
Fault-tolerant protocol for hybrid task-parallel
message-passing applications

Tatiana V. Martsinkevich
INRIA Saclay, Université de Paris Sud

Omer Subasi, Osman Unsal
Jesus Labarta

Barcelona Supercomputing Center

Franck Cappello
Argonne National Laboratory

2

Background

 Mean Time Between Failure (MTBF)
 currently, few hours
 will not get better on exascale
 more frequent detected uncorrected errors (DUE)

 Programming models for large scale
 hybrid MPI+threads or tasks
 asynchronous execution
 fault tolerance?

3

Background

 OmpSs – task-based PM (derived from OpenMP)

 provides data directionality clauses (in, out, inout)
 Nanos – runtime that supports OmpSs apps

 builds task dependency graph dynamically
 data-flow execution

#pragma omp task output(x, y)
{ x = 1;

y = 1;
}
#pragma omp task input(y) output(z)

z=y+1;

#pragma omp task input(x) output(t)
{ t=x+1;

t++;
}
#pragma omp task inout (x)
 x ++;

z=y+1;
t=x+1;
t++;

x=1;
y=1;

x++;

4

Background

 MPI+OmpSs PM

 MPI calls inside tasks
 communicating tasks run in parallel with other tasks
 communication/computation overlap

5

Contributions

 Fault tolerance solution for MPI+OmpSs applications
 combines task checkpointing + message logging
 mitigates transient faults (DUEs) inside tasks
 re-executes failed task
 transparently handles MPI calls in tasks

 Evaluation
 fault-free
 execution with faults

 Factors impacting the execution overhead

6

Outline

 Related work
 Proposed FT solution

➔ NanoCheckpoints
➔ Message logging in tasks

 Evaluation
➔ Fault-free execution
➔ Scalability impact
➔ Execution with faults

 Conclusion and future work

7

Related work

 Silent data corruption
➔ task replication with majority voting [1]
➔ task checkpointing+subgraph re-execution /

ABFT [2]

 Differences with our solution
➔ we do not handle SDC (yet)
➔ we support MPI inside tasks

[1] O. Tahan, M. Shawky. “Using Dynamic Task Level Redundancy for OpenMP Fault Tolerance” (2014)
[2] C. Cao, T. Herault, G. Bosilca, J. Dongarra. “Design for a soft error resilient dynamic task-based runtime”.
(2015)

8

Proposed solution

● FT on the level of task
➔ checkpoint task input parameters
➔ message logging of task communication

● When a DUE happens the runtime:
➔ catches the exception raised by the OS
➔ restores input parameters
➔ re-executes the task
➔ (communication state is recovered from logs)

● Assume that DUE does not kill the process!

9

NanoCheckpoints

● Checkpoint in/inout params in memory
● Checkpoints not deleted after the task

completes
● avoid frequent malloc()/free()

● Rewrite old checkpoint for each new

instance of the task
● Low fault-free overhead [1]

handler

ex
ec

ut
io

n

handler

ex
ec

ut
io

n

Smart
container

[1] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal, “NanoCheckpoints: A task-based asynchronous dataflow framework for
efficient and scalable checkpoint/restart,” (2015)

10

Message logging

● Receiver-based logging
➔ the task fails, but the process does not → logs not

lost
● Logging within the context of a task

➔ separate logs for tasks
➔ delete upon task completion

11

Message logging protocol

● Sequence number for every message id

● current and commited values
● Separate lists for in/out communication and anonymous reception order

● Fault-free task execution

➔ Increment current and commited

together
➔ log incoming messages
➔ log order of matched anonymous receptions

● Task recovery

➔ Reset current to 0
➔ Increment only current value
➔ When current = commited,

recovery finished

rank | tag | comm current | commited

message id sequence number

outgoing

incoming

anonymous

12

Evaluation

 MareNostrum@BSC

− 2 Intel SandyBridge-EP E5-2670 CPU x 8 cores (16 cores
per node)

− 32 GB of RAM per node

− InfiniBand FDR10 interconnect
 OpenMPI-1.6.4+PMPI wrapper library

 MPI+OmpSs benchmarks: Himeno, Nbody, Matmul (mxm)

 64 ps-s with 16 threads

13

Fault-free overhead

 Message logging impacts execution more than checkpointing

➔ receiver-based logging :-\
Runtime overhead

Memory overhead

Himeno Nbody Matmul

0.89% 0.31% 4.45%

Checkpoint
Size (MB)

Total Message
Log (MB)

Peak Message
Log (MB)

Matmul 512 8064 128

Nbody 0.59 0.75 0.25

Himeno 1202 448 1.2

14

Scalability impact

 Moderate impact on weak scalability

 Message logging may decrease strong scalability

Strong scalability Weak scalability

15

Execution with faults

 Assume worst case scenario: fault at the end of the task execution

 Overhead is higher if

➔ coarse task granularity
➔ strong task coupling

10 25 50 75

Himeno 1.59 2.82 4.24 5.44

Nbody 0.3 0.64 0.99 1.27

Matmul 0.16 0.31 0.53 0.76

Fault rate (faults/sec)

16

Conclusion and future work

● FT solution on task level for handling DUEs
● The runtime overhead below 5%
● More independent tasks → easier to mask task

recovery overheads

● Future work
➔ support for SDC errors in message logging
➔ tighter integration of message logging with task

checkpointing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

