
Modeling Parallel Scientific Applications through their Input/Output Phases

Sandra Méndez, Dolores Rexachs and Emilio Luque

Computer Architecture and Operating Systems Department (CAOS)
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Abstract—The increase in computational power in processing
units and the complexity of scientific applications that use high
performance computing require more efficient Input/Output
(I/O) systems. To use the I/O systems more efficiently it is
necessary to know its performance capacity to determine if
it fulfills applications’ I/O requirements. Evaluating the I/O
system performance capacity is difficult due to the diversity of
I/O architectures and the complexity of its I/O software stack.
Furthermore, parallel scientific applications have different be-
havior depending on their access patterns. Then, it is necessary
to have some method to evaluate the I/O subsystem capacity
taking into account the applications access patterns without
executing the application in each I/O subsystem.

Here, we propose a methodology to evaluate the I/O subsys-
tem performance capacity through an I/O model of the parallel
application independent of the I/O subsystem. This I/O model
is composed of I/O phases representing ”where” and ”when”
the I/O operations are performed into application logic.

This approach encompasses the I/O subsystem evaluation at
I/O library level for the application I/O model. The I/O phases
are replicated by benchmark IOR which is executed in the
target subsystem. This approach was used to estimate the I/O
time of an application in different subsystems. The results show
an relative error of estimation lower than 10%. This approach
was also utilized to select the I/O subsystem that provide less
I/O time for the application.

Keywords-Parallel I/O System, Application I/O model, I/O
phases, I/O configuration

I. INTRODUCTION

Due to the historical “gap“ between the computing and

Input/Output (I/O) performance, the I/O system is, in many

cases, the bottleneck in parallel systems. Increasing com-

putational power of processing units and the complexity of

scientific applications that use high performance computing

require more efficient Input/Output systems. In order to hide

the ”gap” and to efficiently use the I/O, it is necessary to

identify the I/O factors with the biggest effect on perfor-

mance. The I/O factors depend on the I/O architecture and

I/O software stack, however the application performance will

depend on its access pattern.

The architecture and software of the I/O subsystem are

chosen by system administrators. The system administrator

or designer has the difficulty either to select components

of the I/O subsystem (JBOD, RAID level, filesystem, inter-

connection network, among other factors) or to choose from

different connection models (DAS, SAN, NAS, NASD) with

different parameters to configure (redundancy level, stripe,

among others). The computer clusters are built to provide

parallel computing to several application. These application

have different I/O requirements and the same I/O system is

not always appropriate for all applications. Programmers can

modify their programs to efficiently manage I/O operations,

but they need to know the I/O system, especially the I/O

software stack.

The system administrators and programmers need in-

formation to answer the following questions, When is it

convenient to use a parallel or distributed file system?

When is it convenient to use I/O nodes for management the

Input/Output? When is it convenient to use RAID or single

disks? When is it convenient to use local storage or remote

storage?

Users need informationa to answer questions as: Is the

I/O subsystem a problem for the access patterns of the

application? How much I/O subsystem capacity is being

used by the application? How the application access pattern

is done in a target subsystem?

Therefore, a model of the I/O of the application and

subsystem that can be used to compare and choose the

appropriate I/O subsystem for the particular access patterns

of the application is needed. In this context to address this,

we define an I/O abstract model of scientific applications

to support the evaluation, design and selection of different

I/O configurations. We have implemented a tracing tool for

extracting ”I/O patterns”, and based on these patterns, we

have defined the concept of ”I/O phase” of parallel scientific

applications. These I/O phases are key for defining an I/O

behavioral model of parallel scientific applications. This

model is used to analyze and select an I/O subsystem for

the application.

In this paper, we focus on describing the I/O abstract

model of the application. We have extracted the I/O model

of several applications in a system and we have tested its

independence by testing it in two computer clusters. We also

have applied this model to predict the I/O behavior of an

application in two different computer cluster obtaining an

error time prediction lower than 10%.

This article is organized as follows: in Section II we
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review the related work, Section III introduces our proposed

methodology. In Section IV we review the experimental

validation. Finally, we present our conclusions and future

work.

II. RELATED WORK

Application performance depends on access patterns and

the I/O system configuration. There are several tracing tools

to I/O operations of parallel applications, although most of

them are not available for external users. These tools can

help to identify application behavior.

Kim et. al. [1] presents a tracing tool for I/O software

stack which has been applied to PVFS2 and MPI-IO. They

provide a tracing tool which extracts I/O metrics through

the automatic instrumentation of source code of applications.

The user must select the appropriate metric and determine

that portion of code to trace.

Carns [2] presented the Darshan tracing tool for the

I/O workloads characterization of the petascale. Darshan

is designed to capture an accurate picture of the applica-

tion I/O behavior, including properties such as patterns of

access within files, with minimum overhead. Furthermore,

in [3], Carns presented a multilevel application I/O study

and a methodology for system-wide, continuous, scalable

I/O characterization that combines storage device instru-

mentation, static filesystem analysis, and a new mechanism

for capturing detailed application-level behavior. We have

utilized Darshan in the beginning of our research. However,

we decided to change to PAS2P [4] tracing tool due to it

was more appropriate to identify the I/O phases of parallel

application. We have extended PAS2P tool to trace MPI-IO

routines, of MPI2 standard [5], through an instrumentation

automatic that interposes to MPI-IO functions.

Nakka et. al. [6] presented a trace tool to extract MPI-IO

operations from very large applications running at full scale

in production systems. This trace tool is specific to their

system.

Byna et. al. [7] used I/O signatures for parallel I/O

prefetching. They presented a classification of I/O patterns

for parallel application, I/O signatures at local process level

and applying of signature to prefetching technical. We use

their propose to identify access patterns. However, we have

identified the global access pattern because we need the I/O

for the parallel application. From local access patterns and

by similarity, we have defined the global access pattern, then

global access patterns are divided in the I/O phases.

H. Shan and J. Shalf [8] have used IOR to mimic the I/O

pattern of parallel scientific applications. Also, they used this

mimic to predict the performance for the application. We

have used IOR to represent the I/O abstract model of the

application. The I/O model is represented by an I/O phases

sequence and IOR is applied to each I/O phases. In this

way, we only focus in time where the application does I/O

operations.

Table I
SUMMARY OF NOTATION

Notation Description
app parallel application ;
np number of processes of parallel application ;
traceF ile(p) tracing file of pth process;

nF number of files in the parallel application ;
idP MPI Process identifier;
idF File identifier (0 < idF < nF ) ;
initOffset initial offset for the operation (in Bytes);
disp Displacement in a position relative of the file

(in Bytes) ;
rs request size for the operation (in Bytes);
rep number of repetitions of an access pattern;
tick Logical time unit;
LAP local access pattern
LAPfile(p) local access pattern file for the pth process

weight(ph) weight of phase ph
= {rep(simLAP ) ∗ rs(simLAP )}

simLAP similar local access pattern
where the initOffset can be different

phase = {idPH, idF,weight(ph), f(initOffset)}
f(initOffset) a mathematical expression in function of initial

offset

Most of these researchers are aimed at supercomputers,

while our strategy is focused on computer clusters. Also,

these researchers have been focused in the analyze the

application executing. However, the main difference is that

our methodology is focused on obtain an I/O abstract model

of scientific application that we can apply in different I/O

systems without that the application is executed in the target

I/O subsystem.

III. PROPOSED METHODOLOGY

The proposed methodology is composed of three stages:

Characterization, I/O analysis and Evaluation. Next, we

explain each stage.

A. Characterization

The characterization is applied to the I/O subsystem and

parallel scientific application. This stage has two objectives:

i) Identifying the different I/O configurations of the I/O

subsystem; and ii) Extracting the I/O model of application.

These activities are independent. The characterization of

application is done off-line and the application I/O model

can be applied to analyze different target systems.
1) Scientific Application: The I/O model of application

is defined by three characteristics: metadata, spatial global

pattern and temporal global pattern. We characterize the

application off-line and once at I/O library level because it

provides us two important benefits. First, to obtain a model

of the application’s I/O independent from the execution en-

vironment, i.e. the computer cluster. Second, to evaluate the

behavior of the application with different I/O configurations,

avoiding the overhead of the tracing tool. The I/O model of

application is expressed by I/O phases, where an I/O phase is

a repetitive sequence of same pattern on a file for a number

of processes of the parallel application.
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Figure 1. Extracting I/O abstract model of application

Figure 2. Traces File (TraceF ile)

The notation utilized to explain the extraction of I/O

abstract model is shown in Table I. The methodology to

extract I/O abstract model of application is presented in

Figure 1.

The format of traces file is presented in Figure 2.

A logical time unit named tick (bold in the Figure 2)

is used to order the communication and I/O events of

MPI. In this case, we only show one I/O operation type

MPI File write at all.

Access local pattern is obtained from traces file for each

process MPI. Figure 3 shows the format for the access

patterns. Each line in Figure 3 is obtained taking into account

the similarity of I/O operation parameters and the tick. For

example, the first line in bold in Figure 3 means that the pro-

cess 0 has done 40 writing operations with the same request

size (10612080 bytes), displacement (10612080 bytes) and

initial offset 0 in its file view, next, the line second for the

process 0 shows 40 reading operations with same parameters

as writing operations. We can observe this behavior in the

four processes of the application. These access patterns

allows us to identify the I/O similar operations and the order

of occurrence for each process.

Furthermore, we need obtain the global behavior of the

application. We define the concept of I/O phase to express

the global behavior. We use the tick and local access pattern

to define the I/O phases. Figure 4 shows the I/O phases for

the example. Phase 1 is composed for the four processes MPI

Figure 3. Access Patterns (LAP )

Figure 4. I/O Phases (phase)

with similar access pattern simLAP and similar tick. This

phase has weight = 40MB. Phase 2 is similar to Phase

1 that occurs past 122 tick of Phase 1. The difference is

the offset that is calculated with the displacement disp and

the initOffset. We identify f(initOffset) to express the

initOffset of each process and this function is used in the

I/O abstract model of the application.

Global access pattern is obtained from I/O phases of np
processes for the application app for each nF files.

Spatial global pattern is represented by the

f(initOffset), displacement, and request size. Temporal

global pattern is represented by the tick and the local

access patterns LAP . Due to that LAP was ordered by

ticks we also can obtain the temporarily of LAP in each

process and the ordering of LAP for the np processes.

An I/O phase is one part of Global access pattern, where

LAP are similar. LAP are similar if LAP has the similar

value for a number of processes of app, except to initial
Offset because each process usually works in different part

of file to take advantage of parallel I/O. The significance of

an I/O phase in the application is valued through its weight.
The weight of a phase depends on repetitions of operations

rep, number of processes in the phase, and request size rs.

Figure 5 shows an I/O model of the example, where

the global access pattern is shown through its spatial local

pattern, spatial global pattern, temporal local pattern, and

temporal global pattern. Also, we show the global access

pattern in three dimensional space, where file Offset indicates

the position where the process ”p” is accessing in the logical

time tick with a request size rs. In the global access pattern,
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Figure 5. I/O abstract model example for 4 processes

first red dot of the four processes represent the Phase 1, the

second red dot represent Phase 2 and so on to Phase 40.

Next, the four processes do 40 reading operations in a phase

(blue in Figure 5). We have considered a phase of reading

operations because there are not other MPI events between

the reading operations. Due to this Phase 41 is similar to a

vertical blue line.

Furthermore, in the extracting of local access patterns, we

also consider the meta-data of each file of the application

because this allows us to define the different logical views

of the files and it obtains the logical global view of the

file for the processes of application. For the example, we

have identified that the access mode is ”strided” because

the application uses MPI File set view for the four

processes. Therefore, the offset for each process is about its

logical view. For example, we can observe in spatial pattern

of Figure 5, where in Phase 1 (#1) each process writes a

portion of the file (blue boxes), in Phase 2 (#2) each process

writes in the position offset + disp but this is in the file

logical view of each process for this reason we can observe

a strided access in the spatial access pattern.

2) I/O System: The I/O subsystem is structured as a hier-

archical scheme to give ordering to the evaluation process.

Table II shows the notation used in this stage.

In the I/O system characterization, we apply the following

steps:

• Identifying I/O configurations: In this step we identify

the I/O subsystem configurations. An I/O configuration

depends on number and type of filesystem (local,

distributed and parallel), number and type of network

(dedicated use and shared with the computing), state

and placement of buffer/cache, number of I/O devices,

I/O devices organization (RAID level, JBOD), and

number and placement of I/O node.

• Setting input parameters for the Benchmarks: IOR [9]

is applied at I/O library level and Global Filesystem

Table II
NOTATIONS FOR THE I/O BENCHMARKS

Notation Description
FZ File Size: size of file to test.

minimumsize = 2 ∗RAMsize, RAM size
of node where the benchmark will be executed;

RS Request Size. RS can be from KB to GB
depending on file size and transfer rate;

IOP Input/Output operations type.
value = write, read,meta− oper;

#IOP Number of I/O operations

= FZ
RS

;

NP Number of Processes that will do the IOP ;
AM Access Mode: Form of access to a file.

V alue = sequential, strided, random;
AT Access Type: Number of file per process.

V alue = shared, unique, where shared is
one file for all processes, unique is
one file per process;

CIO Collective I/O;

Table III
INPUT PARAMETERS FOR THE IOR

Parameters Parameters Values

FZ NP ∗s∗b; where −s IntegerNumber sets the
number of segments and −b Number(k,m, g)
sets contiguous bytes to write per process.

RS −t Number(k,m, g); where −t sets the re-
quest size.

NP mpirun −n NP −a MPIIO sets
the API to MPIIO mode for NP
processes. The API for I/O can be
[POSIX|MPIIO|HDF5|NCMPI]

AM Default to Sequential, Not Working to
Strided, −z to Random

AT Default to Shared , −F to Unique
IOT Default without collective I/O, −c to enable

collective I/O.

level. IOzone [10] is applied at I/O devices on local

filesystem. Parameters values are selected according

to the characteristics of the configurations identified.

We have selected different parameters of IOR and

IOzone for our methodology. Table III shows selected

parameters to IOR.

Table IV shows selected parameters to IOzone. Where

ION is I/O Node, CN is Computing Node.

• Selecting output for the Benchmarks: Output param-

eters depend on I/O requirements. The metrics are

the I/O time, number of operations, transfer rate, and

latency. Each benchmark has different options to select

metrics. Table V shows outputs for the two benchmarks.

Table IV
INPUT PARAMETERS FOR THE IOZONE

Parameters Parameters Values

FZ −s FZ where −s sets the file size to FZ.
RS −y RS sets Minimum request Size to RS.
AM −i 0 −i 1 to Sequential, −i 0 −i 5 to Strided

and−j # Set stride of file accesses to (#∗RS),
−i 0 −i 2 to Random.

AT Default to Shared , −F to Unique
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Table V
OUTPUT FOR THE I/O BENCHMARKS

Metric Notation Unit

Mean Writing Time Tio(w) seconds

Mean Reading Time Tio(w) seconds

Mean Writing operations per
second

IOPsw double number

Mean Reading operations per
second

IOPsr double number

Mean Transfer rate for the
writing operations

BWw MB/sec

Mean Transfer rate for the
reading operations

BWr MB/sec

• Identifying I/O devices to monitor: when it is necessary

to know the I/O operations at I/O devices level it can

define the units to monitor. We have selected the Linux

monitoring tool iostat for the disks monitoring that is

done in each I/O node for each partition with iostat -x
-p 1.

B. Input/Output Analysis

In previous work [11] we have presented the I/O system

performance evaluation through exhaustive characterization

with the IOR for I/O library and IOzone to I/O devices.

In the present paper we use the I/O abstract model defined

in the section (III-A1) to measure the capacity of system.

Also, this model is used to estimate the I/O time of the

application in different I/O subsystem to select the I/O

configuration with less I/O time. We use the I/O abstract

model to set the input of the benchmark IOR and we only

have executed the benchmark for the phases of I/O model.

The following setting of input parameters is applied in IOR

to each I/O phase:

• s = 1; b = weight(ph)
• t = rs(ph)
• NP = np(ph)
• −F if there is 1 file per process

• −c if there is collective I/O

The metric selected of IOR is transfer rate expressed in

MB/sec and named BW(CH). The I/O time estimate by I/O

phase to each IOP type for the application app is calculated

by expression (1).

T imeio =
n∑

i=1

T imeio(phase[i]) (1)

Where the T imeio(phase[i]) is calculated by expression

(2).

T imeio(phase[i]) =
weight(phase[i])

BW(CH)(phase[i])
(2)

For instance, Figure 6 shows an I/O model of IOR, where

are identified a writing phase and a reading phase into the

global access pattern.

The I/O model is used to determine the I/O capacity

of system and determine what system can provide best

performance to the application.

Figure 6. Example of I/O model of IOR

To determine how much of the I/O subsystem capacity

is being used, we measure the peak value of each I/O

configuration that is named BW(PK). That is obtained by

benchmark IOzone which is executed in each I/O configu-

ration identified. Peak value is the maximum value obtained

by the IOzone for the different access patterns and a peak

value is calculated by IOP .

Peak value is calculated by expression (3);

BW(PK(ION [i]) = maxBW (ION(i)) (3)

where i ∈ {0..#NIO}, (#NIO) is the number of I/O

nodes, and maxBW (ION(i)) is the maximum value ob-

tained by IOzone for the IOP . In I/O configurations with

parallel filesystems the peak value is calculated by expres-

sion (4).(
BW(PK) =

∑#NIO

i=0
maxBW (ION(i))

)
(4)

C. Evaluation

We evaluate the utilization of I/O system by the relation

between the bandwidth characterized BW(PK) at I/O de-

vices level and measured BW(MD) expressed in equation

5.

SystemUsage(phase[i]) =
BW(MD)(phase[i])

BWPK(IOP (phase[i]))
∗ 100

(5)

We also evaluate the relative error produced by the I/O

time estimation. This is necessary to evaluate how much

our configuration selecting can be deviated. Relative error is

calculated by expression (6);

errorrel = 100 ∗ ( errorabs
BWMD(phase[i])

) (6)

where absolute error is calculated by the expression (7).

errorabs = |BW(CH)(phase[i])−BWMD(phase[i])| (7)

When a phase has two or more I/O operations then the

BW(CH) is calculated how the average of the BW(CH) of

each I/O operation that composes the I/O phase.
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Table VI
I/O CONFIGURATIONS FOR THE AOHYPER CLUSTER

I/O Element Configuration A Configuration B

I/O library mpich2 mpich2, HDF5
Communication
Network

1 Gb Ethernet 1 Gb Ethernet

Storage Network 1 Gb Ethernet 1 Gb Ethernet
Filesystem
Global

NFS Ver 3 PVFS2 2.8.2

I/O nodes 8 DAS and 1 NAS 8 DAS and 3 NASD
Metadata Server 1 1
Filesystem Local Linux ext4 Linux ext3
Level
Redundancy

RAID 5, Stripe 256KB JBOD

Number of I/O
Devices

5 disks 3 Disk

Capacity of I/O
Devices

917GB 130GB

Mounting Point /raid/raid5 /mnt/pvfs2

Table VII
DESCRIPTION OF CONFIGURATION C AND FINISTERRAE

I/O Element Configuration C Finisterrae

I/O library OpenMPI mpich2, HDF5
Communication
Network

1 Gbps Ethernet 1 Infinibad 20 Gbps

Storage Network 1 Gbps Ethernet 1 Infinibad 20 Gbps
Filesystem
Global

NFS Ver 3 Lustre (HP SFS)

I/O nodes 8 DAS and 1 NAS 18 OSS
Metadata Server 1 2 with 72 cabins SFS20
Filesystem Local Linux ext4 Linux ext3
Level
Redundancy

RAID 5 RAID 5

Number of I/O
Devices

5 disks 866 disks

Capacity of I/O
Devices

1.8 TB hot-swap SAS 866*250GB

Mounting Point /home $HOMESFS

IV. EXPERIMENTATION

To validate the methodology we present the experiments

in two parts; i) I/O capacity utilization; ii) validation of the

configuration selected.

We evaluate the system usage of two I/O configurations

in an own cluster which is named Aohyper. Table VI shows

the I/O configurations identified. Aohyper are composed of

8 computing nodes:

• AMD Athlon(tm) 64 X2 Dual Core Processor 3800+,

2GB RAM memory

• 150GB local disk.

• I/O nodes of PVS2: Intel(R) Pentium(R) 4 CPU

3.00GHz processors, 1GB RAM memory, 80 GB disk

Validation of configuration selected has been evaluated in

two I/O subsystem. Table VII shows configuration C and the

configuration of cluster Finisterrae. Finisterrae is a cluster of

Center of Supercomputing of Galicia (CESGA [12]), Spain.

FinisTerrae is composed of 143 computing nodes:

• 142 HP Integrity rx7640 nodes with 16 Itanium Mont-

vale cores and 128 GB of memory each.

• 1 HP Integrity Superdome node with 128 Itanium

Montvale cores and 1,024 GB of memory.

Configuration C is composed of 32 IBM x3550 Nodes:

• 2 x Dual-Core Intel(R) Xeon(R) CPU 5160 @ 3.00GHz

4MB L2 (2x2)

• 12 GB Fully Buffered DIMM 667 MHz

• Hot-swap SAS Controller 160GB SATA Disk

• Integrated dual Gigabit Ethernet

A. I/O subsystem utilization

To evaluate the system usage we evaluate the I/O phases

to MADBench2 [13]. MADbench2 is a tool for testing the

overall integrated performance of the I/O, communication

and calculation subsystems of massively parallel architec-

tures under the stress of a real scientific application.

MADbench2 is based on the MADspec code, which

calculates the maximum likelihood angular power spectrum

of the Cosmic Microwave Background radiation from a

noisy pixelated map of the sky and its pixel-pixel noise

correlation matrix. MADbench2 can be run as single or

multi-gang; in the former all the matrix operations are

carried out distributed over all processors, whereas in the

latter the matrices are built, summed and inverted over all

the processors (S & D), but then redistributed over subsets

of processors (gangs) for their subsequent manipulations (W

& C).

MADbench2 can be run on IO mode, in which all

calculations/communications are replaced with busy-work,

and the D function is skipped entirely. The function S

writes, W reads and writes, C reads. This is denoted as S w,

W w, W r, C r. MADbench2 reports the mean, minimum

and maximum time spent by each function during calcula-

tion/communication, busy-work, reading and writing in each

function. Running MADbench2 requires a n2 number of

processors.

We have obtained the I/O model of MADBench2 for 16

processes, 8KPIX, shared filetype, 32 MB request size. The

I/O model of MadBench2 is shown Figure 7 and Table VIII

shows the five phases identified and the general format for

the initial offset on each phase. By tracing MADBench2

with our tool we have obtained its metadata:

• Individual file pointers, Non-collective I/O operations,

Blocking I/O operations.

• Sequential access mode, Shared access type.

• A file shared by all processes

Table IX shows the utilization of configuration A and

Table X shows the utilization of configuration B. We also

show the amount of data transferred in each I/O phase, the

number and type of I/O operation (W=write, R=read, W-

R=write-read), BW(MD) and BW(PK) in MB/second.

We can observe in Table IX and Table X that MADBench2

use about 30% of the I/O subsystem capacity respect to

BW(PK). However, we have observed in the monitoring of
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Figure 7. I/O model of MADBench2 for 16 processes, 8KPIX, and File
type SHARED

Table VIII
I/O PHASES DESCRIPTION OF MADBENCH2 FOR 16 PROCESSES

Phase #Oper. InitOffset Rep weight

1 16 write idP ∗ 8 ∗ 32MB 8 4GB
2 16 read idP ∗ 8 ∗ 32MB 2 1GB
3 16 write idP ∗ 8 ∗ 32MB 6 3GB

16 read idP ∗ 8 ∗ 32MB+ 6 3GB
+2 ∗ 32MB

4 16 write idP ∗ 8 ∗ 32MB− 2 1GB
−2 ∗ 32MB

5 16 read idP ∗ 8 ∗ 32MB 8 4GB

devices( Figure 8) that the configuration B in the I/O phases

of MADBench2 uses about the 100%, because when we

calculated the BW(PK) for the configuration B, we have

considered the ideal case, where I/O devices are working

in parallel without influence of other components. We can

observe in the monitoring how the different I/O phases of

MADBench2, that were obtained at I/O library level, are

Table IX
I/O SYSTEM UTILIZATION, BW(PK) AND BW(MD) IN MB/SECOND

FOR MADBENCH2 WITH 16 PROCESSES, FILE SIZE 4 GB AND A

SHARED FILE ON CONFIGURATION A

Phase #Oper. weight BW(PK) BW(MD) System

on conf. A on conf. A Usage

1 128 W 4GB 400 93 23
2 32 R 1GB 350 68 18
3 192 W-R 6GB 375 63 16
4 32 W 1GB 400 89 22
5 128 R 4GB 350 66 19

Table X
I/O SYSTEM UTILIZATION, BW(PK) AND BW(MD) IN MB/SECOND

FOR MADBENCH2 WITH 16 PROCESSES, FILE SIZE 4 GB AND A

SHARED FILE ON CONFIGURATION B

Phase #Oper. weight BW(PK) BW(MD) System

on conf. B on conf. B Usage

1 128 W 4GB 165 60 36
2 32 R 1GB 180 39 22
3 192 W-R 6GB 173 34 19
4 32 W 1GB 165 54 33
5 128 R 4GB 180 37 21

Figure 8. Sector per second and Bandwidth utilization for disk of
MAdBench2 on configuration B

reflected at I/O device level. This view of application I/O

can be useful for the matching of processes that do I/O

operations near to I/O nodes or for the planning the parallel

applications taking into account when the I/O phases are

done in the application executing.

B. Validation of the configuration selected

To validate the methodology, the I/O phases identification

is applied to Block Tridiagonal(BT) application of NAS

Parallel Benchmark suite (NPB)[14]. The BTIO benchmark

performs large collective MPI-IO writes and reads of a

nested strided datatype, and it is an important test of the

performance that a system can provide for non-contiguous

workloads. After every five time steps the entire solution

field, consisting of five double-precision words per mesh

point, must be written to one or more files. After all time

steps are finished, all data belonging to a single time step

must be stored in the same file, and must be sorted by vector

component, x-coordinate, y-coordinate, and z-coordinate,

respectively.

Due to that NAS BTIO has an access mode strided and

the IOR is not working in this mode, we have selected

the sequential access mode to replicate the I/O phases. We

have obtained the following meta-data of NAS BT-IO in the

FULL subtype with our tool:

• Explicit offset, Blocking I/O operations, Collective op-

erations.

• Strided access mode, Shared access type.

• MPI-IO routine MPI Set view with etype of 40.

• Request size 10MB.

Figure 9 shows I/O phases for 16 processes, Class C and

FULL subtype obtained in the configuration A and B.

We also have obtained the I/O model in the configuration

C and Finisterrae for the class D to 36 processes. Figure 10

shows the I/O model, we had obtained the same I/O model

in the four configurations to different classes. Difference

between the classes is the weights of the phases.

Table XI shows description of I/O phases for NAS BT-IO

where ph is the number of phase, rs is request size, np the

number of processes into the phase ph, idP is the rank of

MPI processes. We have obtained the same behavior for the

class D for 36, 64 and 121 processes.
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Figure 9. I/O model of NAS BTIO, class C, 16 processes on configuration
A and B

Figure 10. I/O model to NAS BT-IO, class D, 36 processes, and subtype
FULL on Configuration C and Finisterrae

We have calculated the I/O time using our proposed to

choose the configuration with less I/O time in the configu-

ration C and Finisterrae. Table XII shows the T imeio(CH),

we can observe that the configuration with less I/O time for

NAS BT-IO with 64 processes is Finisterrae.

Table XI
I/O PHASES DESCRIPTION OF NAS BT-IO SUBTYPE FULL FOR np

PROCESSES

Phase Oper. InitOffset Rep.

Class C
1-40 np W in rs ∗ idP + (rs ∗ (ph− 1)+ 1

each phase +(rs ∗ (np− 1)) ∗ (ph− 1))
41 np R rs ∗ idP + (rs ∗ (Rep− 1)+ 40

+(rs ∗ (np− 1)) ∗ (rep− 1))
Class D

1-50 np W in rs ∗ idP + (rs ∗ (ph− 1)+ 1
each phase +(rs ∗ (np− 1)) ∗ (ph− 1))

51 np R rs ∗ idP + (rs ∗ (Rep− 1)+ 50
+(rs ∗ (np− 1)) ∗ (rep− 1))

Table XII
I/O TIME ESTIMATION (T imeio(CH)) ON CONFIGURATION C AND

FINISTERRAE FOR 64 PROCESSES

Phase T imeio(CH) T imeio(CH)

on conf. C on Finisterrae
64p

Phase 1-50 1167,40 932,36
Phase 51 2868,51 844,42

Table XIII
ERROR OF I/O TIME ESTIMATION ON CONFIGURATION C FOR 36, 64

AND 121 PROCESSES

Phase T imeio(CH) T imeio(MD) errorrel

36p
Phase 1-50 1137,50 1239,05 9%
Phase 51 2773,32 2701,22 3%

64p
Phase 1-50 1167,40 1153,05 1%
Phase 51 2868,51 2984,75 4%

121p
Phase 1-50 1253,05 1262,10 1%
Phase 51 3065,91 3107,192 1%

Table XIV
ERROR OF I/O TIME ESTIMATION ON FINISTERRAE FOR 64 PROCESSES

Phase T imeio(CH) T imeio(MD) errorrel

64p
Phase 1-50 932,36 924,85 1%
Phase 51 844,42 909,43 7%

Table XIII shows the errorrel in the estimation for 36,

64 and 121 processes on configuration C.

Table XIV shows the error in Finisterrae for 64 processes.

We have evaluated these errors by executing several times

NAS BT-IO and error was similar for the different tests.

Furthermore, the I/O model have obtained at a different

time to discard the influence of the tracing tool. The same

I/O model can be applied to estimate the I/O time in other

systems, where T imeio(CH) will be obtain by expression

(2), the BWCH will be obtain executing IOR with the input

parameters explained in the section III-A1. We can observe

that estimation is better to higher number of processes. The

error in the two configurations is less than 10% and it is

reduced for increased workload and number of processes.

V. CONCLUSION

A methodology to obtain the I/O abstract model of parallel

application has been proposed and it has been utilized to

compare different I/O subsystems. It allows us to determine

how much of the system’s capacity is being used taking into

account the I/O phases of application. The methodology can

be used to select the configuration with less I/O time from

different I/O configurations.

The I/O model of application is defined by three charac-

teristics: metadata, spatial global pattern and temporal global

pattern. We instrument the application to obtain the access

pattern and we analyze the pattern to find the I/O phases.

This instrumentation is done at MPI-IO level which does not

require the source code.

We have evaluated the I/O system utilization of different

configurations by considering the I/O model of application

and the I/O system.

This methodology was applied in four different config-

urations for the application kernel: NAS BT-IO and Mad-

Bench2. The characteristics of four I/O configurations were

evaluated with: IOR for the I/O phases of the I/O abstract

model and by IOzone on I/O devices to obtain the peak
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values. We have obtained the I/O model of MadBench2 and

we have evaluated the difference of performance on two

configurations taking into account the I/O phase behavior of

application in I/O devices.

We have used the I/O model to estimate the I/O time and

choose the I/O configuration with less I/O time. Relative

errors are acceptable but we have observed the increasing

of error for the complex phases as phase 3 of MadBench2,

where the error was about the 50%. This is because we

used to the characterization IOR and this does not allow

to configure complex access patterns. We are designing

benchmark to replicate the I/O when there are 2 o more

operations in a phase to fit the characterization better and

reduce estimation error.

We will extend the I/O phases identification to different

applications which show different I/O behaviors. We are

analyzing real scientific applications to obtain their I/O

models. We are analyzing upwelling of ROMs framework

that use HDF5 parallel to writing operations. We have used

our tracing tool in the Finisterrae and have obtain the traces.

This application open different files in executing time and

we can observe that our model is applicable to each file but

still is necessary refine the methodology to I/O phases with

access patterns complex, and to the I/O library HDF5.

We will use the I/O model to support the evaluation,

design and selection of different configurations of the I/O

system. In order to test other configurations, we have ana-

lyzed the simulation framework SIMCAN [15] and we are

planning to use such tool to model I/O architectures.
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