
Can a Decentralized Metadata Service Layer benefit
Parallel Filesystems?

Vilobh Meshram, Xavier Besseron, Xiangyong Ouyang, Raghunath Rajachandrasekar,
Ravi Prakash Darbha and Dhabaleswar K. Panda

Department of Computer Science and Engineering, The Ohio State University
{meshram,besseron,ouyangx,rajachan,darbha,panda}@cse.ohio-state.edu

Abstract—The demand for scalable I/O continues to grow
rapidly as computer clusters keep growing. Much of the research
in storage systems has been focused on improving the scale and
performance of I/O throughput. Scalable file systems do a good
job of scaling large file access bandwidth by striping or sharing
I/O resources across many servers or disks. However, the same
cannot be said about scaling file metadata operation rates.

Most existing parallel filesystems choose to concentrate all
the metadata processing load on a single server. This central-
ized processing can guarantee the correctness, but it severely
hampers scalability. This downside is becoming more and more
unacceptable as metadata throughput is critical for large scale
applications. Distributing metadata processing load is critical
to improve metadata scalability when handling huge number
of client nodes. However, a solution to speed up metadata
operations has to address two challenges simultaneously, namely
the scalability and reliability.

In this paper, we have designed a decentralized metadata
service layer and evaluated its benefits and shortcomings that
concern parallel filesystems. The main aim of this service layer is
to maintain reliability and consistency in a distributed metadata
environment. At the same time we also focus on improving the
scalability of the metadata operations, and in turn, the scalability
of the underlying parallel filesystem.

As demonstrated by experiments, the approach presented in
this paper achieves significant improvements over native parallel
filesystems by large margin for all the major metadata operations.
With 256 client processes, our decentralized metadata service
outperforms Lustre and PVFS2 by a factor of 1.9 and 23,
respectively, to create directories. With respect to stat() operation
on files, our approach is 1.3 and 3.0 times faster than Lustre and
PVFS.

I. INTRODUCTION

Filesystem sizes grow exponentially as computing clusters
advance into the exascale computing era. Data can be stored in
several different forms and types, with Metadata (data about
data) being the most universally accessed data type. Every
time a file is opened, saved, closed, searched, backed up or
replicated, some portion of metadata is accessed. As a result,
metadata operations fall in the critical path of a broad spectrum
of applications.

Modern distributed filesystems such as Lustre [1], PVFS [2],
Google File System [3], separate metadata management from

This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; National Science
Foundation grants #CCF-0621484, #CCF-0833169, #CCF-0916302, #OCI-
0926691 and #CCF-0937842; grant from Wright Center for Innovation
#WCI04-010-OSU-0;

the actual storage of file data. This kind of architecture have
proven to easily scale the storage capacity and bandwidth.
However, the management of metadata remains a bottleneck.
Studies [4], [5] show that over 75% of all filesystem calls re-
quire access to file metadata. Therefore, efficient management
of metadata is crucial for the overall system performance.

The Lustre filesystem architecture has a single Metadata
Server (MDS), which means that Lustre metadata operations
can be processed only as quickly as what a single server and
its backing filesystem can manage. To date, this has not been
a critical limitation. However, as the number of Lustre clients
grows, a single MDS becomes a performance bottleneck and
constraints the throughput of the filesystem.

The Lustre community has proposed the concept of Clus-
tered Metadata Server (CMD) [6] which is still in its early
stages of design, and not production-ready yet. The CMD
architecture allows for multiple active metadata servers which
can share the metadata processing workload, in a single
Lustre configuration. Clustered MDS design has some notable
shortcomings. For instance, one metadata operation may need
to update several different MDSs. To maintain the consistency
of the filesystem, this update must be atomic. If the update
on one MDS fails, all other servers must be rolled back to
their original states. In order to take care of this problem, a
global lock has to be in place to synchronize the updates and
to maintain consistency [6]. This might hurt the throughput of
metadata operations.

In this paper, we have designed a Decentralized Metadata
Service Layer and evaluated its pros and cons in a Parallel
File System environment. The proposed Service Layer, namely
DUFS, is composed of a FUSE-based filesystem and a Dis-
tributed Coordination Service. Our goal is to handle a large
amount of metadata operations per second while providing a
guarantee for consistency and reliability. Specifically we want
to answer several questions:

1) Can a distributed coordination service be incorporated
into parallel filesystems to scale up the metadata pro-
cessing throughput?

2) What will be the performance impact of such a de-
centralized metadata service layer compared to native
parallel filesystems such as Lustre [1] and PVFS [2]?

3) Will such a decentralized metadata service excel in
maintaining the consistency and reliability of the file
system?



The paper is organized as follows. Section II presents some
background on components in our design and evaluation.
Section III provides motivation for this work and our design
choices. In Section IV, we describe the design of our proto-
type. In section V, we present our experiments and evaluation.
Related work is discussed in Section VI, and in section VII,
we present the conclusion and future work.

II. BACKGROUND

A. Lustre File System

Lustre is a POSIX-compliant, stateful, object-based parallel
file system. It provides fine-grained parallel file services us-
ing distributed lock management. Lustre separates essential
file system activities into three components: clients, meta-
data servers and storage servers. These three components are
referred to as Object Storage Client (OSC), Meta-Data Server
(MDS) and Object Storage Server (OSS), respectively. To
access a file, a client first obtains its metadata from the primary
MDS, including file attributes, file permissions and the layout
of file objects termed as Extended Attributes (EA) in Lustre
context. Subsequent file IO (storage) operations are performed
directly between the client and the OSS. By decoupling meta-
data operations from IO operations, data IO can be carried
out in a parallel fashion, which provides greater aggregated
bandwidth.

B. Filesystem in Userspace (FUSE)

Filesystem in Userspace (FUSE) [7] is a software that
allows to create a virtual filesystem in the user level. It
relies on a kernel module to perform privileged operations
at the kernel level, and provides a userspace library that ease
communication with this kernel module. FUSE is widely used
to create filesystems that do not really store the data itself but
relies on other resources to effectively store the data. Then, a
FUSE virtual filesystem is like a way to present and organize
data to users through the classic filesystem interface.

C. ZooKeeper

ZooKeeper [8] is a distributed, open-source coordination
service for distributed applications. It exposes a simple set
of interfaces that distributed applications can build upon to
implement higher level services for synchronization, configu-
ration maintenance and naming.

ZooKeeper allows distributed processes to coordinate with
each other through a shared hierarchical namespace which is
organized similarly to a standard file system. The namespace
consist of special nodes known as Znodes. Znodes do not store
data but they store configuration information.

ZooKeeper can use multiple servers that replicate the whole
namespace. The ZooKeeper coordination algorithms take care
of maintaining the consistency between all the servers. Thus,
all modifications on the namespace appear to be atomic and
strictly ordered to all the clients [8].

III. MOTIVATION

Parallel file systems can easily scale bandwidth and improve
performance by operating on data in parallel using strate-
gies such as data striping, sharing resources, etc. However,
most parallel file systems do not provide the ability to scale
and parallelize metadata operations as it is inherently more
complex than scaling the performance of data operations [9].
PVFS provides some level of parallelism through distributed
metadata servers that manage different ranges of metadata. The
Lustre community has also proposed the idea of Clustered
Metadata Server (CMD) to minimize the load on a single
Metadata Server, wherein multiple metadata servers share the
metadata processing workload.

A. Metadata Server (MDS) Bottlenecks

Most of the parallel file systems have a single MDS, with a
fail-over MDS that becomes operational if the primary server
becomes nonfunctional. Only one MDS is operational at a
given point in time. This limitation poses a potential bottleneck
as the number of clients and/or files increases. Often dismissed
as negligible cost the metadata load can be a major bottleneck
in the overall performance and scalability of the parallel file
system [4], [10], [11].

B. Consistency management of Metadata

Majority of the distributed filesystems use a single metadata
server. However, this is a bottleneck that limits the operation
throughput. Managing multiple metadata servers brings many
difficulties. Maintaining consistency between two copies of the
same directory hierarchy is not straightforward. We illustrate
such a difficulty in Figure 1.

1. ’mv d1 d2’ on MDS1

2. ’mv d1 d2’ on MDS2

Client 2

Time

2. ’mkdir d1’ on MDS2

1. ’mkdir d1’ on MDS1

Client 1

(a) On the client side

1. ’mv d1 d2’ from client2

2. ’mkdir d1’ from client1

Time

Result: d2 Result: d1

MDS 1 MDS 2

1. ’mkdir d1’ from client1

2. ’mv d1 d2’ from client2

(b) On the MetaData server side

Fig. 1. Example of consistency issue with 2 clients and 2 metadata
servers. Client 1 creates the directory d1 and client 2 renames d1 to d2.
If the two clients update the two metadata servers independently without any
coordination, the resulting state may be inconsistent.



We have two metadata servers (MDS) and we consider two
clients that perform an operation on the same directory at
the same time. Client 1 creates the directory d1 and client 2
renames the directory d1 to d2. As shown in Figure 1a, each
client performs its operation in the following order: first on
the MDS1, then on the MDS2. From the MDS point of view,
there is no guarantee on the execution order of the requests
since they are coming from different clients. As shown in
Figure 1b, the requests can be executed in a different order on
each metadata server while still respecting the ordering that
the clients demand. In this case, the resulting states of the two
metadata servers are not consistent.

This small example highlights that distributed algorithms
are required to maintain the consistency between multiple
metadata servers. Each client operation must appear to be
atomic and must be applied in the same order on all the meta-
data servers. For this reason, we decided to use a distributed
coordination service like ZooKeeper in the proposed metadata
service layer. Such a coordination service implements the
required distributed algorithms in a reliable manner.

IV. DESIGN AND IMPLEMENTATION

A. Principle
The core principle of Distributed Union FileSystem (DUFS)

is to distribute the load of the metadata operations across mul-
tiple distributed filesystems. DUFS provides a single POSIX-
compliant filesystem abstraction to the user, without revealing
the multiple underlying filesystem mounts. With such an ab-
straction, the single metadata server of the back-end distributed
filesystem is not a bottleneck anymore. However, as described
in section III, consistency has to be guaranteed across multi-
ple clients which perform simultaneous metadata operations.
This task is delegated to the distributed coordination service
ZooKeeper [8].

DUFS maps each virtual filename, as seen by the user, to a
physical path corresponding to one of the underlying filesys-
tem mounts. A single-level indirection is introduced with the
use of a File Identifier (FID), which uniquely identifies each
file.

Virtual path FID Physical path

Deterministic

mapping

function

Distributed

coordination

service

Fig. 2. DUFS mapping from the virtual path to the physical path using File
Identifier (FID)

Figure 2 shows a schematic view of this indirection level
in our design. The mapping between the FID and the physical
path is carried out using a universally-known deterministic
mapping function which every DUFS client is aware of. This
mapping information is cached by ZooKeeper in a consistent
manner. The second mapping step does not require any co-
ordination between clients. Consistency management at the
physical storage level is offloaded to the underlying filesystem.

This single-level indirection offers flexibility and allows to
represent the contents of a file independently of its name.

Indeed, a filename can represent two different data contents
(after deletion and a new creation with the same name); and
conversely, the data contents can correspond to any filename
(for instance, a rename operation). This representation also
makes rename operations and physical data relocation easier.

Finally, directories and directory-trees are considered as
metadata only, so they are not physically created on the
back-end storage. Instead, the directory-tree information is
maintained in-memory by ZooKeeper.

B. Implementation Overview

The design of DUFS is broken down into three main
components: the filesystem interface based on FUSE, the
Metadata management based on ZooKeeper and the back-
end storage provided by the underlying parallel filesystem.
A DUFS client instance is only a local software that does
not interact directly with other DUFS clients. Any necessary
interaction is only made through ZooKeeper service or over
the back-end storage.

Figure 3 shows the basic steps required to perform an open()
operation on a file using DUFS.

A. The open() call is intercepted by FUSE which gives the
virtual path of the file to DUFS.

B. DUFS queries ZooKeeper to get the Znode based on the
filename and to retrieve the FID. If the file does not exist,
ZooKeeper will return an error.

C. DUFS uses the deterministic mapping function to find the
physical path associated to the FID.

D. Finally, DUFS opens the file based on its physical path.
The result is returned to the application via FUSE.

Alternatively, directory operations take place only at the
metadata level, so only ZooKeeper is involved and not the
back-end storage. For example, the directory stat() operation
is satisfied at the Zookeeper level itself since we maintain
the entire directory hierarchy in Zookeeper and the back-end
storage are not contacted. Along with the standard metadata
attributes provided by Zookeeper, we store additional infor-
mation in the data field provided for each Znode. Thus, only
steps A and B are performed for directory specific operations.

The following subsections describe the functions of the
primary elements comprised within DUFS.

C. FUSE-based Filesystem Interface

We use FUSE to provide a POSIX-compliant filesystem in-
terface to the applications. Thus, our DUFS prototype appears
like a classic mount-point of the standard filesystem.

In our DUFS prototype, we have implemented most of the
basic file system operations like mkdir, create, open, symlink,
rename, stat, readdir, rmdir, unlink, truncate, chmod, access,
read, write. When an application wants to perform a filesystem
operation, it will operate on the virtual path exposed to it
by DUFS. The filesystem operations are translated into the
FUSE specific operations, for example the open() call from
application is translated into the dufs open() in DUFS.



Backend storage

client

Backend storage

client

ApplicationApplication

Client node

Backend storage

client

Backend storage

client

ApplicationApplication

Client node

DUFS

ZooKeeper

client library

FUSE interface

Virtual path FID Physical path

DUFS

ZooKeeper

client library

FUSE interface

Virtual path FID Physical path

ZooKeeper

server

ZooKeeper

server

ZooKeeper

server

A

B

C

D

Backend distributed filesystem storage

ZooKeeper distributed coordination service

Fig. 3. DUFS overview. A, B, C and D show the steps required to perform an open() operation.

Finally, for each filesystem operation, DUFS can return the
correct result after querying the ZooKeeper-based Metadata
management service and the back-end storage as needed.

D. ZooKeeper-based Metadata Management

We use the ZooKeeper distributed coordination service
to handle the consistency threats posed by the distributed
accesses from several DUFS clients simultaneously. The syn-
chronous ZooKeeper API were used for this purpose.

With our design, ZooKeeper will store a part of the virtual
filesystem metadata. It keeps track of details of the directories
and files that get created. A separate Znode is created in
ZooKeeper for each directory or files created, and the virtual
filesystem hierarchy is represented inside ZooKeeper using
Znodes.

ZooKeeper has several information fields associated to each
Znodes. Some of the standard fields include Znode creation
time, list of children Znodes, etc. ZooKeeper also has the
provision to add a custom data field to each Znode. In DUFS,
this custom field is used to tell the Znode if it is representing
a directory or a file. In the latter case, the FID of the file is
also stored in this field.

As a consequence, all the metadata regarding a directory
are stored in ZooKeeper, using the standard Znode fields and
the custom data field. Regarding files, ZooKeeper only keeps
tracks of existing filenames. The file metadata are maintained
with the physical file on the back-end storage. Thanks to this,
the access and modification times can transparently be updated
when the physical file is accessed by the read() and write()
operations after redirection by DUFS.

The ZooKeeper architecture uses multiple ZooKeeper
servers. The data is replicated among all the servers.
ZooKeeper uses coordination algorithms to ensure that the
Znode hierarchy and their contents are consistent across the

servers and that all the modifications are applied in the same
order in all the servers [8].

All these information are kept in memory and ZooKeeper
servers can be located close to DUFS clients. Thanks to this,
ZooKeeper queries are fast and a large operation throughput
can be performed. This raw throughput is studied in sec-
tion V-A. However, the counterpart is that the ZooKeeper
servers use a large amount of memory. We study this impact
in memory usage in section V-E.

E. File Identifier

In our design, we use a File Identifier (FID) to uniquely
represent the physical contents of a file. This FID is stored in
the custom data field of the Znode corresponding to the virtual
path of a file. The FID is designed to be unique for each newly
created file. However, modifications to the file contents do not
require changing the FID.

In DUFS, the FID is a 128-bit integer. We propose a simple
approach to generate a unique FID at the DUFS client without
requiring any coordination. The FID for a file is generated by
the client who initially creates the file. It is a concatenation
of a 64-bit client ID that uniquely represents that instance of
DUFS client that created the file and a 64-bit file creation
counter that records the number of file creations throughout
the lifetime of that DUFS client. When a client is restarted,
it acquires another unique 64-bit client ID and its creation
counter is reset to 0.

The FID is used by DUFS to deduce the physical location of
the file and the physical filename. Firstly, the physical location
of the data in the underlying filesystem is generated using the
deterministic mapping function. Secondly, the filename for the
data contents on the physical storage is generated from the
FID. In this manner, the contents of a file do not have to be
renamed or moved between different physical mounts when



the virtual filename is changed.

F. Deterministic mapping function

The deterministic mapping function associates a physical
location to each file contents based on its FID. This function
takes as input a 128-bit integer representing the FID and
returns a number between 1 and N , with N being the number
of underlying back-end storages. It has to be deterministic
so that any DUFS client can find the right location without
coordination.

To achieve a good load-balancing between the different
underlying storage mounts, the mapping function has to
distribute the FIDs in a fair manner. For this reason, the
mapping function of our current implementation is based
on the MD5 hash function that has this property [12]. Our
mapping function is:

fid 7−→ MD5(fid) mod N

G. Back-end storage

Once a particular physical filesystem is chosen using the
deterministic mapping function, the data is accessed directly
using the local mount-point of this distributed filesystem. The
filename is deterministically interpreted from the FID. Thus,
it is independent of any virtual filename and the DUFS client
does not need to communicate with any other component to
find the actual physical filename.

In DUFS, the physical filename used to store a file is
the equivalent to the hexadecimal representation of the FID
that was computed in the previous step. In order to avoid
congestion due to file creation at a single directory level,
the hexadecimal representation is divided into four parts to
create multiple path components. The first component has the
filename, while the other components are used for the path
hierarchy. Figure 4 shows an example of the filename on the
back-end storage for the FID 0123456789abcdef.

FID: 0123456789abcdef

Physical filename: cdef / 89ab / 4567 / 0123

Fig. 4. Sample physical filename generated from a given FID

This directory hierarchy is static and identical between all
the back-end mount-points. This static structure avoids any
potential conflict.

H. Algorithm examples for Metadata operations

In this section, we give some algorithms for some metadata
operations in DUFS. Figure 5 shows the algorithm for the
mkdir() operation; Figure 6 shows the algorithm for the stat()
operation.

I. Reliability concerns

The DUFS client does not have any state. All the required
information are stored either in ZooKeeper or in the back-end
storage. So the DUFS reliability relies on the ZooKeeper and
back-end distributed filesystems.

1: Get the virtual path of the directory
2: Look for the corresponding Znode
3: if Znode exists then
4: return ’File exists’ error code
5: else
6: Generate the data field with type and metadata infor-

mation
7: Create the corresponding Znode with ZooKeeper
8: if success then
9: return Success

10: else
11: Handle error
12: end if
13: end if

Fig. 5. Algorithm for the mkdir() operation

1: Get the virtual path of the file/directory
2: Get the corresponding Znode with ZooKeeper
3: if Znode does not exist then
4: return ’No such file or directory’ error code
5: else
6: ZooKeeper returned the data field (type, FID, ...)
7: if Znode type is directory then
8: Fill the struct stat with information stored in

ZooKeeper
9: return struct stat

10: else
11: Compute the physical location
12: Compute the physical path
13: Perform stat() on the physical file
14: return struct stat
15: end if
16: end if

Fig. 6. Algorithm for the stat() operation

For ZooKeeper, all the information are duplicated among
all the servers. Thanks to this, ZooKeeper is able to tolerate
the failure of many servers. It needs to have the majority
of the servers alive to maintain consistency of the data [8].
Furthermore, although each ZooKeeper server keeps all its data
in memory, it is periodically checkpointed on disk. So, it can
tolerate the failure of all servers by restarting them later.

Many distributed filesystems like Lustre provide fault toler-
ance. Data can be replicated among multiple data servers. If
such filesystems are used as a back-end storage, it will benefit
to the DUFS availability.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the
performance of metadata operations with our proposed design.
These tests were performed on a Linux cluster. Each node has
a dual Intel Xeon E5335 CPU (8 cores in total) and 6 GB
memory. A SATA 250 GB hard drive is used as the storage
device on each node. The nodes are connected with 1 GigE



for general purpose networking. Each node runs Linux 2.6.30.
We dedicate a set of nodes as Lustre MDS and OSS (version

1.8.3) to form multiple instances of Lustre filesystem. An-
other set of dedicated nodes work as PVFS2 servers (version
2.8.2) to export multiple instances of PVFS2 filesystem. Each
client node mounts multiple instances of Lustre and PVFS2
filesystems and uses DUFS to merge these distinct physical
partitions into one logically uniformed partition. ZooKeeper
server runs along with the DUFS clients, and they provide
distributed coordination services over 1 GigE.

We have used the mdtest benchmark [13] for our experi-
ments. We carried out our experiments by creating a directory
structure with a fan-out factor of 10 and directory depth of 5.
As the number of processes increases, the number of files per
directory also increases accordingly. We have also carried out
experiments where many files are created in a single directory.
We have used the same parameters and configuration while
experimenting with different back-end parallel file systems like
Lustre and PVFS2.

A. ZooKeeper throughput for basic operations

With DUFS design, each metadata operation has to go
through the ZooKeeper service before it is actually issued
to the corresponding physical back-end filesystem. In this
section, we performed experiments in order to study the
ZooKeeper throughput for basic operations like zoo create(),
zoo get(), zoo set() and zoo delete() using the ZooKeeper
synchronous API.

With a total of 8 DUFS clients in the experimental setup, we
varied the number of ZooKeeper servers from 1 to 8. The re-
sults are shown on Figure 7. For the zoo create(), zoo delete()
and zoo set() operations, we can see that with more number
of ZooKeeper Servers the overall throughput drops down.
The is the expected behavior since this operation performs
modifications on the Znodes. Thus, all the ZooKeeper servers
have to coordinate to ensure the consistency of their replicated
states. For the zoo get() operation, the overall throughput
increases with more number of ZooKeeper Servers. ZooKeeper
performs very well in read dominant workloads [8]. Indeed,
each ZooKeeper server can serve the request independently
from each other.

B. Influence of the number of ZooKeeper Servers

In this section we performed experiments in order to study
the outcome by varying the number of ZooKeeper servers. We
used a set of 8 nodes with 8 DUFS clients, which use a number
of ZooKeeper servers varying from 1 to 8. We measured the
operation throughput and we compared it with the throughput
of our basic Lustre configuration.

The results are presented on Figure 8. As expected, read op-
erations like file stat() and directory stat() shows a significant
performance improvement when the number of ZooKeeper
servers increases. For the other operations, the effect of the
number of ZooKeeper servers is lesser.

Finally, these results show that using 8 ZooKeeper servers
is a good compromise for our configuration.

C. Influence of the number of back-end storages

In this section, we performed experiments to study the
influence of varying number of back-end storages to be
combined by DUFS. For this experiment, we had an ensemble
of 8 ZooKeeper servers. Since the directory operations do not
touch the back-end distributed filesystems, we only focus on
file operations for this experiment.

Figure 9 shows the throughput of file operations for 2
and 4 back-end storages and for different number of client
processes. We also compare this throughput to the Basic Lustre
case. Using 4 back-end storages instead of 2 provides a small
improvement for file creation and removal. For file stat(), we
can see an improvement of more than 37% with 256 client
processes.

All file operations are redirected from the DUFS client to
the back-end storage and are uniformly distributed among all
the back-end storages. However, there is an indirection to a
ZooKeeper server. File removal and creation require a Znode
modification. The cost of this modification overtakes the
benefit of multiple back-end storages. The file stat() operation
only reads the content of the Znode, which is very fast. That
is why we see a clear benefit when increasing the number of
back-end storages in this case.

D. Comparison with Lustre and PVFS2

In this section, we study the performance of our DUFS
prototype in comparison with two distributed filesystems:
Lustre and PVFS2. To keep a fair comparison, we also use
Lustre and PVFS2 as our back-end storages. We study the
scalability by increasing the number of client processes.

In these experiments, we had 8 DUFS clients and 8
Zookeeper servers. The ZooKeeper servers and DUFS clients
were running on same nodes.

From Figure 10, we can see that DUFS, with Lustre as a
back-end physical filesystem, can outperform Basic Lustre. We
can see similar results even in the PVFS2 case. One notable
point is that for the directory operations, we see a similar trend
for Lustre and PVFS2. This is expected because in DUFS,
directory operations only rely on ZooKeeper. Also, for the file
operations, DUFS with Lustre as back-end filesystem performs
way better than DUFS with PVFS2 as back-end filesystem.
This is because in that case, the back-end storage is actually
used and thus, the throughput of these operations depend on
the performance of this back-end filesystem .

From the scalability point of view, we see that Lustre and
PVFS2 do not scale very well. When the number of client
processes grows significantly, their performance drops down.
Conversely, DUFS does not perform so well at small scale.
However, it can outperform Lustre for all operations with 256
client processes. In all the cases, DUFS with PVFS2 back-
end storage is clearly better than PVFS2 alone. For directory
creation with 256 client processes, DUFS outperforms Lustre
by a factor of 1.9, and PVFS2 by a factor of 23.

Finally, we can see that for directory/file stat the approach
discussed in the paper performs exceedingly well as compared
to its basic variant i.e. Lustre and PVFS2. With respect to file



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  50  100  150  200  250

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Number of Zookeeper Server = 1
Number of Zookeeper Server = 4
Number of Zookeeper Server = 8

(a) zoo create() operation

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0  50  100  150  200  250

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Number of Zookeeper Server = 1
Number of Zookeeper Server = 4
Number of Zookeeper Server = 8

(b) zoo delete() operation

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0  50  100  150  200  250

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Number of Zookeeper Server = 1
Number of Zookeeper Server = 4
Number of Zookeeper Server = 8

(c) zoo set() operation

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0  50  100  150  200  250

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Number of Zookeeper Server = 1
Number of Zookeeper Server = 4
Number of Zookeeper Server = 8

(d) zoo get() operation

Fig. 7. ZooKeeper throughput for basic operations by varying the number of ZooKeeper Servers

stat() with 256 processes, our approach is 1.3 and 3.0 times
faster than Lustre and PVFS2, respectively. This is mainly
because ZooKeeper performs well in case of read dominant
workloads.

E. Memory usage

Since ZooKeeper keeps all its data in memory, the memory
usage can be a concern. In the following experiment, we study
the memory usage of ZooKeeper (Java process), and DUFS as
well, when the number of metadata information increases. We
have designed a benchmark that creates a large number of
directories and reports the resident process memory size. For
this experiment, all the processes ran on the same node.

Additionally, in order to compare the memory usage of
DUFS, we run the same benchmark for a dummy FUSE
filesystem which just does nothing, except forwarding the
requests to a local filesystem.

The results are shown on the Figure 11. We can see that
the memory consumed by DUFS is bounded and similar to a
normal FUSE based file system, which is what is expected.
The ZooKeeper memory usage is proportional to the number
of created directories or files (Znode data size is similar for
file or directory). From these numbers, we can estimate that
storing one million files or directory requires about 417 MB
in memory. This drawback comes from the ZooKeeper design
choice.

VI. RELATED WORK

Distributed filesystems like NFS [14], Coda [15] and
AFS [16] partition their namespace statically among multiple
servers, so most of the metadata operations are centralized.
pNFS [17] allows to distribute data but retains the con-
cept of centralized metadata. Other parallel file systems like
GPFS [18], GFS [19], Intermezzo [20] and Lustre [1] use
directory locks for file creation, with the help of a distributed
lock management (DLM) for better performance.

Lustre uses a single metadata server to manage the en-
tire namespace. Lustre distributed lock management module
handles locks between clients and servers and local locks
between nodes. The Lustre community has also mentioned
the fact of a single Metadata Server being a bottleneck in
HPC environments. So they came up with the concept of
Lustre Clustered Metadata Server (CMD). The original design
for CMD was proposed in 2008. However, CMD is still a
prototype and it has not been released yet. In CMD, files are
identified by a global FID and are assigned to a metadata
server. Once we know the FID, we can directly deal with
the server. Getting this FID still requires a centralized/master
metadata server and this information is not replicated. Thus,
it represents a bottleneck. Also, the reliability and availability
still rely on a single master node in this approach.

In order to improve the metadata mutation throughput,
previous works aimed to mount more independent filesystems



  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
1 Zookeeper
4 Zookeeper
8 Zookeeper

(a) Directory creation

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

  7,000

  8,000

64 128 256
T

h
ro

u
g

h
p

u
t 

(O
p

s
/s

e
c
)

Number of client processes

Basic Lustre
1 Zookeeper
4 Zookeeper
8 Zookeeper

(b) Directory removal

  0

  10,000

  20,000

  30,000

  40,000

  50,000

  60,000

  70,000

  80,000

  90,000

  100,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
1 Zookeeper
4 Zookeeper
8 Zookeeper

(c) Directory stat

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
1 Zookeeper
4 Zookeeper
8 Zookeeper

(d) File creation

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

  7,000

  8,000

  9,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
1 Zookeeper
4 Zookeeper
8 Zookeeper

(e) File removal

  0

  10,000

  20,000

  30,000

  40,000

  50,000

  60,000

64 128 256
T

h
ro

u
g

h
p

u
t 

(O
p

s
/s

e
c
)

Number of client processes

Basic Lustre
1 Zookeeper
4 Zookeeper
8 Zookeeper

(f) File stat

Fig. 8. Operation throughput by varying the number of Zookeeper Servers using 2 Lustre back-end storages, and compared to a basic Lustre configuration
with one metadata server

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
DUFS with 2 Lustre backend storages
DUFS with 4 Lustre backend storages

(a) File creation

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

  7,000

  8,000

  9,000

  10,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
DUFS with 2 Lustre backend storages
DUFS with 4 Lustre backend storages

(b) File removal

  0

  10,000

  20,000

  30,000

  40,000

  50,000

  60,000

64 128 256

T
h

ro
u

g
h

p
u

t 
(O

p
s
/s

e
c
)

Number of client processes

Basic Lustre
DUFS with 2 Lustre backend storages
DUFS with 4 Lustre backend storages

(c) File stat

Fig. 9. File operation throughput for different numbers of back-end storages



 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(O

p
s
/s

e
c
)

Number of processes

Basic Lustre
DUFS Approach : Merge 2 physical Lustre mounts
Basic PVFS
DUFS Approach : Merge 2 physical PVFS mounts

(a) Directory creation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(O

p
s
/s

e
c
)

Number of processes

Basic Lustre
DUFS Approach : Merge 2 physical Lustre mounts
Basic PVFS
DUFS Approach : Merge 2 physical PVFS mounts

(b) Directory removal

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(O

p
s
/s

e
c
)

Number of processes

Basic Lustre
DUFS Approach : Merge 2 physical Lustre mounts
Basic PVFS
DUFS Approach : Merge 2 physical PVFS mounts

(c) Directory stat

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(O

p
s
/s

e
c
)

Number of processes

Basic Lustre
DUFS Approach : Merge 2 physical Lustre mounts
Basic PVFS
DUFS Approach : Merge 2 physical PVFS mounts

(d) File creation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(O

p
s
/s

e
c
)

Number of processes

Basic Lustre
DUFS Approach : Merge 2 physical Lustre mounts
Basic PVFS
DUFS Approach : Merge 2 physical PVFS mounts

(e) File removal

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(O

p
s
/s

e
c
)

Number of processes

Basic Lustre
DUFS Approach : Merge 2 physical Lustre mounts
Basic PVFS
DUFS Approach : Merge 2 physical PVFS mounts

(f) File stat

Fig. 10. Operation throughput with respect to the number of clients for Lustre and PVFS2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.5  1  1.5  2  2.5

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Millions of directories created

Zookeeper
DUFS
Dummy FUSE

Fig. 11. Zookeeper memory usage and its comparison with DUFS and basic
FUSE based file system memory usage

into a larger aggregate. But with this approach, each directory
or directory sub-tree is still managed by one metadata server.
Some systems use cluster metadata servers in pairs for fail-
over. Alternatively, some systems allow any server to act as
a proxy and forward requests to the appropriate server. How-
ever, these approaches do not increase the metadata mutation
throughput [21].

Symmetric shared disk filesystems, that support concurrent
updates to the same directory, use complex distributed lock-
ing and cache consistency semantics. These both techniques
induce significant bottlenecks for concurrent create workloads,

especially from many clients working on one single directory.
Moreover, filesystems that support client caching of directory
entries for faster read-only workloads, generally disable client
caching during concurrent update workload to avoid excessive
consistency overhead. [22] mainly focuses on the file creation
strategies in distributed metadata filesystems, but it does not
consider other metadata operations. Also this work targets
PVFS. [23] describes a dynamic sub-tree partitioning and
adaptive system schemes to manage metadata workloads.

There has been some work in the area to designing a
distributed indexing scheme, GIGA+ [24], in order to build
directories with millions/trillions of files with high degree of
concurrency. This work is more relevant in workloads where
the directories have a huge fan-out factor. In GIGA+, every
server only keeps a local view of the partitions it manages, and
this state is not shared. Hence, there are no synchronization
and consistency bottlenecks. But, if the server or the partition
goes down, or if the root level directory gets corrupted, then
the files are not accessible anymore.

With our scheme, which is based on a distributed coordi-
nation service, we improve the reliability and availability. We
can achieve a good scalability, but the size of our namespace
is bounded by the actual size of the physical memory because
ZooKeeper keeps all its information in memory.

Also, some approaches combine multiple partitions into a
virtual mount point. UnionFS (Linux official union filesystem
in kernel mainline) [25] has a lot of options but it does
not support load-balancing between branches. Most of the
filesystems which combine multiple partitions into a virtual



mount are limited to a single node. The consistency is not
maintained if the underlying filesystem is modified remotely.
Some union filesystems cannot extract the parallelism. Their
default behavior is to use the first partition until it reaches
a threshold (based on the free space). Thus, the metadata
operation throughput is not improved even after combining
multiple mount points.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed a Distributed Metadata
Service Layer and evaluated its benefits to parallel file systems.
Distributed metadata management is a hard problem since
it involves taking care of various consistency and reliability
aspects. Also, scaling metadata performance is more complex
than scaling raw I/O performance. With distributed metadata,
this complexity further increases. This leads to a primary
goal while designing a Distributed Metadata Service Layer
- to improve on the scalability aspect while taking care of
consistency and reliability.

In order to study this topic, we have designed a FUSE-based
filesystem, named Distributed Union File System (DUFS).
DUFS can combine multiple mounts of a parallel filesystems
into a single virtual filesystem which is exposed to the users.
We have used ZooKeeper as a distributed coordination service
to take care of metadata reliability and consistency. Finally,
our ZooKeeper-based prototype shows the main trends that
can be expected when using a distributed coordination service
for metadata management.

From our experiments, we can see that for higher number
of processes running on the client nodes and as the load on the
client nodes increases, we can scale well with the approach
proposed in the paper as compared to the other studied dis-
tributed filesystems Lustre and PVFS2. While Lustre performs
very well for a small number of clients, its performance
drops down when the number of clients increases. With our
approach, we are able to maintain good performance even
with a large number of clients. With 256 client processes, we
are able to outperform Lustre for the 6 metadata operations
studied.

One major drawback of our approach is the memory usage
because the ZooKeeper servers keep all their data in memory.
Future work will focus on addressing this issue. Additionally,
we plan to replace our MD5-based mapping function with one
based on consistent hashing [26]. This approach will allow to
dynamically add and remove back-end storages while ensuring
that the amount of data to relocate stays bounded.

REFERENCES

[1] “Oracle Lustre File System,” http://wiki.lustre.org/index.php/MainPage.
[2] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A

parallel file system for linux clusters,” in Proceedings Of The 4th Annual
Linux Showcase And Conference. MIT Press, 2000.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003.

[4] D. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file system
workloads,” in Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’00. Berkeley, CA, USA: USENIX
Association, 2000.

[5] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in Proceedings
of the 2004 ACM/IEEE conference on Supercomputing, ser. SC ’04.
Washington, DC, USA: IEEE Computer Society, 2004.

[6] “Clustered MetaData,” http://wiki.lustre.org/index.php/Clustered
Metadata.

[7] “File System in Userspace (FUSE),” http://fuse.sourceforge.net/.
[8] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-

free coordination for internet-scale systems,” in Proceedings of the
2010 USENIX conference on USENIX annual technical conference, ser.
USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010.

[9] A. Saify, G. Kochhar, J. Hsieh, and O. Celebioglu, “Enhancing high-
performance computing clusters with parallel file systems,” Dell Power
Solutions, 2005.

[10] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long, “Obfs:
A file system for object-based storage devices,” in 21st IEEE / 12th
NASA Goddard Conference on Mass Storage Systems and Technologies
(MSST2004), Apr. 2004.

[11] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and
T. T. Mclarty, “File system workload analysis for large scale scientific
computing applications,” in In Proceedings of the 21st IEEE / 12th NASA
Goddard Conference on Mass Storage Systems and Technologies, 2004,
pp. 139–152.

[12] R. A. Rivest, “The md5 message digest algorithm,” Internet RFC 1321,
1992.

[13] “Mdtest Benchmark,” http://mdtest.sourceforge.net/.
[14] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz,

“Nfs version 3 - design and implementation,” in In Proceedings of the
Summer USENIX Conference, 1994, pp. 137–152.

[15] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
David, and C. Steere, “Coda: A highly available file system for a
distributed workstation environment,” IEEE Transactions on Computers,
vol. 39, pp. 447–459, 1990.

[16] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S.
Rosenthal, and F. D. Smith, “Andrew: a distributed personal computing
environment,” Commun. ACM, Mar. 1986.

[17] G.Goodson, B. Welch, B.Halevy, D.Black, and A.Adamson, “NFSv4
pNFS extensions,” Tech. Rep., Oct. 2005.

[18] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large
computing clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, ser. FAST ’02. USENIX Association,
2002.

[19] “RedHat Global File System,” http://www.redhat.com/gfs/.
[20] P. J. Braam, M. Callahan, and P. Schwan, “The intermezzo file system,”

1999.
[21] “Isilon Systems Inc.” http://www.isilon.com.
[22] A. Devulapalli and P. Wyckoff, “File creation strategies in a distributed

metadata file system,” in IPDPS, 2007.
[23] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic

metadata management for petabyte-scale file systems,” in Proceedings
of the 2004 ACM/IEEE conference on Supercomputing, ser. SC ’04.
IEEE Computer Society, 2004.

[24] S. V. Patil, G. A. Gibson, S. Lang, and M. Polte, “Giga+: scalable direc-
tories for shared file systems,” in Proceedings of the 2nd international
workshop on Petascale data storage, ser. PDSW ’07. New York, NY,
USA: ACM, 2007.

[25] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok, “Unionfs: User-
and communityoriented development of a unification filesystem,” in In
Proceedings of the 2006 Linux Symposium, 2006.

[26] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
ser. STOC ’97, New York, NY, USA, 1997, pp. 654–663.


