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•  Future Research 
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INTRODUCTION & 
OVERVIEW 

Hybrid Memory Cube Device Simulation 
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GC64 Driving Research 

•  Driving force behind the 
GC64 architecture 
research is the ability to 
find and exploit memory 
bandwidth 

•  Exhaustive search on 
forthcoming memory 
technologies 
•  Traditional DDR/GDDR devices 

did not provide sufficient 
accessibility and bandwidth 

•  Hybrid Memory Cube 
devices were chosen 

4 

Texas Tech University

Figure 4: GC64 Socket

1.3.6 Node

The GC64 node architecture consists of one or more GC64 socket modules that
reside on a single node addressing domain. These modules may be locally in-
terconnected or physically co-located on a singular PCB.
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Intro to Hybrid Memory Cube 

•  Technology 
•  Through-silicon-via [TSV] design that combines logic layer and 

DRAM layers 
•  Packetized interface specification the behaves similar to a 

network device 
•  Routing capabilities built into the device logic layer 

•  Device-to-device routing 

•  Hybrid Memory Cube Consortium 
•  Standards body to drive the public HMC specification. 
•  Similar in function to JEDEC for DDR memory 
•  http://www.hybridmemorycube.org/ 
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HMC TSV Technology 

•  Substrate 
•  Contains the physical pin-

out for data, power and 
ground 

•  SERDES 
•  Logic Layer 

•  Contains the logic necessary 
to perform: 

•  Routing  
•  Arbitration (weakly ordered) 
•  Addressing 
•  AMO 

•  DRAM Layers 
•  Contains the DRAM arrays 
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HMC-Sim Overview 
•  Our architecture research required 

access to a configurable HMC 
simulation platform 
•  None existed that were: 1) open source and/or 

2) available without an NDA  

•  We exhaustively studied the HMC 
specification and developed HMC-
Sim based upon the spec 
•  …as opposed to a individual device SKU 

 
•  HMC-Sim Design Requirements 

•  Configurable for different host CPUs (link 
connectivity, clock frequency, packet 
configuration, etc) 

•  Configuration for different device SKU’s 
•  Support for device-to-device routing 
•  Simulation of all the internal queuing arbitration 

stages as defined by the spec 
•  Cycle-based simulation 
•  Discrete logging capabilities 
•  Packaged as a library (can be integrated into 

other high-level simulators) 
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HMC-Sim 1.0 

•  Developed the first open 
source HMC simulation 
platform 
•  Designed to explore how different 

applications affect memory 
throughput & latency 

•  Becoming the standard for HMC 
modeling and simulation 

•  Permits us to model 
different concurrency 
mechanisms to determine 
the best mixture of 
parallelism and bandwidth 
across different algorithms 
and applications 
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HMC-Sim 2.0 

•  Several users of HMC-Sim requested a number of new 
features in future revisions: 
•  Support for Gen2 HMC specification 
•  Gen2 specification’s inclusive support for atomic memory operations 
•  Gen2 packet specification 
•  Custom Memory Cube (CMC) exploration 

 
•  CMC Exploration 

•  What if we could implement new operations in the HMC logic layer?  
•  What if these operations were NOT just simple memory operations? 
•  Additional Atomic operations, transactional operations, arithmetic 

reductions, logical reductions, processing near memory, etc 
•  If we could have any operation embedded in the HMC logic layer, what 

would it be?  
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CMC SIMULATION 
Custom Memory Cube Operation Simulation 

3 



CMC Support Requirements 

•  API Compatibility: 
•  Existing integration with 

other simulators shouldn’t be 
broken (Sandia SST) 

•  External Implementation: 
•  CMC implementer should 

focus on CMC, not learning 
HMC-Sim internals 

•  Creative Experimentation 
•  No limitation to the user’s 

creativity in implementing 
CMC ops 

•  Utilize Existing HMC Packet 
Formatting 
•  Existing crack/decode logic 

should be maintained 
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•  Discrete Tracing 
•  HMC-Sim 1.0 had extensive 

support for logging, CMC ops 
will need this as well 

•  Separable Implementation 
•  Current HMC-Sim is BSD 

licensed.  We want to make 
sure users can develop/
distribute their CMC ideas 
separate from the simulator 

•  No Simulation 
Perturbation 
•  No perturbation to existing 

simulation results!  



CMC Support Architecture 

•  We explicitly map all the 
unused HMC opcodes to 
CMC* ops 
•  70 potential CMC opcodes 

•  We provide a template 
infrastructure to construct a 
single CMC operation mapped to 
a single opcode in a shared 
library 

•  We provide one additional API 
interface to load the CMC 
shared library at runtime 

•  Runtime processing is 
otherwise the same for CMC 
operations! 
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Figure 1. CMC Functional Overview

2) User Library Structure: The external CMC shared
library created by a user that implements the data
structures and processing behind a single CMC op-
eration

C. Internal Structure

The internal structure of the HMC-Sim 2.0 core library
infrastructure requires several updates and additions in order
to accommodate the user-defined CMC functionality. These
updates were concentrated on two main areas: the data
structures necessary to enumerate an arbitrary set of CMC
operations and the logic necessary to handle the registration
and processing of the external CMC operations. Each of
the aforementioned updates were patched into the existing
HMC-Sim source code in a manner that did not perturb the
existing packet processing methodology.

1) CMC Data Structures: The first area of concern within
the core HMC-Sim library that required attention was the
core data structures necessary to express both traditional
HMC operations and the extended CMC operations. The
existing HMC-Sim codebase makes use of a set of enu-
merated types to describe the request packet types and the
response packet types. This made executing normal HMC
requests much more convenient than manually constructing
the packets using their true binary encodings. For example,
the 64 byte write request is enumerated as WR64. This
feature proved useful for adding support for the CMC
operations. Each of the seventy unused command codes was
added to the hmc rqst t enumerated type table as CMCnn,
where nn describes the corresponding decimal command
code. In this manner, all possible unused command codes
are now enumerated as potential CMC operations.

Alongside the basic enumerated request types, we also
add a single additional enumerated response type to the
hmc response t enumerated types. The response command
code field is eight bits in width, so there exists sufficient
encoding space for non-traditional response codes. We add

hmc_cmc_t
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Figure 2. CMC Internal Structure

a single additional enumerated type, RSP CMC, that permits
the external CMC library implementation to define a non-
traditional response packet command code. CMC imple-
mentors have the ability to define entirely custom response
commands that are arbitrarily loaded at runtime.

In addition to the basic enumerated request and response
support, we constructed a separate data structure to store
all the necessary information associated with a single CMC
operation. As depicted in Figure 2, the hmc cmc t structure
is designed as a generic data structure that is manipulated
when a user requests to load a new CMC operation into an
HMC-Sim simulation context. Each potential CMC opera-
tion is allocated a unique hmc cmc t structure.

Each structure instance contains the respective CMC
request enum (rqst) and its associated decimal command
code (cmd). In addition to the request enum and code, the
structure also contains a value (rqst len) that describes the
length of the incoming request packet in FLITS. A single
HMC FLIT represents 128 bits of packet data. The request
length recorded in the CMC structure describes the total
packet length, which includes the packet header and tail. As
such, the minimum packet request size is one FLIT. The
maximum request packet is 17 flits, analogous to a 256 byte
write request.

The hmc cmc t structure also contains data relevant to
the respective CMC response data. The first field, rsp len,
contains the total length of the response packet sent back
to a host processor when a packet request is complete.
The response packet is optional as the CMC operation may
describe the request as being posted. The maximum response
packet size is 17 flits, analogous to a 256 byte read request.

Alongside the packet response size, the structure also
records the response command (rsp cmd) if necessary. As
stated above, we permit the CMC library implementation to



CMC Library Architecture 

•  The CMC library requires the 
user to define structure of 
the CMC operation: 
•  CMC Name (string): used for 

logging 
•  Request command enum 

(from the list of 70) 
•  Request & Response packet 

lengths 
•  Response command enum 

(can be custom response) 
•  One function must be 

implemented by the user: 
•  hmcsim_execute_cmc() 

•  Everything else is provided 
in our example CMC 
implementation 
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2) User Library Structure: The external CMC shared
library created by a user that implements the data
structures and processing behind a single CMC op-
eration

C. Internal Structure

The internal structure of the HMC-Sim 2.0 core library
infrastructure requires several updates and additions in order
to accommodate the user-defined CMC functionality. These
updates were concentrated on two main areas: the data
structures necessary to enumerate an arbitrary set of CMC
operations and the logic necessary to handle the registration
and processing of the external CMC operations. Each of
the aforementioned updates were patched into the existing
HMC-Sim source code in a manner that did not perturb the
existing packet processing methodology.

1) CMC Data Structures: The first area of concern within
the core HMC-Sim library that required attention was the
core data structures necessary to express both traditional
HMC operations and the extended CMC operations. The
existing HMC-Sim codebase makes use of a set of enu-
merated types to describe the request packet types and the
response packet types. This made executing normal HMC
requests much more convenient than manually constructing
the packets using their true binary encodings. For example,
the 64 byte write request is enumerated as WR64. This
feature proved useful for adding support for the CMC
operations. Each of the seventy unused command codes was
added to the hmc rqst t enumerated type table as CMCnn,
where nn describes the corresponding decimal command
code. In this manner, all possible unused command codes
are now enumerated as potential CMC operations.

Alongside the basic enumerated request types, we also
add a single additional enumerated response type to the
hmc response t enumerated types. The response command
code field is eight bits in width, so there exists sufficient
encoding space for non-traditional response codes. We add
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a single additional enumerated type, RSP CMC, that permits
the external CMC library implementation to define a non-
traditional response packet command code. CMC imple-
mentors have the ability to define entirely custom response
commands that are arbitrarily loaded at runtime.

In addition to the basic enumerated request and response
support, we constructed a separate data structure to store
all the necessary information associated with a single CMC
operation. As depicted in Figure 2, the hmc cmc t structure
is designed as a generic data structure that is manipulated
when a user requests to load a new CMC operation into an
HMC-Sim simulation context. Each potential CMC opera-
tion is allocated a unique hmc cmc t structure.

Each structure instance contains the respective CMC
request enum (rqst) and its associated decimal command
code (cmd). In addition to the request enum and code, the
structure also contains a value (rqst len) that describes the
length of the incoming request packet in FLITS. A single
HMC FLIT represents 128 bits of packet data. The request
length recorded in the CMC structure describes the total
packet length, which includes the packet header and tail. As
such, the minimum packet request size is one FLIT. The
maximum request packet is 17 flits, analogous to a 256 byte
write request.

The hmc cmc t structure also contains data relevant to
the respective CMC response data. The first field, rsp len,
contains the total length of the response packet sent back
to a host processor when a packet request is complete.
The response packet is optional as the CMC operation may
describe the request as being posted. The maximum response
packet size is 17 flits, analogous to a 256 byte read request.

Alongside the packet response size, the structure also
records the response command (rsp cmd) if necessary. As
stated above, we permit the CMC library implementation to

CMC Tutorial: 
http://gc64.org/?page_id=140 
 



CMC Registration 
extern int hmcsim_load_cmc( struct hmcsim_t *hmc, char *cmc );

Is HMC-Sim 
Initialized?

return error

No

Begin 
Registering 
CMC Library

Yes

Initiate Dynamic Loader
dlopen( char *cmc, 

RTLD_NOW)

Shared Lib 
Loaded?

No

Yes

void (*cmc_str)(char *);

int (*cmc_execute)(void *, 
                           uint32_t, uint32_t,                     
                           uint32_t, uint32_t,
                           uint64_t, uint32_t,                           
                           uint64_t, uint64_t, 

                          uint64_t *, uint64_t *); 

int (*cmc_register)(hmc_rqst_t *,
                 uint32_t *, uint32_t *,

uint32_t *,
              hmc_response_t *,
                            uint8_t *);

Register CMC Function 
Pointers

dlsym(handle,FUNC)

Execute Registration 
Function

int (*cmc_register)
(...)

Save Data to 
hmc_cmc_t 

Structure
return success
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CMC Processing 

extern int hmcsim_process_rqst(...)

HMC Vault Request 
Queue

Decode 
Packet Header 

& Tail

Find Available 
Response 
Queue Slot

Available?return error
No

Yes

Examine the 
request 

command 
code

CMC 
Command

?

No

Yes

Process CMC 
Command

Is CMC 
Command 

Active?

Process 
Normal 
HMC 

Command

Response 
Required?

Register 
Response

return success

Yes

No

No

Retrieve 
Execution 
Function 
Pointer

struct hmc_cmc_t 
cmc[]

Execute CMC 
Command 

Using 
Function 
Pointer 15 / 22 



CMC MUTEXES 
Locking Primitives as CMC Operations 

3 



CMC Mutexes 

•  We implemented several 
CMC commands as initial 
tests 

•  What if we could 
accelerate traditional 
mutex operations? 
•  HMC_LOCK 
•  HMC_TRYLOCK 
•  HMC_UNLOCK 

•  Designed to perform 
pthread-style mutex 
operations 
•  **does not block on 

HMC_LOCK 
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Table V
CMC MUTEX OPERATIONS

Operation Pseudocode Command Enum Request
Command

Request
Length

Response
Command

Response
Length

hmc lock
IF ( ADDR[63:0] == 0 ){ ADDR[127:64 =
TID; ADDR[63:0]=1; RET 1}ELSE{ RET
0 }

CMC125 125 2 FLITS WR RS 2

hmc trylock

IF ( ADDR[63:0] == 0){ADDR[127:64
= TID; ADDR[63:0]=1; RET
ADDR[127:64]}ELSE{ RET
ADDR[127:64] }

CMC126 126 2 FLITS RD RS 2

hmc unlock
IF ( ADDR[127:64] == TID &&
ADDR[63:0] == 1 ){ ADDR[63:0] =
0; RET 1}ELSE{ RET 0 }

CMC127 127 2 FLITS WR RS 2

Thread/Task ID Lock
127                                   64  63                                      0

Figure 4. HMC Mutex Data Structure

a well-defined user API and/or compiler intrinsic to
induce the aforementioned CMC operations from high-
level user code.

As mentioned above, the CMC mutex operations are
loosely modeled after the traditional pthread locking API’s
present in traditional Linux/UNIX systems. We also note
that the target memory space for the locking operations is
a 16 byte data block, as opposed to a single mutex variable
(Figure 4). Given that the minimum granularity of DRAM
request is 16 bytes, there are no inherent performance
advantages for reducing the lock data structure to less
than 16 bytes. Furthermore, the additional data structure
capacity permits us to encode additional information that
may become useful for some algorithms or applications. In
doing so, we define the encoding space to be split into two
64 bit payloads. The least significant 64 bits encodes the
lock value. Any nonzero value indicates that the lock has
been set. We reserve the ability to encode more expressive
locks (such as soft locks) in this space in the future. The
most significant 64 bits encode a thread or task ID (visible
to the user application) of the parallel unit that currently
owns the lock. If the lock in the least significant 64 bits
is not set, then the state of the most significant 64 bits is
assumed to be undefined.

In order to operate on the aforementioned mutex data
structure, we define three CMC operations that permit the
user to lock, try-and-lock and unlock the data structure,
respectively. Despite the common naming convention, our
locking primitives differ in their request and return argu-
ments from the traditional pthread mutex equivalents. The
locking primitive, hmc lock, sends a single block of data as
an argument to the request that contains the thread or task
ID for the respective unit of parallelism that dispatches the
operation. The hmc lock operation will attempt to lock the

target data structure and write its respective thread ID in to
the most significant 64 bits of the lock struct. If the operation
is successful, the return payload will contain a positive value.
If it is not successful, the operation will not modify the data
and will return zero in its response payload. Conversely, the
hmc trylock operation will perform a similar task. However,
rather than return the success or failure of the operation, the
response payload will contain the thread or task ID of the
unit of parallelism that currently holds the lock. It is up
to the encountering thread to check the response payload
against its respective thread ID. Finally, the hmc unlock
command requires the same thread ID as a request argument
and attempts to unlock the target data structure only if the
thread ID currently resident in memory is equivalent to the
value sent in the request payload. The response for the
hmc unlock operation follows the same response convention
as the hmc lock operation. We summarize our CMC mutex
operations with respect to the HMC 2.0/2.1 specification in
Table V.

B. Simulation Overview
We construct a series of simulations in order to examine

the efficacy of our aforementioned mutex operations. In
order to do so, we construct a basic parallel algorithm that is
commonly used to protect critical sections in parallel code.
The algorithm utilizes three CMC operations in order to
obtain the critical lock. The same lock structure is utilized
for all threads, regardless of the three types of parallelism.
While this will undoubtedly induce a memory hot spot once
the degree of parallelism reaches a sufficient level, our test
serves to elicit the efficacy of the CMC infrastructure and
the scalability of the HMC queuing structures. We further
describe the algorithm implemented in our test as follows:

We implemented and executed the aforementioned algo-
rithm using two different HMC Gen2 configurations that
include a 4Link-4GB device and an 8Link-8GB device. Both
configurations were initialized to contain a maximum block
size of 64 bytes (which subsequently does not affect our
respective simulation), a request queue depth of 64 slots and
a logic-layer crossbar queue depth of 128 slots. We varied
the number of threads from two to one hundred threads for

•  Each HMC mutex payload is a 16-byte 
memory location 

•  Lower 8 bytes: LOCK region 
•  Upper 8 bytes: Thread/Task ID 

•  “Owner” of the LOCK region 
•  Relative to the user’s process 

space 
•  16-bytes is wasteful… but 

•  16-bytes in the minimum request 
size for normal HMC RD/WR 
requests 

•  Minimal logic overhead required 
to implement our mutexes 



CMC Mutex Implementation 
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Table V
CMC MUTEX OPERATIONS

Operation Pseudocode Command Enum Request
Command

Request
Length

Response
Command

Response
Length

hmc lock
IF ( ADDR[63:0] == 0 ){ ADDR[127:64 =
TID; ADDR[63:0]=1; RET 1}ELSE{ RET
0 }

CMC125 125 2 FLITS WR RS 2

hmc trylock

IF ( ADDR[63:0] == 0){ADDR[127:64
= TID; ADDR[63:0]=1; RET
ADDR[127:64]}ELSE{ RET
ADDR[127:64] }

CMC126 126 2 FLITS RD RS 2

hmc unlock
IF ( ADDR[127:64] == TID &&
ADDR[63:0] == 1 ){ ADDR[63:0] =
0; RET 1}ELSE{ RET 0 }

CMC127 127 2 FLITS WR RS 2

Thread/Task ID Lock
127                                   64  63                                      0

Figure 4. HMC Mutex Data Structure

a well-defined user API and/or compiler intrinsic to
induce the aforementioned CMC operations from high-
level user code.

As mentioned above, the CMC mutex operations are
loosely modeled after the traditional pthread locking API’s
present in traditional Linux/UNIX systems. We also note
that the target memory space for the locking operations is
a 16 byte data block, as opposed to a single mutex variable
(Figure 4). Given that the minimum granularity of DRAM
request is 16 bytes, there are no inherent performance
advantages for reducing the lock data structure to less
than 16 bytes. Furthermore, the additional data structure
capacity permits us to encode additional information that
may become useful for some algorithms or applications. In
doing so, we define the encoding space to be split into two
64 bit payloads. The least significant 64 bits encodes the
lock value. Any nonzero value indicates that the lock has
been set. We reserve the ability to encode more expressive
locks (such as soft locks) in this space in the future. The
most significant 64 bits encode a thread or task ID (visible
to the user application) of the parallel unit that currently
owns the lock. If the lock in the least significant 64 bits
is not set, then the state of the most significant 64 bits is
assumed to be undefined.

In order to operate on the aforementioned mutex data
structure, we define three CMC operations that permit the
user to lock, try-and-lock and unlock the data structure,
respectively. Despite the common naming convention, our
locking primitives differ in their request and return argu-
ments from the traditional pthread mutex equivalents. The
locking primitive, hmc lock, sends a single block of data as
an argument to the request that contains the thread or task
ID for the respective unit of parallelism that dispatches the
operation. The hmc lock operation will attempt to lock the

target data structure and write its respective thread ID in to
the most significant 64 bits of the lock struct. If the operation
is successful, the return payload will contain a positive value.
If it is not successful, the operation will not modify the data
and will return zero in its response payload. Conversely, the
hmc trylock operation will perform a similar task. However,
rather than return the success or failure of the operation, the
response payload will contain the thread or task ID of the
unit of parallelism that currently holds the lock. It is up
to the encountering thread to check the response payload
against its respective thread ID. Finally, the hmc unlock
command requires the same thread ID as a request argument
and attempts to unlock the target data structure only if the
thread ID currently resident in memory is equivalent to the
value sent in the request payload. The response for the
hmc unlock operation follows the same response convention
as the hmc lock operation. We summarize our CMC mutex
operations with respect to the HMC 2.0/2.1 specification in
Table V.

B. Simulation Overview
We construct a series of simulations in order to examine

the efficacy of our aforementioned mutex operations. In
order to do so, we construct a basic parallel algorithm that is
commonly used to protect critical sections in parallel code.
The algorithm utilizes three CMC operations in order to
obtain the critical lock. The same lock structure is utilized
for all threads, regardless of the three types of parallelism.
While this will undoubtedly induce a memory hot spot once
the degree of parallelism reaches a sufficient level, our test
serves to elicit the efficacy of the CMC infrastructure and
the scalability of the HMC queuing structures. We further
describe the algorithm implemented in our test as follows:

We implemented and executed the aforementioned algo-
rithm using two different HMC Gen2 configurations that
include a 4Link-4GB device and an 8Link-8GB device. Both
configurations were initialized to contain a maximum block
size of 64 bytes (which subsequently does not affect our
respective simulation), a request queue depth of 64 slots and
a logic-layer crossbar queue depth of 128 slots. We varied
the number of threads from two to one hundred threads for

HMC_LOCK 
if( LOCK == 0 ){ 
  TID = MY_TID; 
  LOCK = 1; 
  return 1; 
}else{ 
  return 0; 
} 

HMC_TRYLOCK 
if( LOCK == 0 ){ 
  TID = MY_TID; 
  LOCK = 1; 
  return TID; 
}else{ 
  return TID; 
} 

HMC_UNLOCK 
if( TID == MY_TID  
  && LOCK == 1){ 
  LOCK = 0; 
  return 1; 
}else{ 
  return 0; 
} 



CMC Mutex Experimentation 

•  Attempt to perform naïve spin-wait 
locks on a single mutex location 

•  Deliberate hot-spotting 
•  Scale the number of parallel threads/

tasks from 2-100 
•  Execute the tests for different HMC 

configurations 
•  4LINK-4GB 
•  8LINK-8GB 

•  Record:  
•  Min_Cycle: Minimum number of 

cycles for any thread to obtain the lock  
•  Max_Cycle: Maximum number of 

cycles for any thread to obtain the lock 
•  Avg_Cycle: Average number of cycles 

for all threads to obtain the lock 

Algorithm 1 CMC Mutex Algorithm
for Nthreads do

HMC LOCK(ADDR)
if LOCK SUCCESS then

HMC UNLOCK(ADDR)
else

HMC TRYLOCK(ADDR)
while LOCK FAILED do

HMC TRYLOCK(ADDR)
end while
HMC UNLOCK(ADDR)

end if
end for

Figure 5. Minimum Lock Cycles

each of the respective configurations. From each simulation,
we recorded the following data values (in addition to the
core HMC-Sim tracing):

• MIN CYCLE: The minimum number of cycles required
for any of the threads to perform the algorithm.

• MAX CYCLE: The maximum number of cycles re-
quired for any of the threads to perform the algorithm.

• AVG CYCLE: The average number of cycles required
for all the respective threads for the given simulation
to perform the algorithm.

C. Simulation Results
After executing the aforementioned simulations, we find

that the 4Link and 8Link HMC devices delivered very
similar performance. The minimum, maximum and average
HMC-Sim cycle counts are actually identical between both
the 4Link and 8Link device configurations for thread counts
from two to fifty. We attribute this similarity to the identi-
cal queueing structure for both configurations and the hot
spotting induced from utilizing a single lock structure.

However, when the simulations grew beyond fifty threads,
we begin to see perturbations in the results. As the thread
count grows, the distributions of requests across the ad-
ditional 8 links and their associated request and crossbar

Figure 6. Maximum Lock Cycles

Table VI
CMC MUTEX OPERATIONS

Device Min Cycle
Count

Max Cycle
Count

Avg Cycle
Count

4Link-4GB 6 392 226.48
8Link-8GB 6 387 221.48

queuing structures begin to induce slightly lower minimum
cycle timings. Figure 5 clearly identifies these slightly lower
cycle counts beyond fifty threads for the 8 link devices. We
also see slightly larger maximum cycle timings in the 4 link
device as well. While it is more difficult to visually depict
the maximum cycle timings due to the likeness of values, we
provide the timings in Figure 6. The worst case maximum
cycle count recorded by the 4 link device occurred when
using 99 threads and required 392 cycles. Conversely, the 8
link device exhibited its maximum cycle count at 100 threads
with 387 cycles. In this manner, the 4 link device clearly
becomes overwhelmed with requests faster, thus inducing
more stall conditions, than the complementary 8 link device
configuration.

Finally, the average resulting cycle counts continue to
exhibit similar behavior as shown in Figure 7. The 4 link
device recorded a slightly higher maximum average cycle
timing of 226.48 cycles at 99 threads. The 8 link device
recorded its highest average cycle count at 100 threads using
221.48 cycles. Despite the existence of twice the theoretical
queueing capacity, the 8 link device only delivered a worst
case maximum cycle timing that was 1.2% better than the
complementary 4 link device. In addition, the maximum
average cycle timing of the 8 link device was only 2.2%
better than the 4 link device. We summarize our results in
Table VI.

VI. CONCLUSION

In this work, we present a novel approach to simulating
arbitrarily complex custom memory cube, or CMC, opera-
tions within the confines of the HMC-Sim Hybrid Memory
Cube simulation infrastructure. With the addition of this
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Algorithm 1 CMC Mutex Algorithm
for Nthreads do

HMC LOCK(ADDR)
if LOCK SUCCESS then

HMC UNLOCK(ADDR)
else

HMC TRYLOCK(ADDR)
while LOCK FAILED do

HMC TRYLOCK(ADDR)
end while
HMC UNLOCK(ADDR)

end if
end for

Figure 5. Minimum Lock Cycles

each of the respective configurations. From each simulation,
we recorded the following data values (in addition to the
core HMC-Sim tracing):

• MIN CYCLE: The minimum number of cycles required
for any of the threads to perform the algorithm.

• MAX CYCLE: The maximum number of cycles re-
quired for any of the threads to perform the algorithm.

• AVG CYCLE: The average number of cycles required
for all the respective threads for the given simulation
to perform the algorithm.

C. Simulation Results
After executing the aforementioned simulations, we find

that the 4Link and 8Link HMC devices delivered very
similar performance. The minimum, maximum and average
HMC-Sim cycle counts are actually identical between both
the 4Link and 8Link device configurations for thread counts
from two to fifty. We attribute this similarity to the identi-
cal queueing structure for both configurations and the hot
spotting induced from utilizing a single lock structure.

However, when the simulations grew beyond fifty threads,
we begin to see perturbations in the results. As the thread
count grows, the distributions of requests across the ad-
ditional 8 links and their associated request and crossbar

Figure 6. Maximum Lock Cycles

Table VI
CMC MUTEX OPERATIONS

Device Min Cycle
Count

Max Cycle
Count

Avg Cycle
Count

4Link-4GB 6 392 226.48
8Link-8GB 6 387 221.48

queuing structures begin to induce slightly lower minimum
cycle timings. Figure 5 clearly identifies these slightly lower
cycle counts beyond fifty threads for the 8 link devices. We
also see slightly larger maximum cycle timings in the 4 link
device as well. While it is more difficult to visually depict
the maximum cycle timings due to the likeness of values, we
provide the timings in Figure 6. The worst case maximum
cycle count recorded by the 4 link device occurred when
using 99 threads and required 392 cycles. Conversely, the 8
link device exhibited its maximum cycle count at 100 threads
with 387 cycles. In this manner, the 4 link device clearly
becomes overwhelmed with requests faster, thus inducing
more stall conditions, than the complementary 8 link device
configuration.

Finally, the average resulting cycle counts continue to
exhibit similar behavior as shown in Figure 7. The 4 link
device recorded a slightly higher maximum average cycle
timing of 226.48 cycles at 99 threads. The 8 link device
recorded its highest average cycle count at 100 threads using
221.48 cycles. Despite the existence of twice the theoretical
queueing capacity, the 8 link device only delivered a worst
case maximum cycle timing that was 1.2% better than the
complementary 4 link device. In addition, the maximum
average cycle timing of the 8 link device was only 2.2%
better than the 4 link device. We summarize our results in
Table VI.

VI. CONCLUSION

In this work, we present a novel approach to simulating
arbitrarily complex custom memory cube, or CMC, opera-
tions within the confines of the HMC-Sim Hybrid Memory
Cube simulation infrastructure. With the addition of this

•  Cycle counts are in HMC logic 
cycles (not host cycles) 

•  4LINK-4GB device has slightly 
higher maximum latency 

•  Identical minimum latencies 
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•  8LINK-8GB device has slightly 
lower average and maximum 
latencies 

•  For latency-sensitive 
applications dependent upon 
primitive locking operations 
(embedded applications), the 
additional queuing capacity 
with more links is helpful 

•  The weak ordering of the HMC 
device promotes sub-linear 
scaling for both device 
configurations! 



FUTURE RESEARCH 
Additional Possibilities in CMC Exploration 

3 



Future CMC Simulation Research 

What other common 
operations would be 
interesting to simulate as 
CMC operations? 

Currently packaged with 
HMC-Sim: 
•  Atomic Popcount 
•  HMC Lock 

•  HMC Trylock 
•  HMC Unlock 

•  HMC Full Empty Bit Ops** 

Other Interesting Operations: 
•  Reductions 

•  Sorting 
•  Bitwise Atomics 

•  Processing Near Memory 

23 / 22 



Full Empty Bit CMC Operations 

Simulating Fine-Grained 
Locking Primitives: 
•  Similar to MTA/XMT style full-

empty (tag) bit operations 
•  Performs read-modify-write on 

lock bits and data payloads with a 
single command 

•  Splits the storage in the HMC 
array into tag bit vectors and data 
payloads for better concurrency 

•  Supports full complement of tag-
bit operations 

•  Publication accepted for MemSys 
2016 
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Questions 

 

John Leidel 
john.leidel@ttu.edu 

 
Yong Chen 

yong.chen@ttu.edu 
 

HMC-Sim Development and Tutorials: 
http://gc64.org 
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