PSTL

Automatically Selecting the
Number of Aggregators
for Collective I/0 Operations

Mohamad Chaarawi and Edgar Gabriel

Parallel Software Technologies Laboratory
Department of Computer Science, University of Houston
<mschaara,gabriel>@cs.uh.edu

'ﬁ Edgar Gabriel CS }

PSTL

I Outline I

Motivation

Automatically determining the number of aggregators

Experimental Results

Conclusions and future work

m Edgar Gabriel

2

o
I Motivation

e 1/0 one of the most severe challenges for high-end
computing

e MPI 2 introduced the notion of parallel 1/0
- Relaxed consistency semantics
- Collective 1/0
- Nonblocking 1/0
- File view

TL

PSTL
I Collective |1/0 operations

o Allows to rearrange data across multiple processes

e Popular algorithm: two-phase |/0
o Algorithm for a collective write operation
e Step 1:

- gather data from multiple processes on
aggregators

- Sort data based on the offset in the file
o Step 2: aggregators write data

Edgar Gabriel
|

PSTL
l Collective I/0 operations (Il)

e Only a subset of processes actually touch a file
(aggregators)

o Large read/write operations split into multiple cycles
internally

- Limits the size of temporary buffers
- Overlaps communication and I/0 operations

« Dynamic segmentation algorithm:
- Variant of two-phase |I/0 algorithms
- Subdivides processes internally into groups
- One aggregator per group

m Edgar Gabriel

File layout

Process 0

segmentation

Two-phase |/0 vs. dynamic

PSTL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Process 1

Process 2

Two-phase |1/0 with 2 aggregators

Process 0

1

2

3

4

Process 2

Process 3

9

10

11

12

13

14

15

16

Dynamic segmentation algorithm with 2 aggregators

Process 0

1

2

3

4

9

10

11

12

m Edgar Gabriel

Process 2

5

6

7

8

13

14

15

16

PSTL
I Performance Considerations

e Performance of Tile I/O benchmark using two-phase 1/0
using 144 processes on a Lustre file system depending
on the number of aggregators

B 64x2048x1600 ' 1Mx20x15

__3000

(751

= 2500 - | -

< 2000 = |

+ 1500 - | .

5=}

$ 1000 - 4 | |

g - =

c 500 -

g D . ._- N - il
1 12 36 72 144

Mo. of Aggregators

m Edgar Gabriel

PSTL
I Performance considerations (ll)

e Contradicting goals:
- Generate large consecutive chunks -> fewer aggregators
- Increase throughput -> more aggregators

e Setting number of aggregators

- Fixed number: 1, number of processes, number of nodes,
number of /0 servers

- Tune for a particular platform and application

Edgar Gabriel
|

o PSTL
l Determining the number of l
aggregators

1) Determine the minimum data size k for an individual
process which leads to maximum write bandwidth

2) Determine initial number of aggregators taking file
view and/or process topology into account.

3) Refine the number of aggregators based on the overall
amount of data written in the collective call

Edgar Gabriel |
|

PSTL
I 1. Determining the saturation point

e Loop of individual write operations with increasing data
size
- Avoid caching effects
- MPI File write () vs. POSIXwrite ()

- Performed once, e.g. by system administrator

e Saturation point: first element which achieves (close
to) maximum bandwidth

120

100

Bandwidth (MB/s)
o S = ©
o o o [e=]

o

Message Length £

Group 1

Based on fileview

- Only 2-D pattern handled at Group 2
this time Group 3
- 1 aggregator per row of
processes Group 4

e Based on Cartesian process topology

- Assumption: process topology related to file access

e Based on hints
- Not implemented at this time

o Without fileview or Cartesian topology:
- Every process is an aggregator

m Edgar Gabriel

PSTL
l 2. Initial assignment of aggregators

0 |1 |2 |3
4 |5 |6 |7
8 |9 |10 |11
12 |13 [14 |15

I 3. Refinement step

o Based on actual amount of
data written across all
processes in one collective
call

e k < no. of bytes written in

group
-> split group

e k > no. of bytes written in

group
-> merge groups

'ﬂ Edgar Gabriel

Group 1
Group 3
Group 5

Group 7

Group 1

Group 2

PSTL

0o [1 2 |3
4 |5 6 |7
8 |9 10 | 11
12 {13 14 |15
o (1 |2 |3
4 |5 |6 |7
8 |9 |10 11
12 |13 |14 |15

Group 2
Group 4
Group 6

Group 8

PSTL
l Discussion of algorithm

« Number of aggregators depends on overall data volume
being written
- Different calls to MPI File write all with different

data volumes will result in different number of
aggregators used

e For fixed problem size, humber of aggregators is
independent of the number of processes used

e Same approach used for two-phase 1/0, dynamic
segmentation, and static segmentation

Edgar Gabriel |
|

PSTL
l Some performance results

e Shark cluster at University of Houston
- PVFS2 version 2.8.2
- 22 disks on 22 nodes, 64 KB stripe size
- Gigabit Ethernet network used for |/0
- 29 compute nodes (88 cores)
e Deimos cluster at TU Dresden
- Lustre file system 1.6.7
- 11 1/0 servers, 48 OSTs, 1 MB stripe size
- 4X SDR InfiniBand network used for I/0
- 724 compute nodes (> 2,500 cores)
e Implemented in OMPIO (Open MPI trunk rev. 24428)

m Edgar Gabriel

PSTL

o1
AWTIS
GW9ST
 AWSTT
- AWp9
awze
Q9T
ans
AWy
ane

Ji/ AT
aners
/ I9sT
- aN8eT
DIY9

@ize
9T

Message Length

a71s
4995 ¢
a8¢T
ar9
dcc
491
a8
ar

Shark saturation point
Saturation point k = 32MB

o) o o o
[#0] (Vo) <t o~

(s/aw) yipimpueg

Edgar Gabriel

120
100

.
E

991
ANTIS
AN9ST
 GNSTT
ANK9

AWz
ANOT
AN

b
ANz
AT
DITIS
DIST
- IsTT
- DIY9
Dize
a9t
D8
DI
DT
DT
azIs
8957
871
a9
gze
491
g8
gt

PSTL

Message Length

Saturation point k = 128MB

Deimos saturation point

Edgar Gabriel

.
E

PSTL
I Benchmarks and test cases used

e Tilel/O
- 2-D access pattern, cartesian communicator

e« BTI/O
- Application benchmark using 2-D access pattern

“ Edgar Gabriel {:_SE[TH

- PSTL
Shark Tile 1/0

e 81 processes test case

B e4x2048x1600 =& 1024x512x400 B IMx20x15
BE&2048x1600 @ 1024x512x400 = IMx20x15

700 - _ ;:; |
= 500 z
S s00 - £ 500 -
= 400 = 400
B 300 2 300
£ 200 ‘E 200
5 100 . J & 100 .
0 | 0
63 Auto 63 Auto
Mn ufﬂgzrelaturi (81) Nn anggregaturs (81)
dynamic segmentation two-phase 1/0

m Edgar Gabriel

- PSTL
Shark BT I/0

e 36 processes test case

mClassB mClassC BClassB ®ClassC

__ 10000 - 10000
E 1000 E 1000
= =
.E 100 _E 100
2 10 S 10
5 5 :
1
12 18 36 Auto 18 35 Auto
Nu umggregatun (2,3) " o, “”EE"E"““ (23)
dynamic segmentation two-phase 1/0

m Edgar Gabriel

. PSTL
Deimos Tile |I/0

e 144 processes test case

B 6dx2 04 8x 1000 B 1Mx20x15 B 542 0428x1600 ®IMx20x15
3500 3500
3000 3000
gﬁm ;‘?-151::::
EE{]DD = 2000
£ 1500 S 1500 -
% 1000 I g 1000 I
500 € 500 -
E 0 M . & 0 | - .
6 72 96 144 Auto 144 Auto
No. of Aggregators (144) mn.nfnggregmrs (144)
dynamic segmentation two-phase 1/0

m Edgar Gabriel

Deimos BT I/0

e 36 processes test case

EmClass B mClassC BClass B B ClassC
10000 - 10000 -
1000 - | : ¥ 1000 -
g g
E ' I I I ' K ' 11
8 8
E 1ﬂ | | | I | E 1D | ' ' ' ..
IE 1 4 ’ : i | 3 t - - L -
1 4 16 36 Auto 1 4 16 it Auto
No. of Aggregators (1,2) No. of Aggregators (1,2}
dynamic segmentation two-phase 1/0

m Edgar Gabriel

= PSTL
Deimos BT |/0

e 144 processes test case

EClass B B ClassC mClasz B B ClassC
10000 10000
-‘-E"-mﬂﬂ -E—mm :
i= 100 - F 100
-E 10 E
] o 10
Auto 1
(1,2) 144 Auto
Mo. of Aggregators ”“ “f‘""ﬂ""ﬂ‘““"" (1,2)
dynamic segmentation two-phase 1/0

m Edgar Gabriel

PSTL
I Discussion of results

e 134 tests executed in total

- 88 tests lead to best or within 10% of optimal
performance

- 110 were within 25% of best performance

e Focusing on two-phase I/0 algorithm only:

- 29 out of 45 test cases outperformed one aggregator per
node strategy on average by 41%

Edgar Gabriel

PSTL
I Conclusions

e Good performance for many test cases

- Problems mostly by dynamic and static segmentation

- Refining step can lead to strongly uneven size of groups
e Handling multiple cycles

- np * bytes per process >> na * k

->na = np

 Would be good to know internally what is the factor

restricting k

e Current implementation assumes uniform distribution
of data across processes

Edgar Gabriel |
|

I Future work

e Fix known issues
o Extend work to read operations as well

e Re-work refining steps for dynamic and static
segmentation algorithm

e Perform larger set of measurements
- More real-world applications
- More platforms, larger process counts etc.

m Edgar Gabriel

PSTL

