
Count

Avg Cycle
Count

4Link-4GB 6 392 226.48
8Link-8GB 6 387 221.48

queuing structures begin to induce slightly lower minimum
cycle timings. Figure 5 clearly identifies these slightly lower
cycle counts beyond fifty threads for the 8 link devices. We
also see slightly larger maximum cycle timings in the 4 link
device as well. While it is more difficult to visually depict
the maximum cycle timings due to the likeness of values, we
provide the timings in Figure 6. The worst case maximum
cycle count recorded by the 4 link device occurred when
using 99 threads and required 392 cycles. Conversely, the 8
link device exhibited its maximum cycle count at 100 threads
with 387 cycles. In this manner, the 4 link device clearly
becomes overwhelmed with requests faster, thus inducing
more stall conditions, than the complementary 8 link device
configuration.

Finally, the average resulting cycle counts continue to
exhibit similar behavior as shown in Figure 7. The 4 link
device recorded a slightly higher maximum average cycle
timing of 226.48 cycles at 99 threads. The 8 link device
recorded its highest average cycle count at 100 threads using
221.48 cycles. Despite the existence of twice the theoretical
queueing capacity, the 8 link device only delivered a worst
case maximum cycle timing that was 1.2% better than the
complementary 4 link device. In addition, the maximum
average cycle timing of the 8 link device was only 2.2%
better than the 4 link device. We summarize our results in
Table VI.

VI. CONCLUSION

In this work, we present a novel approach to simulating
arbitrarily complex custom memory cube, or CMC, opera-
tions within the confines of the HMC-Sim Hybrid Memory
Cube simulation infrastructure. With the addition of this

19 / 22

CMC Mutex Min and Max Cycle
Results

20 / 22

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20 40 60 80 100

Cy
cl

e
Co

un
ts

Thread Count

HMC-SIM Minimum Lock Cycle Counts

4L-4GB Minimum Lock Cycle Count
8L-8GB Minimum Lock Cycle Count

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

Cy
cl

e
Co

un
ts

Thread Count

HMC-SIM Maximum Lock Cycle Counts

4L-4GB Maximum Lock Cycle Count
8L-8GB Maximum Lock Cycle Count

Algorithm 1 CMC Mutex Algorithm
for Nthreads do

HMC LOCK(ADDR)
if LOCK SUCCESS then

HMC UNLOCK(ADDR)
else

HMC TRYLOCK(ADDR)
while LOCK FAILED do

HMC TRYLOCK(ADDR)
end while
HMC UNLOCK(ADDR)

end if
end for

Figure 5. Minimum Lock Cycles

each of the respective configurations. From each simulation,
we recorded the following data values (in addition to the
core HMC-Sim tracing):

• MIN CYCLE: The minimum number of cycles required
for any of the threads to perform the algorithm.

• MAX CYCLE: The maximum number of cycles re-
quired for any of the threads to perform the algorithm.

• AVG CYCLE: The average number of cycles required
for all the respective threads for the given simulation
to perform the algorithm.

C. Simulation Results
After executing the aforementioned simulations, we find

that the 4Link and 8Link HMC devices delivered very
similar performance. The minimum, maximum and average
HMC-Sim cycle counts are actually identical between both
the 4Link and 8Link device configurations for thread counts
from two to fifty. We attribute this similarity to the identi-
cal queueing structure for both configurations and the hot
spotting induced from utilizing a single lock structure.

However, when the simulations grew beyond fifty threads,
we begin to see perturbations in the results. As the thread
count grows, the distributions of requests across the ad-
ditional 8 links and their associated request and crossbar

Figure 6. Maximum Lock Cycles

Table VI
CMC MUTEX OPERATIONS

Device Min Cycle
Count

Max Cycle
Count

Avg Cycle
Count

4Link-4GB 6 392 226.48
8Link-8GB 6 387 221.48

queuing structures begin to induce slightly lower minimum
cycle timings. Figure 5 clearly identifies these slightly lower
cycle counts beyond fifty threads for the 8 link devices. We
also see slightly larger maximum cycle timings in the 4 link
device as well. While it is more difficult to visually depict
the maximum cycle timings due to the likeness of values, we
provide the timings in Figure 6. The worst case maximum
cycle count recorded by the 4 link device occurred when
using 99 threads and required 392 cycles. Conversely, the 8
link device exhibited its maximum cycle count at 100 threads
with 387 cycles. In this manner, the 4 link device clearly
becomes overwhelmed with requests faster, thus inducing
more stall conditions, than the complementary 8 link device
configuration.

Finally, the average resulting cycle counts continue to
exhibit similar behavior as shown in Figure 7. The 4 link
device recorded a slightly higher maximum average cycle
timing of 226.48 cycles at 99 threads. The 8 link device
recorded its highest average cycle count at 100 threads using
221.48 cycles. Despite the existence of twice the theoretical
queueing capacity, the 8 link device only delivered a worst
case maximum cycle timing that was 1.2% better than the
complementary 4 link device. In addition, the maximum
average cycle timing of the 8 link device was only 2.2%
better than the 4 link device. We summarize our results in
Table VI.

VI. CONCLUSION

In this work, we present a novel approach to simulating
arbitrarily complex custom memory cube, or CMC, opera-
tions within the confines of the HMC-Sim Hybrid Memory
Cube simulation infrastructure. With the addition of this

•  Cycle counts are in HMC logic
cycles (not host cycles)

•  4LINK-4GB device has slightly
higher maximum latency

•  Identical minimum latencies

CMC Mutex Average Cycle Results

21 / 22

 50

 100

 150

 200

 250

 0 20 40 60 80 100

Cy
cl

e
Co

un
ts

Thread Count

HMC-SIM Average Lock Cycle Counts

4L-4GB Average Lock Cycle Count
8L-8GB Average Lock Cycle Count

•  8LINK-8GB device has slightly
lower average and maximum
latencies

•  For latency-sensitive
applications dependent upon
primitive locking operations
(embedded applications), the
additional queuing capacity
with more links is helpful

•  The weak ordering of the HMC
device promotes sub-linear
scaling for both device
configurations!

FUTURE RESEARCH
Additional Possibilities in CMC Exploration

3

Future CMC Simulation Research

What other common
operations would be
interesting to simulate as
CMC operations?

Currently packaged with
HMC-Sim:
•  Atomic Popcount
•  HMC Lock

•  HMC Trylock
•  HMC Unlock

•  HMC Full Empty Bit Ops**

Other Interesting Operations:
•  Reductions

•  Sorting
•  Bitwise Atomics

•  Processing Near Memory

23 / 22

Full Empty Bit CMC Operations

Simulating Fine-Grained
Locking Primitives:
•  Similar to MTA/XMT style full-

empty (tag) bit operations
•  Performs read-modify-write on

lock bits and data payloads with a
single command

•  Splits the storage in the HMC
array into tag bit vectors and data
payloads for better concurrency

•  Supports full complement of tag-
bit operations

•  Publication accepted for MemSys
2016

24 / 22

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Cy
cle

s

Number of Threads

4 Link Average Barrier Latency
4 Link Maximum Barrier Latency

8 Link Average Barrier Latency
8 Link Maximum Barrier Latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

C
yc

le
s

Number of Threads

4 Link Average Lock Latency
8 Link Average Lock Latency

Linear Scaling

Questions

John Leidel
john.leidel@ttu.edu

Yong Chen

yong.chen@ttu.edu

HMC-Sim Development and Tutorials:
http://gc64.org

25

