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Abstract—High-performance I/O is a key requirement for
many of today’s critical computational science applications, and
parallel file systems are being driven to progressively larger
scales to keep pace with demand. One cost-effective way to meet
this demand is through the deployment of commodity storage
hardware in conjunction with file systems that provide software
resiliency. This requires a re-evaluation of the core components
of parallel file system architecture, however. In addition to
interacting with resilient protocols, parallel file systems must
also take into account unique HPC workloads that include bursty,
highly concurrent access to large shared files. Such workloads are
traditionally a challenge for software replication algorithms, in
part because the underlying storage does not provide convenient
semantic building blocks. In this work we isolate a common
component of many parallel file systems, the object storage
abstraction layer, and propose the introduction of semantic
properties that will enable it to better serve as the building
block for resilient HPC storage architectures. The properties
that we have identified are atomicity, explicit versioning, and
commutativity. We outline how these properties can be used
to simplify software replication protocols for highly concurrent
workloads. We also demonstrate that these properties can be
implemented portably while still maintaining high performance
on both commodity and enterprise-class storage platforms.

I. INTRODUCTION

High-performance I/O is a key requirement for many of
today’s critical computational science applications. These ap-
plications perform simulations in fields as diverse as physics,
energy, earth science, climate, chemistry, and biology. They
also perform I/O for a variety of reasons, including defensive
I/O (checkpointing), simulation output, out-of-core computa-
tion, and analysis. The diverse demand for high-performance
I/O has driven storage systems to progressively larger scales
in order to keep pace with computational performance and
facilitate scientific discovery. As a result, parallel file systems
are one of the most important components in the system
software stack for HPC. Parallel file systems are responsible
for aggregating storage hardware, providing a consistent name
space for persistent storage, coordinating accesses from a large
number of application processes, and tolerating component
failures.

Several modern parallel file systems, including PVFS [1],
Lustre [2], PanFS [3], and Ceph [4], utilize a shared-nothing
architecture in which multiple servers provide parallel ac-
cess to a collection of independent storage devices1. This

1PVFS and Lustre may use shared storage for failover purposes, but this
configuration is not required
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Fig. 1. Shared-nothing parallel file system architecture

approach is popular because it offers incremental scalability
and is compatible with both commodity and enterprise-class
storage hardware. An example of this architecture is shown
in Figure 1. Clients access file servers using file-system-
specific protocols, while the file servers in turn relay data to
local storage. A common design feature in this architecture is
the abstraction layer between each file server and its storage
devices. Most shared-nothing parallel file systems elect to use
an object storage model at this layer. Objects are referenced
by unique integer identifiers, and each object stores a stream
of byte-addressable data along with some number of named
attributes. This model shares many features with the T10
OSD specification [5], but most current file systems elect
to implement the model as a software abstraction on top of
standard block devices or local file systems rather than using
native T10 targets.

Parallel file systems, and therefore their underlying object
storage abstractions, must be tailored to the I/O workloads that
are prevalent in HPC. Studies have consistently shown that
parallel computational science applications exhibit unique I/O
workload characteristics. They often access large files, write
much more often than in other domains, and interleave access
to files with interprocess spacial locality [6]. In addition, the



access patterns come in heavy bursts and the size of requests
vary dramatically [7], [8].

These workload patterns have been well known for many
years, but they continue to be influenced by emerging trends as
systems are pushed toward exascale. Concurrency will increase
as a larger number of compute cores are deployed [9], [10].
Commodity storage is also likely to play a larger role in order
to reduce the cost of future HPC deployments. Failure rates
will increase as a direct result of these two trends [11], [12].
We therefore expect future parallel file systems to rely on soft-
ware replication algorithms in order to service unprecedented
numbers of concurrent I/O requests while gracefully handling
the failure of unreliable storage devices.

The semantics of existing object storage abstractions are not
ideal for efficient software replication under the workloads
presented by HPC, however. The most significant challenge
lies in maintaining object consistency in the face of highly
concurrent write workloads. In this work, we identify a concise
set of new object storage semantics aimed at simplifying that
task. In addition, we build a prototype object storage abstrac-
tion to demonstrate that these semantics can be implemented
portably in software on any Unix file system without additional
hardware or kernel modifications. We analyze the performance
of the prototype in order to quantify the overhead introduced
for typical HPC workloads at the object storage level. Our
goal is to establish a high-performance building block for use
in the construction of highly concurrent software replication
protocols.

The remainder of the paper is organized as follows. Sec-
tion II outlines the proposed semantics and motivates their
use as building blocks for software replication in a shared-
nothing, high-concurrency file system. Section III describes
the implementation of a prototype object storage abstraction
that incorporates those semantic properties. Section IV eval-
uates the performance of this abstraction layer for concurrent
I/O workloads. Section V describes previous related research.
Section VI summarizes our findings and outlines avenues for
future work.

II. SHARED-NOTHING OBJECT STORAGE SEMANTICS

Although it is possible to export an object storage interface
over the network, we are focusing on local storage abstractions
in this work. We therefore assume that any network commu-
nication or replication is implemented at a higher level by the
parallel file system itself, as illustrated in Figure 1. The role
of the object storage abstraction in this environment is simply
to serve as a building block that provides persistent storage
functionality and facilitates the construction of software repli-
cation protocols. In order to serve this purpose effectively,
however, it must take into account the environment outlined
in Section I. Multiple clients are likely to apply bursts of
writes concurrently to the same object. The writes may be
assembled into a pipeline of smaller operations in order to
improve network, storage, and memory utilization. However,
a server node or its storage devices may fail or lose power at
any time. Thus, writes must be durable; and it must be possible

to construct new replicas or synchronize old replicas based on
surviving objects.

Most object storage abstractions provide base semantics
analogous to those defined by the T10 OSD specification.
We have evaluated those semantics and identified three key
enhancements for use in this environment: atomicity, explicit
versioning, and commutativity. The following subsections out-
line the rationale for each enhancement in the context of write
operations within a distributed replication environment.

A. Atomicity

The concept of atomicity is straightforward in this context:
Each object write operation must be applied to an object in its
entirety or not at all. This semantic eliminates the possibility of
partially applied updates being visible in an object following
a hardware, storage software, or application software failure.
Replication is therefore simplified because all objects are
always in a well-defined state. The current T10 OSD standard
does not provide atomicity of this nature for arbitrary write
operations. It instead provides a weaker guarantee on the
minimum number of bytes that will be committed as a group
at any given time.

We propose treating object write operations as transactions.
In order to facilitate HPC workloads, the object storage
abstraction should allow multiple transactions to be opened
simultaneously. It should also support pipelined operations by
presenting explicit API functions to open, close, and abort
transactions so that multiple writes can be grouped together
as a single atomic update. This minimizes the transaction over-
head for large operations and allows the atomicity to extend
over regions that are not constrained by individual buffer size.
In nonpipelined cases, optional flags can be provided as a
convenience to automatically encapsulate individual writes in
transactions.

B. Explicit versioning

Explicit versioning means that each write transaction should
be associated with an explicit, sequential, caller-selected ver-
sion number. This semantic simplifies replication by allowing
the file system to coordinate version numbers across replicas
and ensure that the same modifications are applied consistently
on each one. The version numbers should be unique to a
given object identifier (rather than global to all objects) so
that coordination is limited strictly to the servers participating
in the replication of a given object. In addition, each object
should maintain a history of which version numbers have been
applied to an object and what regions of the current object
they correspond to. This information can optimize replica
reconstruction by serving as a mechanism to identify the
minimum set of updates that must be applied to a replica
in order to synchronize it with a peer. The standard T10
OSD specification does not include any integrated versioning
functionality.

The object storage abstraction can provide this functionality
by using version numbers as object transaction identifiers. It
can also provide API functions to retrieve the next unused



version number as well as the current overall version state
of an object. The file system should make a best effort to
assign sequential version numbers, but the object storage
abstraction should allow version numbers to be skipped in
order to accommodate failures or stalled operations without
delaying subsequent operations. Because version numbers are
sequential in most cases, the overall version state of an object
can be compactly expressed as the highest version number
applied to the object along with a list of version number
extents that are missing from the object.

C. Commutative updates

The naive approach to maintaining consistency when writ-
ing to a replicated object is to serialize all write operations and
apply them in a deterministic order to all replicas. However,
this approach introduces artificial delays and makes poor use
of storage resources that can achieve higher performance
if multiple write operations are applied simultaneously. We
instead propose that write updates should be commutative,
meaning that they can be applied in any order (and concur-
rently) as long as the end result deterministically produces the
same result as if they had been applied sequentially.

In order to do this, the object storage abstraction can use
the version numbers of each transaction to enforce the Thomas
Write Rule [13] with byte-level granularity. The object storage
abstraction can achieve this by performing write operations in
two steps. The first step is to store the entire write buffer
persistently and durably on disk. The second step, performed
at transaction close time, is to compare the version number of
the write against the existing version number for the object
region that is being modified. The new data is made visible
to readers only if it has a higher version number than that
of the data (if any) already present. If the transaction version
is too old, then it is discarded. This, in conjunction with the
atomicity described earlier, implies that writes are not only
commutative, but also idempotent. Duplicate stale writes are
guaranteed not to change the state of an object. The T10 OSD
standard does not provide commutative operations.

Commutative, idempotent updates provide a key advan-
tage in implementing replication protocols. Writes from any
client can be applied immediately to any replica, even if
they arrive in a different order or are duplicated as a result
of network retransmission. This allows the file system to
maximize concurrency while still maintaining consistency.
Replicated objects using this functionality may temporarily
diverge before arriving in the same state. It is up to the file
system implementer to constrain this divergence according to
the semantic requirements of the file system.

D. Read semantics

The preceding subsections dealt exclusively with the se-
mantics of write operations. For read operations we advocate
the use of more relaxed semantics. Reads need not be atomic
or versioned and therefore do not need to be encapsulated in
transactions. Instead, we propose the semantic guarantee that
the results of all closed write transactions are immediately

visible to readers. If a write transaction is closed while an
overlapping read is in progress, then the results of the read
are undefined. The implication of this semantic decision is
that read operations are never required to block on any other
concurrent operations. This simplifies the implementation of
file system read operations and allows for maximum concur-
rency. Note that this read behavior is sufficient to implement
standard MPI-IO semantics as well as PVFS’s nonconflicting
write semantics [14], both of which have proved successful in
production HPC deployment. Stricter read semantics could be
implemented for other environments.

E. Potential replication protocols

The I/O semantics described in this work can be used to
implement a variety of replication protocols. We believe that
this design decision should be made at the file system level
rather than dictated by the object semantics, however. We do
not intend for underlying version numbers or semantics of the
object storage devices to be exposed to end users.

The semantic choices for replication range from traditional
pessimistic protocols such as two-phase commit [15], which
would delay closing object transactions until the commit
phase, to more relaxed protocols based on an eventual con-
sistency model [16]. The latter is a particularly compelling
model because it does not require that the concept of atomicity
be extended to span replicas. Eventual consistency inherently
allows state drift across replicas.

Multiple architectural choices are available for replication
as well. Replication may be client driven, in which case clients
are responsible for transmitting redundant data [3]. Primary-
copy replication may be more appropriate in conjunction with
the object semantics described here, however, because primary
servers can assign sequential version numbers for an object
without performing additional communication steps. It also
conserves client to server bandwidth, which is a constraining
resource on many large-scale systems [17]. Placement strategy
is another important component of the overall replication
architecture, but we have deliberately omitted it from our
discussion of local storage semantics. A number of well-
known replica placement algorithms are compatible with our
approach [18], [19].

Object storage abstractions typically provide access to byte-
addressable data streams as well as named attributes. In this
work we are evaluating these semantics in the context of the
former, though the same semantics could be applied to either
access method.

III. PROTOTYPE IMPLEMENTATION

We have constructed a new object storage abstraction proto-
type, called the Versioned Object Storage Device (VOSD), in
order to evaluate the feasibility of implementing the semantic
extensions described in the previous section. The VOSD
presents a user-space API for accessing data using an object
storage model. It also exposes the transaction and version
number extensions as described in Section II.



Logical mapping database

logical offset    log position   version
4096 to 8191      0              47

logical offset    log position   version
0 to 4095         4096           49
4096 to 8191      0              47

logical offset    log position   version
0 to 4095         4096           49
4096 to 6143      8192           48
6144 to 8191      2048           47

Underlying log file contents

write(ver=47, off=4096,
      size=4096)

write(ver=49, off=0,
      size=4096)

write(ver=48, off=2048,
      size=4096)

API operations

0

0 40
96

0
40
96

81
92

Logical view

Fig. 2. Example sequence of three VOSD writes

The current VOSD implementation stores data for each
object in a normal POSIX file, while metadata for all objects is
stored in a Berkeley DB database. The VOSD API itself does
not rely on any POSIX file or Berkeley DB conventions and
could be implemented by using a variety of other libraries
or resources. This approach is architecturally similar to the
Trove abstraction used in the PVFS file system. The most
important design distinction (which allows it to implement
atomicity, versioning, and commutativity) is that the logical
view of each object is decoupled from how the data is stored in
the underlying POSIX file. More specifically, the data for each
object is stored in a log-structured manner [20]. The Berkeley
DB database is used to maintain a mapping of logical object
extents to log offsets.

Each write operation is assigned the next available position
in the log for the target object. The data is then written into
the log. The updated data is not visible to readers, however,
until the transaction closes. At that time, a read/modify/write
transaction is performed on the Berkeley DB database to check
the previous version numbers for the affected logical regions.
If the new write has a higher version number, then the database
is updated to map the logical offset to the new log position
and version number. If the version is too old for a given
region, then no change is made. This behavior means that
an arbitrary number of concurrent writes can be transferred
to disk simultaneously. Conflict resolution is delayed until
transaction close time, at which point low-latency database
transactions are used to enforce consistency and apply the
Thomas Write Rule with byte-level granularity. Existing data
is never overwritten within the log.

Reads are serviced from the same log that data is written
to. Because the data is not stored in canonical order, read
operations must consult the Berkeley DB database first in order
to determine what portions of the log must be accessed in order
to service a given read request. The database uses a custom
sort order for keys to ensure that the logical mapping exhibits
spacial locality based on object identifiers and logical offsets.
This allows for range queries to be performed quickly using
Berkeley DB cursor operations. It also improves Berkeley DB
cache performance and minimizes the likelihood of extraneous
disk access during concurrent read operations.

Figure 2 illustrates an example in which a sequence of three
write transactions is applied to a VOSD object. The first write
arrives for offset 4096, but it is applied to position zero in the
log. The logical view of the object reflects that it is a sparse
object at this point. The next write then arrives for offset 0.
It is applied to the next available log position (4096). This
write does not conflict with any previous write operations.
Therefore all data is now made visible in the logical view of
the object. The third write operation spans from offset 2048
to 6143, it partially overlaps with both of the previous write
operations. However, its version number (48) is only high
enough to obsolete one of the two previous write operations
(versions 47 and 49). This is reflected in the final logical
view, in which only a portion of the data from the third write
operation becomes visible in the logical view of the object.
Note that the logical mapping and log position of the first
write (version 47) has been updated to reflect that the first
half of that segment should no longer be visible to readers.

The final logical view of the object in Figure 2 is identical
to the outcome that would have been produced by a strict
sequential ordering based on version number. The sequential
approach would have required the second write operation
to delay until the third one had been applied. In contrast,
the VOSD allowed all writes to proceed immediately by
leveraging its commutative property. The versioning history
is implemented by storing the version number for each ex-
tent alongside the mapping information in the database. The
atomicity semantic is implemented by relying on Berkeley DB
atomicity and requiring that all data be written to disk before
updating the logical mapping.

The VOSD must also provide the ability to abort transac-
tions as part of its API. Recall that we do not commit mapping
information to the internal database until a transaction is
closed. Thus, a transaction can be discarded at any time by
simply releasing an in-memory data structure that accumulates
pending updates to the Berkeley DB mapping database. Any
data that has been written to the log is simply left in place.
Because this data is not visible to readers, no explicit “undo”
step is required.

The log-structured layout was chosen specifically to aid
in implementing the proposed semantic features, because it



allows the VOSD to store an arbitrary number of concurrent
write updates before deciding whether to make them visible
or not. We elected to store the log for each object in a
separate Unix file in order to simplify the architecture. Objects
can be deleted by simply unlinking the underlying file and
removing its corresponding keys from the Berkeley database.
Additional Berkeley databases are maintained alongside the
logical mapping database in order to speed retrieval of the
current version number and the list of missing versions for
any given object.

An important consideration for any log-ordered data storage
system is when (or whether) to reorder the contents of the log.
There are two primary motivations for reordering data after it
has been written. The first is to harvest obsolete log entries in
order to reclaim disk space. An example of this scenario can
be seen in Figure 2. The final logical view of the object is
only 8 KiB, but the underlying log for the object is 12 KiB.
The log could be reordered in this case to free up the 4 KiB
of unused data. The second motivation for reordering is to
place the data in a more optimal layout for subsequent read
operations. A canonical order, for example, would be more
efficient if the data is expected to be read later by a serial
application.

Previous workload studies have indicated that HPC jobs
rarely write to files created by other jobs [6]. Hence, reordering
in order to reclaim overwritten data may not often be required.
In contrast, however, we expect reordering for the purpose
of read optimization to be a significant concern. This is
true particularly for analysis applications that use data access
patterns that are unrelated to the access pattern used to write
simulation output. In this scenario we plan to take advantage
of idle time on the file system to automatically reorder data in
the background. Other workload studies have shown that HPC
I/O traffic tends to occur in intense bursts, with significant idle
periods between bursts [7]. We will investigate log reordering
in the context of storage systems that can identify idle pe-
riods and inform the VOSD of appropriate times to perform
reordering operations.

IV. EVALUATION

Our goal in evaluating the VOSD prototype is to determine
whether the new semantic features can be provided efficiently
in the presence of HPC I/O workloads. To do this, we compare
the VOSD to two existing object storage abstraction imple-
mentations: the Trove component of the PVFS file system
and the ObjectStore component of the Ceph file system. Both
of those implementations are used by user-space file servers
to abstract access to local storage devices. Trove does not
offer atomicity, versioning, or commutativity, but it has been
successfully deployed in a variety of production environments
and is also the basis for several research efforts [17], [21],
[22]. The Ceph ObjectStore improves upon Trove semantics by
offering atomicity. It also serves as the foundation for software
replication in Ceph. Ceph is still in development, however, and
is not yet recommended for production use.

Although the VOSD, Trove, and ObjectStore all offer
similar base object functionality, they differ significantly in
terms of how they provide interfaces for concurrent operations.
Trove offers an asynchronous interface for reads and writes,
in which operations are posted with one function and tested
for completion in another. The VOSD prototype uses post
functions as well, but completion is handled via callbacks
that are intended to drive continuation in the calling program.
The ObjectStore queues write transactions asynchronously
via a C++ class interface, with multiple callbacks used to
differentiate between when the data is durable and when
it is visible to readers. The ObjectStore read method is a
blocking function call, however, and it automatically allocates
a buffer to contain the data being read rather than utilizing
existing buffers. These API differences make it difficult to
interchange the three abstractions within existing file system
implementations. We will therefore compare them using a
microbenchmark that is customized for each API. In the case
of ObjectStore reads, the microbenchmark uses explicit threads
to provide concurrency.

The three abstractions also differ significantly in terms
of underlying data organization. The Trove abstraction is
the most traditional. It reads and writes data to underlying
POSIX files in strictly canonical order. It supports standard
I/O access as well as direct I/O. In the case of direct I/O,
underlying reads and writes must be block aligned. Trove
uses intermediate buffers and read/modify/write operations to
maintain this requirement. It also explicitly tracks object sizes
in a Berkeley DB database.

The ObjectStore abstraction is somewhat more complex
than Trove because of its atomicity requirement. It uses a
unified, write-ahead data journal for all objects. Writes are
first applied (in log order) to the journal and then applied to
the underlying POSIX file for the object. The journal can be
replayed following a crash in order to preserve consistency.
The journal can be stored in a normal file or on a raw block
device, and it can be configured to use direct I/O or standard
I/O. The ObjectStore does not support direct I/O to the object
files themselves. The journal can also be disabled, in which
case the ObjectStore relies exclusively on BTRFS transaction
ioctls to preserve atomicity. This configuration resulted in
lower write performance for our test system, however.

The VOSD prototype data layout strategy was described in
the preceding section. It supports both direct I/O and standard
I/O to its underlying files. In the case of direct I/O writes, all
log entries are rounded up to the next aligned log position
in order to avoid the need to perform read/modify/write
operations. This approach achieves high performance at the
cost of wasted capacity for unaligned writes. This space could
be reclaimed via reodering as discussed in Section III, though
read/modify/write may still be desirable for degenerate cases.

The microbenchmark used in these experiments is designed
to measure concurrent read and write bandwidth for workloads
similar to those seen in HPC servers. The microbenchmark
first reads in a workload description file, then issues up to 32
concurrent operations to service the workload in parallel. The
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Fig. 3. Commodity storage: write bandwidth with 32 concurrent operations

benchmark was time limited to 60 seconds in all cases. All file
systems and storage directories were removed between write
experiments. The Linux buffer cache was also flushed between
both read and write experiments. Object creation times were
not included in the measurements. Ceph recommends the use
of BTRFS as the underlying file system, so all ObjectStore
tests were performed using BTRFS. Ideally we would use the
same file system for Trove and the VOSD as well, but at
this time BTRFS does not properly support direct I/O read
operations. We therefore used EXT4 for those experiments
unless otherwise noted. The VOSD microbenchmark assigns
version numbers sequentially and uses automatic transaction
flags for all write operations.

We used the Trove component from PVFS 2.8.2 and the
ObjectStore component from Ceph 0.20.2 for all experiments.
Trove was unmodified and used default configuration param-
eters. Ceph was unmodified except for a minor configuration
parameter patch.2 All ObjectStore parameters were left at their
default value with two exceptions: the journal was set to
always be larger than the total amount of data written in order
to prevent interference from journal trimming activity, and the
number of operation threads was set to 64 to ensure that suf-
ficient threads were always available for the microbenchmark
workload. All three abstractions were configured to use direct
I/O to the extent possible.

A. Commodity storage performance

To investigate behavior on commodity storage, we first
executed the microbenchmarks on a Linux server equipped
with a hardware RAID controller. The server contained four
quad-core Intel Xeon ES5520 CPUs, 48 GiB of RAM, and
two Areca ARC 1231 RAID controllers. The first controller
utilized 8 Western Digital RE4-GP SATA drives organized into
a RAID 0 configuration. The second controller utilized 8 Intel
X-25M V2 solid state disks, also organized into a RAID 0.
All experiments were performed on the Western Digital drives

2http://comments.gmane.org/gmane.comp.file-systems.ceph.devel/551.

unless otherwise noted. The peak write and read throughput of
the Western Digital array was found to be 593 MiB/s and 300
MiB/s respectively. This was measured by using dd to transfer
4 MiB blocks to and from the raw device using direct I/O
and synchronized I/O flags. The software consisted of Ubuntu
10.04 with an Ubuntu-packaged 2.6.32 Linux kernel.

Figure 3 shows the write bandwidth achieved by all three
object storage abstractions for two workloads: a linear work-
load, in which all accesses were perfectly block aligned, and
a random workload, in which all accesses were unaligned.
The latter is the more likely scenario in HPC, in which
a large number of processes access data according to an
application data model that has no relation to the underlying
block device. Five samples are plotted for each data point, with
lines connecting the average value for each one. In both the
linear and random workloads, the ObjectStore performance is
bounded by its journaling architecture, which requires writing
each buffer to disk twice. We also tested an additional configu-
ration that used the SSD RAID as a dedicated journal device.
This configuration improved ObjectStore write performance
by avoiding journal contention on the primary RAID array.
The most significant improvement appears in the linear write
case with large buffer sizes, in which not only journal access
but also object access occurs in an ideal order.

The Trove abstraction achieved higher performance than
did the ObjectStore in most cases, because it performs I/O
directly to canonical objects without preserving atomicity. It
also utilizes direct I/O to eliminate any interference from the
Linux buffer cache. The Trove version used in these tests
also does not issue fsync() operations to its files, which is
in contrast to the approach taken by the ObjectStore and the
VOSD. Although fsync() has no effect on the Linux buffer
cache for direct I/O, on modern Linux kernels it performs
an additional step of issuing a barrier operation to the block
device. This ensures that the hard drive cache is flushed in
case of power failure; it would introduce an additional minor
overhead in the Trove direct I/O implementation.

The VOSD achieves the highest write bandwidth for most
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Fig. 4. Commodity storage: read bandwidth with 32 concurrent operations

access sizes by virtue of its log-structured layout, which en-
sures well-ordered access to the disk regardless of the logical
write access pattern. It also includes an efficient coalescing im-
plementation that reduces write overhead further. Berkeley DB
operations are issued with the DB TXN WRITE NOSYNC
flag set, which prevents the DB log from being flushed to
disk immediately upon the close of a transaction. Instead, the
VOSD will detect concurrent operations and delay comple-
tion of those operations until they can collectively use the
log flush() function to force the transaction log to disk. This
approach improves concurrent performance without sacrificing
atomicity or durability; no VOSD operation is allowed to
complete until the database is flushed. The VOSD also uses
a similar mechanism to coordinate fsync() calls in order
to minimize the number of barrier operations that must be
submitted to the block device. Trove implements coalescing as
well [23], but only for relatively brief metadata and database
operations.

Figure 4 shows the concurrent bandwidth for read operations
using the same workload patterns as in the write case. In
all examples, the data was first written using aligned 4 MiB
buffers. The original write order makes no difference for
Trove or the ObjectStore, but it is a factor in the VOSD
performance. We investigate that issue further in Section IV-B.
All three abstractions performed similarly for the random read
workload, because they are all constrained by the same disk
bottlenecks in accessing unaligned data.

The linear read workload shows more differentiation be-
tween the implementations. The ObjectStore offers the best
performance for small I/O operations, because the Linux buffer
cache automatically reads ahead and prevents the disk from
having to service small I/O operations. Trove and the VOSD
prototype perform better for access sizes in which the cost
of buffer copying in the Linux kernel becomes too high to be
offset by read-ahead. At small sizes Trove performs better than
the VOSD because it does not need to perform a DB lookup to
locate object data. For larger sizes the VOSD performs better
than Trove, though additional experimentation is necessary
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Fig. 5. Commodity storage: linear VOSD read performance with 4 MiB
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the x axis.

to confirm the reason. It may be due to differences in the
threading model used internally by the two implementations.
Note that both Trove and the VOSD prototype achieved higher
read performance than the dd baseline of 300 MiB/s. This
is because the disk array produces higher throughput for
concurrent read operations than it does for serialized read
operations.

B. Read sensitivity to log ordering

In Section IV-A we noted that the VOSD read performance
is sensitive to the original write order of the data. Figure 5
illustrates that issue. In this case we execute a linear read
workload with 32 concurrent operations but hold the access
size fixed at 4 MiB. We instead vary the manner in which the
data is written before the read benchmark is executed. Neither
the order nor the alignment nor the access size match between
the write and read workloads. The VOSD read performance
therefore more closely resembles the random unaligned read
case of Figure 4(b), because it must access the log out of
order and assemble fragments from multiple log entries in
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Fig. 6. Enterprise storage: bandwidth with 32 concurrent operations

most cases.
This behavior would not show up in typical synthetic

benchmarks because they are often executed using the same
access pattern for both read and write test phases. It also is
not likely to be a problem for checkpoint restarts, because
the application is likely to reload data in the same manner
that it was written. The most plausible scenario to illustrate
this problem is when an independent analysis tool is used
to process data written by a parallel simulation. In that case
the write and read workloads could diverge dramatically. As
outlined in Section III we intend to address this in future work
by taking advantage of file system idle time to reorder data
before it is analyzed.

C. Enterprise storage

Section IV-A evaluated object storage performance using
commodity hardware. Enterprise storage may have different
characteristics, however. We therefore continued our evalua-
tion using one of the 128 file servers connected to the Intrepid
Blue Gene/P system at Argonne National Laboratory. This
server contains two dual-core AMD Opteron 2216 processors
and 8 GiB of RAM and uses the 2.6.16 Linux kernel. It
is attached via Infiniband 4X DDR to a Data Direct Net-
work 9900 SAN containing 480 disk drives. The DDN was
configured with both read and write caching enabled, using
two controllers with mirrored caches and redundant UPS-
backed power supplies. The LUN that we used for testing was
formatted with an XFS file system. This is a production SAN
volume, so we were allowed only a limited time window to
perform experiments. As a result we collected only one sample
per data point, rather than five as in Section IV-A. We were
also unable to reformat the LUN used for these experiments.
We limited our experiments to the VOSD and Trove, since
XFS is not supported by Ceph’s ObjectStore.

Figures 6(a) and 6(b) show the results of repeating the
earlier microbenchmarks on a DDN 9900 LUN. Because DDN
incorporates extensive resiliency features, we disabled barrier
support in XFS and disabled fsync() of object files in the

VOSD. It is sufficient to simply flush the Linux buffer cache in
order to provide durability. Both the VOSD and Trove utilized
direct I/O as in the previous experiments, and both utilized the
same Berkeley DB coalescing strategies as before.

These results illustrate differences in the performance char-
acteristics of commodity and enterprise storage hardware that
go beyond simple throughput scaling. Notably, the log order-
ing performed by the VOSD offered no performance advantage
for writes. The DDN 9900 uses a large sophisticated cache
that minimizes the effect of poorly ordered write operations.
The sync coalescing also had limited impact because barrier
operations were not a factor in this configuration.

In fact, the Trove implementation outperformed the VOSD
by a wide margin for large access sizes in unaligned random
write workloads. The reason is that for random workloads the
Trove implementation seldom has to update its Berkeley DB
database. Trove used Berkeley DB during writes only to track
the current object size. In a random workload, the size changes
only when an operation happens to extend past the current end
of file. Therefore many of the Trove random write operations
did not access Berkeley DB at all. The VOSD, in contrast, has
to update the DB for every write operation. On commodity
storage this was offset by the benefits of log ordering and
coalescing. In this environment, however, it is more important
to simply minimize the number of IOPs than to apply writes
in an optimal order.

V. RELATED WORK

Devulapalli et al. developed a software-based T10 OSD
target that stores data using POSIX files and an SQLite
database [24]. As a standards-compliant implementation, this
project focuses on iSCSI transport compatibility rather than
direct use by local software components. They have also
explored atomic primitives in the context of attribute oper-
ations [25].

The PanFS and Lustre file systems also implement object
storage abstractions. PanFS object servers use a specialized
local file system to store objects. These objects are presented



over the network using a protocol that closely conforms to
the T10 OSD specification [3]. The Lustre object servers use
either ldiskfs (a modified version of EXT3) or ZFS to store
objects on block devices [2]. The Ceph and PVFS object
storage abstractions were described in detail in Section IV.
Devulapalli and Ali have also investigated integration of T10
compliant object storage in the PVFS file system [26].

Log structured storage has been used for a wide variety of
purposes, particularly in the database community [27]. It is
also a well-known technique in file system optimization [20].
More recent work by Kimpe et al. and Bent et al. have
applied log-based storage to parallel I/O at the application and
middleware level [28], [29]. Polte et al. explored the use of log-
structured storage in PVFS’s Trove storage component [21],
though their investigation was motivated by checkpoint per-
formance rather than semantic requirements. They observed
that read performance can be hindered by poor indexing of
log structured data and proposed potential solutions to the
problem.

Abd-El-Malek et al. utilized fine-grained, explicit write
versioning in the Ursa Minor parallel file system [30]. They
used global version numbers generated by clients, however,
which requires either a synchronous clock or additional com-
munication steps to implement. Konishi et al. implemented
a local Linux file system that uses log-structured layouts in
conjunction with automatic versioning snapshots, but there
is no mechanism to assign explicit version numbers to write
operations [31].

Many mechanisms have been investigated for resolving
conflicts and preserving consistency in optimistic replication
protocols. Saito and Shapiro have surveyed popular techniques
for a variety of use cases [32], though their work does not
specifically address parallel file systems.

VI. CONCLUSION

In this work we identified three semantic extensions to the
traditional object storage model that will help enable more
efficient software replication in distributed, shared-nothing,
concurrent I/O environments. These semantics are atomicity;
explicit versioning; and commutative, idempotent writes. We
implemented a prototype, the Versioned Object Storage De-
vice, that demonstrates that these semantics can be achieved
portably in user-space using standard Unix file systems. We
evaluated the prototype’s performance and demonstrated that
the proposed semantics can be achieved with concurrent
throughput that is competitive with existing well-known object
storage abstractions. Our findings suggest that commodity stor-
age platforms benefit greatly from I/O ordering and coalescing
optimizations, whereas enterprise-class storage platforms ben-
efit more from maximizing the amount of data transferred per
I/O operation.

In future work we will evaluate the cost of the log ordering
approach in the context of real-world applications. We also
intend to investigate the implementation of additional VOSD
features that build on the decoupling of logical object view
from underlying data layout. These features may include

transparent data reordering, data forks, embedded checksums,
snapshots, and marshaling of objects for network transmission.
Our immediate goal, however, is to demonstrate the use of the
semantics described in this work to construct efficient replica-
tion protocols. We will investigate both pessimistic protocols,
such as two-phase commit, and more relaxed protocols based
on eventual consistency.
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