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Abstract— Optimizing collective I/O operations is of
paramount importance for many data intensive high performance
computing applications. Despite the large number of algorithms
published in the field, most current approaches focus on
tuning every single application scenario separately and do
not offer a consistent and automatic method of identifying
internal parameters for collective I/O algorithms. Most notably,
published work exists to optimize the number of processes
actually touching a file, the so-called aggregators. This paper
introduces a novel runtime approach to determine the number
of aggregator processes to be used in a collective I/O operation
depending on the file view, process topology, the per-process
write saturation point, and the actual amount of data written in
a collective write operation. The algorithm is evaluated on two
different file systems with multiple benchmarks. In more than
80% of the test cases, our algorithm delivered a performance
close to the best performance obtained by hand-tuning the
number of aggregators for each scenario.

I. INTRODUCTION

Parallel computing is typically associated with problems
that are considered too large to be solved on a single, standard
desktop system in an acceptable amount of time. Due to
the size of the problems solved, many parallel applications
also have to operate with large amounts of data. Scientific
applications consuming and producing tens or even hundreds
of gigabytes of data are not uncommon on high-end systems.
These data intensive applications spend a significant amount
of their overall execution time in actual I/O operations, i.e.,
reading and writing the data.

Often, data access operations do not scale in a similar
manner as compute operations. The most important factor
limiting the performance of I/O operations is the performance
of an individual magnetic hard drive, which is multiple orders
of magnitude slower than any other component in a computer.
In an effort to overcome this problem, storage systems attached
to high-performance computing systems comprise thousands
of magnetic hard drives. Exploiting the full potential of
such a storage system is however not trivial, leaving parallel
applications with two options: either each process operates on
a separate file, or processes have to jointly access (different
parts of) a single file. The first approach has the drawback of
overwhelming the metadata server of parallel file systems in
case tens of thousands of files are being created simultane-
ously. Furthermore, it often requires time consuming pre- and
post-processing steps in order to create/merge the input and

output files for the required number of processes used. The
second approach requires coordination between the processes
accessing the same file to ensure consistency, a feature that is
not supported by the default POSIX I/O interfaces supported
by today’s operating systems.

Version Two of the Message Passing Interface (MPI) spec-
ification [12] added interfaces for handling files in a paral-
lel application, leveraging concepts from the previous MPI
document. Among the features introduced in MPI I/O is the
notion of collective I/O operations, i.e., file access operations
executed simultaneously by a group of processes. While
collective I/O interfaces offer the possibility for collaboration
among processes and therefore significant performance im-
provements compared to the sequential POSIX I/O operations,
today’s implementations suffer in many cases from suboptimal
performance.

A number of algorithms have been presented over the last
few years optimizing collective I/O operations, many of them
taking advantage of features of parallel file systems, param-
eters of the message passing and I/O network, application
access patterns, and data volumes written/read. One of the
most influential parameters in collective I/O operations is the
number of aggregator processes being used. This parameter
influences the size of contiguous data chunks presented to the
file system and the number of processes actually accessing
the file. Having too few aggregators will not exploit the full
bandwidth of the storage system. Having too many aggregators
will create a large number of smaller chunks, which might be
suboptimal from the file system perspective and increases the
costs of the shuffle operations. To date, no consistent approach
has been presented on how to determine the ideal number of
aggregator processes for collective I/O operations.

This paper presents an algorithm to determine dynamically
the number of aggregator processes used in a collective I/O
operation, such that the data throughput for collective I/O
operations is maximized. For the sake of clarity, the analysis
focuses on write operations, although the approach presented
here can easily be applied to read operations as well. We
evaluate our algorithm for a number of different application
scenarios and process counts on two different storage systems,
one using a PVFS2 file system and one using a Lustre file
system.

The remainder of the paper is organized as follows: Sec-



tion II discusses the most relevant related work in collective
I/O algorithms. Section III introduces the components and
algorithms upon which our work is based on. Section IV
presents the algorithm used to determine the optimal number
of I/O aggregator processes for collective I/O operations. We
evaluate our algorithm in Section V. Finally, in Section VI we
summarize this work and outline the future work in this area.

II. RELATED WORK

Collaboration among processes is widely considered the
most relevant aspect for achieving good performance for I/O
operations in parallel applications. The most widely used
optimization for collective I/O operations is the two-phase
I/O [4] algorithm. This algorithm shuffles the data among the
MPI processes to match the data layout in the file and performs
the actual read/write operation on a subset of processes called
the aggregators. The algorithm is discussed in more detail in
section III-A. Two phase I/O has been the basis for a number
of other approaches including datatype I/O [15], view-based
collective I/O [1], resonance I/O [20], dynamic segmentation
and static segmentation algorithms [2]. Liao et.al. [10] ana-
lyzed various file domain partitioning methods for improving
the performance of collective I/O operations. Most of these
algorithms tweak on how the shuffle and read/write operations
are performed, but use the same fundamental approach as
two-phase I/O uses. The most important aspect within the
context of this paper for all algorithms is that they rely
on a number of internal parameters, such as the number of
aggregator processes to be used, but do not necessarily present
a systematic approach on how to determine the optimal values
for these parameters.

The work most closely related to our project has been
performed by Worringen [18]. The author presents an adaptive
approach for determining parameters of parallel I/O opera-
tions. His approach to tune the number of aggregator processes
is similar to our algorithm presented here in that he relies on
a per-aggregator threshold value. However, his work does not
present how to determine the threshold value, nor does he
take file-view specific options into account. Furthermore, he
restricts the number of aggregators to particular ranges, which
we will argue in this paper is not practical and portable.

Another relevant aspect in tuning collective I/O operations
has been identified to be the locking protocol of some parallel
file systems such as Lustre [11] and GPFS [14]. Adjusting
the domain partitions assigned to an aggregator to the locking
boundaries of the file system allows us to reduce contention for
collective write operations [10], [5], [19] by minimizing the
number of operations waiting for the lock. As will be discussed
in section IV, we integrate the findings of these papers in our
algorithm to reduce locking contention.

III. BACKGROUND

The Open MPI Project [6] is an open source implementation
of the MPI specification that is jointly developed and main-
tained by a consortium of academic, research, and industry
partners. The library is built around the Modular Component

Architecture (MCA), which allows a compile time or runtime
selection of the components used by Open MPI. Each major
functional area in Open MPI has a corresponding back-end
component framework, which manages its own modules. This
allows, for example, the btl framework to seamlessly support
multiple network interconnects, since the required module for
each network is loaded at runtime.

Fig. 1. Overview of the OMPIO component and its frameworks.

The same concept is exploited by the Open MPI I/O
project (OMPIO) [3] to provide a highly flexible parallel
I/O infrastructure. OMPIO is implemented as a module of
the io framework of Open MPI. Upon opening a file using
MPI File open, the selection logic of the io framework will
query both the OMPIO module and the ROMIO [16] module,
a widely used MPI I/O implementation developed by Argonne
National Laboratory, then choose one for executing the actual
I/O operations. In case the OMPIO module has been chosen,
which as of today has to be explicitly requested by the end-
user, a number of sub-frameworks are initialized. These are:

• The file system framework (fs): abstracts general file
manipulation operations, such as opening, closing, and
deleting a file. The semantics of most of the operations
are collective.

• The file cache framework (fcache): provides the ability
to cache information, such as the number of storage
servers used, list of storage servers, and stripe depth. For
some file systems, caching this information will allow a
reduction in the traffic to the Metadata server and enable
certain optimizations, such as sorting I/O requests on a
per storage server basis.

• The file byte-transfer layer framework (fbtl): provides the
abstraction for all individual read and write operations.

• The shared file pointer framework (sharedfp) : abstracts
functions for managing the shared file pointer.

• The file collective I/O framework (fcoll) : provides inter-
faces for the collective file I/O operations.

The frameworks and their architectural organization are
displayed in fig. 1. Each framework typically has multiple
modules implementing the required functionality, as well as a
runtime selection algorithm that determines which component
to use for a particular scenario. Note, that the rules for
the runtime selection logic are strongly dependant on the
functionality provided by the module and could be based,



for example, on the performance estimates of particular algo-
rithms, file system utilized, process placements, or user-level
hints. Within the context of this paper we will focus on the
functionality of the collective I/O framework. In the following,
we discuss the three most prominent collective I/O algorithms
used by OMPIO, each of which is encapsulated into a separate
module.

A. The collective I/O framework

The collective I/O framework provides the abstraction re-
quired to have different implementations of collective I/O
operations. In contrast to most other frameworks, the decision
of which collective I/O module to use is not determined when
a file is being opened, but upon setting the file view 1.

Since different algorithms are deployed in separate modules,
the user can switch between the modules at runtime, similarly
to all other frameworks of Open MPI. For example, by
adding the flags ” --mca fcoll dynamic ” to the mpirun
command, the user enforces the utilization of the dynamic
segmentation algorithm for collective I/O operations. Other
algorithmic parameters can also be set at runtime such as the
number of aggregators, stripe count/size of a newly created
file, or number of bytes to write in one cycle without requiring
recompilation of the MPI library, of the module, or of the
application.

As of today, five collective I/O modules based on different
algorithms are available in OMPIO. We will discuss three of
them, focusing on their behavior for the write operation. Since
the last two modules are irrelevant within the scope of this
paper, they are omitted for the sake of brevity.

The first module implements the widely used two-phase
I/O [4] strategy, which is the basis of many collective I/O
optimizations utilized today. The algorithm divides the collec-
tive I/O operations into two phases. For write operations, these
are:

1) Phase one redistributes data among the processes to
match the layout of the data in the file. Since the data
distribution of a parallel application might not match the
layout of data in the file, re-arranging the data has often
proved worthwhile. Specifically, on many file systems it
is suboptimal to pose a large number of small, non-
contiguous I/O requests. Re-arranging the data helps
to create fewer and larger I/O requests and allows to
combine data from different processes.

2) Phase two executes the actual write operation. The two-
phase I/O algorithm also introduces the notion that only
a subset of the application processes actually perform
write operations on the file, the aggregators.

For very large collective write operations, the two-phase I/O
algorithm is split into multiple cycles. This allows the amount
of temporary data required on the aggregator processes to be
kept within reasonable limits.

1Implicitly, a collective I/O module is also selected upon opening a file,
due to the fact that the default file view is being set at this point in time.
However, subsequent changes to the file view will trigger a re-evaluation of
which collective I/O module to use.

The dynamic segmentation [2] module is an extension of
the classical two-phase collective I/O algorithm. Similarly to
two-phase I/O, the main goal of this algorithm is to combine
data from multiple processes in order to minimize the number
of I/O operations presented to the file system. In contrast
to the two-phase I/O algorithm, the dynamic segmentation
algorithm does not create a globally sorted data array based
on the offsets in the file. Instead, each aggregator is assigned
a group of processes and performs the sorting and data gather-
ing/scattering only within its group. This allows executing the
shuffle step including the sorting and data gathering/scattering
more efficiently, since the all-to-all type communication in
the two-phase I/O algorithm is replaced by a number of
independent gather(v) operations in the dynamic segmentation
algorithm.

Of major influence for the performance of the dynamic
segmentation algorithm is how processes are grouped. In
an n process scenario with p aggregators, each aggregator
is currently assigned n/p consecutive processes. However,
new algorithms that take the file view, process topology or
process location into account have been developed and will
be discussed in section IV.

The static segmentation module and the according algo-
rithm extend the dynamic segmentation algorithm focusing
on optimizing the shuffle operation itself and relaxing the
requirement of creating consecutive chunks of data to be
written. Contrary to the previous algorithm, an aggregator
gathers a fixed number of bytes from each of the processes
assigned to him in each cycle. This keeps the communication
channels constantly busy and avoids the bulk-communication
often occurring in two-phase I/O or dynamic segmentation.
Note, that the algorithm does not necessarily reduce the overall
number of I/O requests presented to the file system, but
reduces the number of processes executing these I/O requests
compared to overall number of application processes posting
the collective write request.

Figure 2 demonstrates the differences among the two-phase
I/O, dynamic segmentation and static segmentation algorithm.
In this example, four processes collectively write 16 data items
into a file. The write operations are further assumed to be
executed in four cycles with two aggregator processes (rank 0
and 2), and a cycle buffer size of two items. For the dynamic
and static segmentation, we assume that processes 0 and 1,
and processes 2 and 3 form the according teams.

IV. AUTOMATICALLY DETERMINING THE NUMBER OF
AGGREGATORS

Collective I/O algorithms have different parameters associ-
ated with them such as the number of aggregators that perform
the actual low level I/O operations and the cycle buffer size
which indicates the total size of data that will be written in one
cycle by an aggregator process. The latter also determines the
size of the temporary buffer to hold the data at the aggregator.

The choice of the best algorithm and the values for its
corresponding parameters is not an easy task, if not impossible,
for a regular user who is not aware and needs not to be aware



Fig. 2. Comparison of the data items written by the two-phase I/O, dynamic
segmentation and static segmentation algorithm for four processes and two
aggregators.

of the underlying algorithms. Having too few aggregators will
create large, contiguous data streams, but the costs for the
shuffle step might offset benefits of the I/O operation itself.
Furthermore, depending on the parallel file system utilized, too
few aggregators and therefore a small number of data streams
might not be able to saturate the file system. On the other
hand, having too many aggregators will create a large number
of smaller, often not contiguous data streams, which might
be suboptimal from the file system perspective. Ideally, one
would like to determine the number of aggregator processes
such that each aggregator is able to saturate its own resources.

Using default parameter values will inevitably lead to sub-
optimal performance. Results of a large number of analyses
have shown that different types of access patterns, problem
sizes, and platforms all play a major role in the performance
and influence the parameter values. Pre-tuning those parame-
ters using a benchmark that represents the access pattern of
the application on the desired file system before execution is a
viable option. However, this takes significant amount of time
that some users may not be willing to invest. An alternative
solution is to use an algorithm which is able to determine
optimal (or close to optimal) values for the corresponding
parameters.

The main contribution of this paper is to present and
evaluate a new algorithm to select the number of aggregators
and the cycle buffer size for collective I/O operations, specif-
ically for the two-phase I/O algorithm and its derivatives, e.g.
dynamic segmentation and static segmentation. Throughout
the remainder of this paper, we refer to this algorithm as the
auto selection algorithm.

The goals of the algorithm is two fold: first, determine
the optimal number of aggregators such that each aggregator
is saturating the file system from the processes perspective,
but not overloading the aggregator. Second, use the process
topology and/or file view to determine optimal grouping of
processes for the collective write operation. The main steps of
the algorithm are as follows:

1) Determine the minimum data size k that a process can
write to the underlying file system that saturates the

write bandwidth achieved.
2) Determine initial number of aggregators taking file view

and/or process topology into account.
3) Refine the number of aggregators required by a collec-

tive write operation as a function of the overall amount
of data written in the call and the data size k determined
in step one.

In the following, we discuss each of the three steps separately.

A. Per process write saturation point

The first step of the algorithm is to determine the minimum
data size k that leads to write saturation of an individual
process. Further increasing the size of the data over k will
typically not further increase the bandwidth obtained by a
single process. Having less data will however underutilize the
resources available to a process. Two questions are relevant
within this context: (i) what causes a process to reach a
write saturation point, and (ii) how can the saturation point
be determined?

The answer to the first question in the most generic sense
is, that the most limiting factor in the combination of compute
nodes, I/O network, and parallel file system will determine the
value of k. A detailed analysis of the different components
contributing towards the performance of a parallel file system
has been presented in [9]. A likely, but not the only source
for bandwidth saturation is the network interconnect used to
connect compute nodes and I/O nodes. A process will not
be able to move more data out of a compute node than the
maximum capability of the network. For Gigabit Ethernet for
example - a common choice for I/O networks on a large
number of small and medium size clusters - this would limit
the maximum achievable per-process bandwidth to 1GBit/s.
Various other characteristics of the hardware and/or software
can also contribute however, e.g. the amount of data that can be
cached by the OS, or an upper limit in the amount of internal
buffer that a user/application can provide for collective I/O
operations.

To determine the minimum data length k that leads to write
saturation, we use a benchmark which uses sequential write
operations with increasing data length. Each data length is
written a large number of times in order to avoid caching
effects, and the average value over all executions for the same
message length is determined. Plotting the bandwidth values
obtained using these data points over the message length
shows the minimum data length k where write saturation can
be observed. To minimize locking contention we round the
obtained value to the next multiple of the stripe size or locking
boundary of the file system.

This is the only step that is not actually automatic. However
this needs to be done once on every platform, since it is
not application specific. The value of k can be specified by
the system administrator when configuring Open MPI or at
runtime using an Open MPI runtime MCA parameter in a
system wide configuration file.



B. Initial Number of Aggregators
Determining the number of aggregators to be used is a

two-step process in this algorithm. The first step identifies
characteristics of the application that can be exploited for
parallel I/O. Most typically, this involves analyzing the file
view registered by the application. Analyzing the file view
across all processes is in the most generic case very complex.
However, a number of common patterns that occur in real
world applications such as 2-D or 3-D data distributions can
be identified with reasonable efforts. Our approach currently
handles only 2-D distributions in file views, by flattening the
filetype and checking the starting offsets of all the processes.
If a pattern is detected for a certain number of processes, they
are grouped together initially.

Consider for example a 2-D distribution of data across 16
processes, as shown in figure 3 part (a). Assuming that each
process works on an according portion of a two dimensional
matrix, always four processes organized in a row of the virtual
topology have data which leads to contiguous chunks that can
be written/read from the file. We assign initially one aggregator
process per row in the virtual 2-D process topology.

Fig. 3. (a) Initial grouping of processes in a 2-D process topology; (b)
splitting the process groups based on the optimal buffer size k ; (c) merging
multiple rows based on the optimal buffer size k; (d)Potential assignment of
aggregators if ignoring process topology or file view

While the approach discussed so far takes advantage of the
fact that the application has registered its access plan through
the file view, not all applications use a file view. In fact,
a large number of MPI I/O applications avoid setting a file
view due to the fact that dealing with the according derived
datatype(s) is often considered difficult and error prone. An
alternative approach used by a number of applications is to
stick with the default file view – which gives every process
access to the entire file – and use explicit offset operations
in the subsequent I/O calls. Since we consider extracting the
application level topology information however essential for
the performance of collective I/O operations, we investigate
two extensions currently not covered by the MPI standard.

The first approach requires the usage of topology commu-
nicators when opening a file. Our work focuses currently on
cartesian topologies. A cartesian process topology describes an
n-dimensional topology with the corresponding neighborhood
relations between the processes. In many scenarios, this is an
equivalence to the access pattern of the processes in the file
and can be often used as a lightweight version of the file view.

In this model, the individual regions of access by a process
are not known, however the logical organization of how data
will be accessed by the process can be deducted from the
process topology. Our first extension allows determining the
initial number of aggregators based on the process topology
provided by a cartesian communicator.

Based on the same idea, the user could also provide the
same topology information using newly defined MPI hints.
The advantage of this second approach is that setting hints
through the MPI Info object is cheaper than creating carte-
sian communicators, due to the collective communication
operations required to create a new communicator. Note, that
this second approach is currently not implemented in OMPIO.

C. Refining the Number of Aggregators

After determining the initial number of aggregators and the
initial grouping of processes by analyzing the file view and/or
the process topology, we check how much data each group is
writing in total and compare it against the value k determined
in step 1 of the algorithm. If the total bytes written in the group
is greater than k, the group is split depending on the ratio of k
to the total data written by one process, see fig 3 part (b) for
an example. Otherwise, two or more groups can be combined
together to form a single group such that the amount of data
written by an aggregator is as close to k as possible. This is
also shown in part (c) of fig. 3. Finally, we calculate for each
process the list of the ranks of the processes that belong to
its group using the new grouping strategy that was formed.
Algorithm 1 gives the details on how this is achieved. Note,
in the algorithm, RootOffset is the offset or stride where
each aggregator is located in the communicator and i is the
ratio of k to the total bytes written in a group.

In the case where a topology is not detected, we set initially
the number of aggregators to be the total number of processes,
which means that the topology would be one process per
group. Then we refine the number of aggregators using the
algorithm explained above.

As a result of the algorithm discussed in this section, a
single application will use different number of aggregators
depending on the amount of data written in a single collective
write operation. Note, that the current implementation assumes
a mostly uniform distribution of data across processes. How-
ever, extending this algorithm to non-uniform distributions is
straight forward and is omitted here for the sake of clarity.

V. EVALUATION

For testing the efficiency and validity of the new algorithm
presented in the previous section, we used several benchmarks
over two platforms. The Shark cluster at The University of
Houston consists all-in-all of 29 nodes, 24 of them having
a 2.2 GHz dual core AMD Opteron processor and 2 GB
main memory, and 5 nodes having two 2.2 GHz quad core
AMD Opteron processors (8 cores total) with 8 GB main
memory. The nodes are connected through a 96 port 4x SDR
InfiniBand switch and a 48 port Gigabit Ethernet (GE) switch.
The parallel file system used is PVFS2 (v2.8.2) consisting of



Algorithm 1 Refine Number of Aggregators
Require: Initial Topology including the coordinates for the

current process.
if K < TotalBytesWrittenInGroup then
{need to break current group into smaller groups}
i← 1
RootOffset← ceil(K/TotalBytesWrittenByProcess)
if NoProcsInOldGroup/RootOffset 6=
coords[1]/RootOffset then
NoProcsInNewGroup← RootOffset

else
NoProcsInNewGroup ←
NoProcsInOldGroup%RootOffset

end if
else

if K > TotalBytesWrittenInGroup then
{need to expand and merge with other groups}
i← ceil(K/TotalBytesWrittenInGroup)
RootOffset← NoProcsInOldGroup ∗ i;
i← RootOffset;
if TotalNumberOfProcesses/RootOffset 6=
rank/RootOffset then

NoProcsInNewGroup← RootOffset
else
NoProcsInNewGroup ←
TotalNoProcs%RootOffset

end if
end if

end if
{Calculate for each process the list of ranks of the processes
that belong in its group}
for j=0 to TotalNumberOfProcesses do
{Determine coordinates for process j}
{check if j and the current process belong to the same
group in the initial grouping}
if CoordsJ [0]/i = Coords[0]/i then

if CoordsJ [1]/RootOffset ∗ RootOffset =
Coords[1]/RootOffset ∗RootOffset then
{add j to the processes in this group}

end if
end if

end for

22 server nodes where each server uses its local disk space as
the back-end storage. The stripe size of the file system is 64
KB. The file system uses GE as the network interconnect.

The Deimos PC Farm at TU Dresden has 724 compute
nodes with 1, 2, and 4 dual-core AMD Opteron processors and
over 2576 total cores. Each node has 2 GB of main memory.
A Lustre file system (v1.6.7.2) with 38 TByte of storage is
exported by 11 I/O servers via a separate 4x SDR Infiniband
network. The file system is organized in 48 Object Storage
Targets (OSTs) with a stripe size of 1 MB. The MPI Library
used on both clusters is Open MPI trunk (r24428).

The algorithm introduced in section IV is evaluated for

three collective I/O algorithms, namely two-phase I/O, dy-
namic segmentation, and static segmentation. The latter two
algorithms utilized the information provided by the file view
and/or process topology also for grouping of processes, while
the two-phase I/O algorithm relies on the number of aggre-
gators provided by that approach. In order to evaluate the
efficiency of our algorithm using the automated selection of
number of aggregators, we ran the exact same benchmarks
also with a number of fixed aggregators for the according
algorithms. However, due to the number of processes used for
the test cases it is not possible to compare the performance
of the automated aggregator selection algorithm vs. the full
parameter space w.r.t. the number of aggregators.

A. Determining minimal saturation points

The first step consists of determining the minimum amount
of data to saturate the write bandwidth of an individual pro-
cess. As discussed in section IV, the value of k is determined
by running a simple POSIX I/O benchmark that writes data to
disk with an increasing data size. The results obtained show
as expected a great difference in the performance that can
be achieved over different platforms. Fig. 4 and fig. 5 show
the bandwidth over the data length achieved for the Shark
cluster and for Deimos PC Farm respectively. The value for
k is determined as the first message length which does not
yield a (significant) bandwidth increase. Based on fig. 4 the
value for k is set to 32 MBs for Shark. At this point, the
maximum bandwidth achieved reaches over 100MB/s, which
is close to the maximum sustainable bandwidth of a Gigabit
Ethernet link, which is used to mount the PVFS2 file system. It
is therefore safe to assume that on Shark cluster the individual
write bandwidth of a process is limited by the network link.

On the Deimos cluster, the maximum write bandwidth is
achieved starting from a message length of 128 MBs. The
according bandwidth value of around 285MB/s is not yet
saturating the 4xInfiniBand link that is used to mount the
Lustre file system onto the compute nodes. However, further
increasing the message length in the test did not yield a
better write bandwidth. This is mostly due to the fact that the
sequential write tests require allocating a buffer of the size of
a write operation. Allocating a buffer of more than 1 GB for
the test introduced caused problems on a node having only 2
GBs of main memory and led to performance degradation due
to excessive page swapping. Thus, the write bandwidth on this
cluster is limited by the amount of memory available on the
node, which is a valid concern also for parallel applications,
limiting the ability of an aggregator to service other processes.

B. Tile I/O

MPI-TILE-IO [13] is a test application that implements
tile access to a two dimensional dense dataset. This type of
workload is seen in tiled displays (for small numbers of tiles)
and in some numerical applications. The benchmark creates a
cartesian communicator to access the file in a two dimensional
manner, which makes it a good benchmark to test our topology



Fig. 4. Tuning for the minimum saturation point k on Shark.

Fig. 5. Tuning for the minimum saturation point k on Deimos.

aware algorithm. The parameters that control the file access
and 2D distribution of the processes are:

• nr tiles x: number of tiles in the X dimension (rows)
• nr tiles y: number of tiles in the Y dimension (columns)
• sz tile x: number of elements in the X dimension of a tile
• sz tile y: number of elements in the Y dimension of a tile
• sz element: size of an element in bytes

In our measurements, the number of tiles is set according to the
process count. We use three different tile sizes (64 B, 1 KB, 1
MB) and respectively three different number of elements in the
X and Y dimension (2048x1600, 512x400, 20x15) to represent
different access patterns in the file. For all our measurements
for this test application and the other benchmarks, each test
case is executed five times taking the maximum achievable
bandwidth across those runs. The results obtained on Shark
were very consistent, taking into consideration it is a dedicated
cluster and dedicated file system. On the other hand, the result
on Deimos were not always identical across different runs,
considering the different allocation of nodes for different jobs
and the fact that the file system underneath is a shared resource
between all users. Note however, that in the vast majority
of the test cases the tendencies across different executions
were the same, with differences being only in the absolute
values obtained. We chose to display the maximum achievable
performance across the runs, as it is the execution which most
likely had minimal disturbance from the outside, which in the
end would be required to fairly compare the algorithms.

On the Shark cluster, tests have been executed using 20,
40 and 81 processes using Tile I/O. The results obtained for

81 processes are shown in fig. 6 for all three collective I/O
algorithms used namely dynamic segmentation (left), static
segmentation (center) and two-phase I/O (right). The graph
shows the bandwidth achieved with each algorithm. The x-axis
shows the data points obtained with the according number of
aggregators. The data point labeled as auto is the performance
obtained with our auto selection algorithm. The results indicate
that the auto selection algorithm provide the best or close to
the best performance for all tile sizes and all three collective
I/O algorithms on this platform. The number of aggregators
chosen is equal to the total number of processes, because each
process is requesting to write data larger than the value of k
per function call.

Similarly, on Deimos with the Lustre file system, using
all processes as aggregators for this application turns out to
provide the best choice for the number of aggregators as shown
in fig. 7 for 144 processes for large tiles. That is also what
the auto selection algorithm chooses. In the case of small tile
sizes the auto selection algorithm was not giving the best result
using dynamic and static segmentation, however it was giving
the optimal result using the two-phase algorithm, so we argue
here that in this scenario the decision to use all processes as
aggregators is correct. The static and dynamic segmentation
algorithms are just a poor match to the test case due to the
fact that they will not re-organize data across processes at all:
each process is just member of its own group.

C. Latency I/O

Latency-IO is a micro-benchmark developed as part of the
latency test suite [7]. Each process has a given amount of
data that it writes to the file in several segments. The size
of the segment is a configurable parameter. All processes
write the segment size to the first portion of the file and
then on the second portion till the entire data is written. All
this is within one collective I/O call per process. The test
executes the collective I/O operations several times to non-
overlapping regions in the file. For our measurements, we used
two segment sizes, namely 64 KBs and 2 MBs. The total data
written to disk per function call is 20 MBs, resulting in overall
files of 3-5 GB depending on the test case. This benchmark
represents the scenario where file view and process topology
could not be used to optimize the grouping of processes for
dynamic and static segmentation.

Tests on the Shark cluster with latency I/O have been
executed for 20, 40 and 64 processes. The results show a
similar trend as the tile-io results. Fig. 8 shows the results
achieved for a 64 process test case. The auto selection algo-
rithm chooses half the process count (32 processes) as the
number of aggregators, which achieved in most cases close to
the best performance.

We executed the latency benchmark with 64 processes on
Deimos and the results are shown in fig. 9. The auto selection
algorithm chooses eight aggregators. This choice was good for
the small segment size. For the larger segment size, choosing
only eight aggregators was not efficient and the performance
penalty is highlighted mostly when using the dynamic and



Fig. 6. mpi-tile-io with 81(9x9) processes on Shark using dynamic segmentation (left), static segmentation (middle) and two-phase I/O (right).

Fig. 7. mpi-tile-io with 144(12x12) processes on Deimos using dynamic segmentation (left), static segmentation (middle) and two-phase I/O (right).

Fig. 8. latency-io with 64 processes on Shark using dynamic segmentation (left), static segmentation (middle) and two-phase I/O (right)

Fig. 9. latency-io with 64 processes on Deimos using dynamic segmentation (left), static segmentation (middle) and two-phase I/O (right)

Fig. 10. BT I/O benchmark with 36 processes on Shark using dynamic segmentation (left), static segmentation (middle) and two-phase I/O (right).



Fig. 11. BT I/O benchmark with 36 processes on Deimos using dynamic segmentation (left), static segmentation (middle) and two-phase I/O (right).

static segmentation algorithms, where the results achieved with
64 aggregators were much better. The reason for this can be
attributed to the communication cost between the processes
that did not hide the cost of writing large segments to disk
by each process. In addition to that, since the stripe size on
the file system is 1 MB, writing contiguous data portions in a
multiple of two of the stripe size (2 MB) by all processes did
not incur a performance penalty since the write requests were
aligned with the stripe boundaries.

D. BT I/O

The Block-Tridiagonal (BT) NPB [17] benchmark has an
MPI implementation that employs a multi-partitioning domain
decomposition. Each process is responsible for multiple carte-
sian subsets of the entire data set, whose number increases
as the square root of the number of processors participating
in the computation. The benchmark does computation as well
as I/O operations. Each measurement is executed five times,
taking the best execution time between those runs. Since the
execution time reported by the benchmark contains compute,
read, and write operations, it is not possible to conclusively
determine the write bandwidth obtained. Instead, we report the
execution time of the entire benchmark.

The BT I/O measurements on Shark with 36 processes show
almost identical behavior for all three classes in terms of how
each algorithm performs and how the auto selection algorithm
performs in comparison. We show the results for the classes B
and C. The auto selection algorithm chooses two aggregators
for the class B and three aggregators for class C. The choice
turns out to be very suited for this benchmark, and is different
from the previous benchmarks where a larger number of
aggregators was giving better performance. As shown in the
left part of fig. 10, using static or dynamic segmentation with a
large number of aggregators would have been very inefficient.
However, with the topology detection and automatic aggrega-
tor selection, the execution time obtained was acceptable.

The results for the same test case with 36 processes on
Deimos is shown in the right part of fig. 11. The performance
obtained was very similar to the results on Shark. One aggrega-
tor was chosen for the class B and two aggregators for class C
with the auto selection algorithm. The 144 process test case on
the same cluster (not shown here due to space limitations) used
the same number of aggregators for the according test cases as
in the 36 process test cases, which highlights a property of the

algorithm, namely that the number of processes used by the
application does not influence the number of aggregators for a
constant amount of data to be written. In this case, using only
two aggregators was a good choice for two-phase since the
performance was close to optimal, but not very efficient for
static and dynamic segmentation, mainly because one group
for the aggregators was very large and the other one very
small. The generation of highly uneven groups as a result of
the algorithm is an aspect of further research.

E. Discussion

The results provided in this section show a small portion
of the total number of tests performed. Out of a total of 134
test cases, 88 test cases using the auto selection algorithm
achieved either the best performance that we could observe
with any number of aggregators, or were within 10% of
the best performance. 110 test cases were within the 25%
of the best result. Note that the range between best and
worst performance is often extremely wide, which makes a
performance within 25% of the optimum a reasonable result
considering that no user interaction is required to achieve that.

For each benchmark, we also measured the performance of
the two-phase algorithm using ROMIO, which uses a different
strategy to determine the number of aggregator processes,
namely one aggregator per node. We compare those results to
the ones obtained by the two-phase algorithm within OMPIO
using the auto selection algorithm. The comparison show
that in 29 out of 45 test cases which used the two-phase
I/O algorithm, our approach leads to a better performance
with an average performance advantage of 41% over the one
aggregator per node strategy.

In most test cases in which our algorithm detected a
regular access pattern and/or topology in the application, this
translated to a significant performance improvement. In the
tile I/O test cases, where the 2-D pattern was recognized,
all test cases improved the performance compared to the one
aggregator per node strategy; not a single test case showed
any problems. Similarly good results were obtained for BT
I/O, with few exceptions. However, as BT I/O resembles an
application benchmark, it is difficult to separate the write
performance from the performance of read operations (since
the test uses both), with our read algorithm using a non-
optimized version.



To demonstrate the correctness of the automatic selection al-
gorithm, further tests have been executed with a parallel image
processing application which is used to analyze smear sample
from fine needle aspiration cytology, with the overall goal
being to assist medical doctors in identifying cancer cells [8].
The MPI version of the code has the option to write the texture
data into output files to facilitate future processing steps in
realizing a complete computer aided diagnosis (CAD) solution.
This makes the application compute and I/O intensive. We
executed the application with the three algorithms discussed
earlier (dynamic, static, and two-phase) on the Shark cluster
with the PVFS2 filesystem for 64 processes. The results show
that the I/O performance obtained using the auto selection
algorithm was within 10% of the optimal result.

VI. CONCLUSIONS

In this paper we introduced an algorithm to dynamically
adjust the number of aggregators used in collective I/O op-
erations. Our algorithm takes the file view, process topology,
individual characteristic of file system, as well as the amount
of data written in a collective I/O operation into account.
Preliminary results with three different benchmarks on two
different platforms demonstrated the effectiveness of our al-
gorithm, and documented that our approach improves the per-
formance for applications using collective I/O operations ’out-
of-the-box’ compared to a default setting for the number of
aggregators, eliminating the necessity to pre-tune the collective
I/O operation for each test case.

Although the initial results are very promising, more work
is required to evaluate the algorithm. Specifically, we would
like to extend our evaluation to larger number of processors,
real world applications and to include read-operations as well.
In addition, we also plan on further improving this algorithm
to avoid uneven process distributions in some scenarios. A
complimentary aspect of this research furthermore deals with
algorithm selection, i.e. when to use two-phase I/O vs. dy-
namic or static segmentation.
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