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o
I Motivation

e 1/0 one of the most severe challenges for high-end
computing

e MPI 2 introduced the notion of parallel 1/0
- Relaxed consistency semantics
- Collective 1/0
- Nonblocking 1/0
- File view
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PSTL
I Collective |1/0 operations

o Allows to rearrange data across multiple processes

e Popular algorithm: two-phase |/0
o Algorithm for a collective write operation
e Step 1:

- gather data from multiple processes on
aggregators

- Sort data based on the offset in the file
o Step 2: aggregators write data
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PSTL
l Collective I/0 operations (Il)

e Only a subset of processes actually touch a file
(aggregators)

o Large read/write operations split into multiple cycles
internally

- Limits the size of temporary buffers
- Overlaps communication and I/0 operations

« Dynamic segmentation algorithm:
- Variant of two-phase |I/0 algorithms
- Subdivides processes internally into groups
- One aggregator per group
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File layout

Process 0

segmentation

Two-phase |/0 vs. dynamic
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PSTL
I Performance Considerations

e Performance of Tile I/O benchmark using two-phase 1/0
using 144 processes on a Lustre file system depending
on the number of aggregators
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PSTL
I Performance considerations (ll)

e Contradicting goals:
- Generate large consecutive chunks -> fewer aggregators
- Increase throughput -> more aggregators

e Setting number of aggregators

- Fixed number: 1, number of processes, number of nodes,
number of /0 servers

- Tune for a particular platform and application
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o PSTL
l Determining the number of l
aggregators

1) Determine the minimum data size k for an individual
process which leads to maximum write bandwidth

2) Determine initial number of aggregators taking file
view and/or process topology into account.

3) Refine the number of aggregators based on the overall
amount of data written in the collective call
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PSTL
I 1. Determining the saturation point

e Loop of individual write operations with increasing data
size
- Avoid caching effects
- MPI File write () vs. POSIXwrite ()

- Performed once, e.g. by system administrator

e Saturation point: first element which achieves (close
to) maximum bandwidth
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Group 1

Based on fileview

- Only 2-D pattern handled at Group 2
this time Group 3
- 1 aggregator per row of
processes Group 4

e Based on Cartesian process topology

- Assumption: process topology related to file access

e Based on hints
- Not implemented at this time

o Without fileview or Cartesian topology:
- Every process is an aggregator
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l 2. Initial assignment of aggregators
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I 3. Refinement step

o Based on actual amount of
data written across all
processes in one collective
call

e k < no. of bytes written in

group
-> split group

e k > no. of bytes written in

group
-> merge groups
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PSTL
l Discussion of algorithm

« Number of aggregators depends on overall data volume
being written
- Different calls to MPI File write all with different

data volumes will result in different number of
aggregators used

e For fixed problem size, humber of aggregators is
independent of the number of processes used

e Same approach used for two-phase 1/0, dynamic
segmentation, and static segmentation
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PSTL
l Some performance results

e Shark cluster at University of Houston
- PVFS2 version 2.8.2
- 22 disks on 22 nodes, 64 KB stripe size
- Gigabit Ethernet network used for |/0
- 29 compute nodes ( 88 cores)
e Deimos cluster at TU Dresden
- Lustre file system 1.6.7
- 11 1/0 servers, 48 OSTs, 1 MB stripe size
- 4X SDR InfiniBand network used for I/0
- 724 compute nodes ( > 2,500 cores)
e Implemented in OMPIO (Open MPI trunk rev. 24428)
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PSTL
I Benchmarks and test cases used

e Tilel/O
- 2-D access pattern, cartesian communicator

e« BTI/O
- Application benchmark using 2-D access pattern
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Shark Tile 1/0

e 81 processes test case
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Shark BT I/0

e 36 processes test case
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Deimos Tile |I/0

e 144 processes test case
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Deimos BT I/0

e 36 processes test case
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Deimos BT |/0

e 144 processes test case
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PSTL
I Discussion of results

e 134 tests executed in total

- 88 tests lead to best or within 10% of optimal
performance

- 110 were within 25% of best performance

e Focusing on two-phase I/0 algorithm only:

- 29 out of 45 test cases outperformed one aggregator per
node strategy on average by 41%
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I Conclusions

e Good performance for many test cases

- Problems mostly by dynamic and static segmentation

- Refining step can lead to strongly uneven size of groups
e Handling multiple cycles

- np * bytes per process >> na * k

->na = np

 Would be good to know internally what is the factor

restricting k

e Current implementation assumes uniform distribution
of data across processes
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I Future work

e Fix known issues
o Extend work to read operations as well

e Re-work refining steps for dynamic and static
segmentation algorithm

e Perform larger set of measurements
- More real-world applications
- More platforms, larger process counts etc.
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