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ORNL Production-Level S/U 
Capabilities

• Publicly released TSUNAMI tools in SCALE 5.0
− eigenvalue S/U analysis tools

• 1-D discrete ordinates
• 3-D Monte Carlo

− operation from automated sequences with problem-dependent 
cross section processing and “implicit effect”

− cross-section-covariance data library
− code for system-to-system similarity assessment
− data visualization GUI and interactive HTML output

• TSUNAMI training for criticality code validation
− 8 multiday classes taught since 2004, ~150 participants
− 6-hour tutorial presented at 2004 ANS annual meeting
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TSUNAMI-3D Sequence

− Uses 3D Monte Carlo calculations (KENO V.a) to score spherical 
harmonic moments of forward and adjoint flux:

− Folds forward and adjoint moments to produce nuclide, energy & cross 
section dependent sensitivity profiles by spatial zone:
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Sample Sensitivity Results
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• The “explicit” effect is sensitivity of keff to changes in multigroup 
cross sections appearing transport equation

• The “implicit” effect is sensitivity of keff to cross section 
perturbations caused by changes in self-shielding

− Example: perturbation in σ(H) changes self-shielded σ(U238) => cross 
section data may be sensitive to changes in other data

• The implicit effect can be propagated to keff via the chain rule for 
derivatives and combined with the explicit to form the complete 
sensitivity coefficient.

Sα x ;α j
=

Complete Sensitivity Coefficient Includes Effects 
of Changes in Self-Shielded Cross Sections

α j

α x

∂α x

∂α j

αx = shielded cross section
αj = data used in resonance calculation
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Improved Results
by Including Implicit Effect

Nuclide Reaction
Direct 

Perturbation 
Sensitivity

TSUNAMI 
Sensitivity % Diff.

TSUNAMI 
Sensitivity 

(no implicit)
% Diff.

1H total 0.22 0.22 0% 0.29 27%
19F total 0.04 0.04 0% 0.05

0.25

−0.29

235U total .25 0.25 0%

18%

0%

238U total -0.21 -0.21 0% 39%
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Sensitivity for 1H Elastic,
with Implicit Effect
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Applications of TSUNAMI-3D to 
Complex Models

• Burnup Credit Cask Model
• 32 PWR fuel assemblies in flooded cask

• 18 axial burnup zones

• Burned to 40 GWd/MTU; Cooled for 5 years

• BORAL™ plates around each assembly

• Cask filled with water

• Commercial Reactor Criticals (CRC)

• Startup data from PWRs (Crystal River)

• 1/2 core models

• Each pin explicitly modeled with 18 axial 
zones

• Sensitivity coefficients for ~47,000 nuclides, 
~420,000 44-group profiles
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Uncertainty Propagation

• Uncertainty in keff of a single system
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Uncertainties in keff Due to Cross 
Section Covariance Data

•Uncertainties (standard deviations) in keff
typically range from 0.8% (thermal) to over 
2% (fast)
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Uncertainties in keff Due to Cross-
Section Uncertainties
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TSUNAMI Tools for System 
Similarity Assessment

ck=0.91
ck=0.51
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Uncertainty Propagation (con’t)

• Uncertainty in keff for multiple systems
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Covariance Data in ENDF/B-VI
49 of 344 evaluations have covariance data

Th-232 Sc-45*
Pu-242 Cr-50,52,53,54 
Au-197 Fe-54,56,57,58
Bi-209* Ni-58,60,61,62,64
Pu-240 Mn-55
Am-241 Cu-63*,65*
V* F-19
Co-59 Re-185*,187*
Y-89* Pb-206,207,208
Ti-46*,47*,48* Si
Na-23 Nb*
U-238 In*
Al-27 U-235
Pu-241 H-1**
N-14** O-16**
Li-6** B-10**
Np-237** Pu-239**

*  New in ENDF/B-VI
** Present in ENDF/B-V, but not in ENDF/B-VI.
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Procedure to Generate
Covariance Library for Applications

• Process all ENDF/B-VI covariances (49 nuclides)
• If available, use ENDF/B-V covariances for missing ENDF/B-VI 

data (7 nuclides)
• Approximate covariances of other missing nuclides by integral 

measurement uncertainties - Mughabghab data (>250 nuclides)
− σc, σf, υ covariance for E<0.5 eV based thermal data uncertainty, with 

full correlation
− σc, σf covariance for 0.5<E<5E3 eV based on resonance integral, with 

full correlation
− σs covariance for moderators based on uncertainty in potential 

cross section, fully correlated
• 600 matrices in SCALE 5.0 covariance library (ENDF/B-V only)
• 2439 matrices in SCALE 5.1 covariance library
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Sample SCALE 5.1 Covariance 
Data

“Low-Fidelity Data” ENDF/B-VI Data
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Javapeño for SCALE 5.1
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Developmental Activities

TSUNAMI Beyond SCALE 5.1
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TSURFER
Performs Generalized Linear Least-Squares (GLLS)

Analysis of Design System and Benchmark Data Base

• Systematic procedure to consolidate 
calculations with measured responses

• Computes “best” cross-section adjustments to
minimize differences in computed and
measured benchmark responses

• Propagation of data perturbations to the design 
system response provides estimate of 
computational bias and uncertainty

• Allows correlations in experimental uncertainty
components; filtering of benchmarks based on
similarity; edit of adjusted data and covariances
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Bias Prediction Versus Number of 
Similar Systems (ck > 0.9) in GLLS Adjustment

five design applications (passive) 

included in adjustment
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Reactivity Sensitivity and 
Uncertainty Analysis
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Application to ACR-700 CVR
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ACR-700 Uncertainties

TABLE V 
Response Uncertainties Due to Available Nuclear Data Covariances 

Response Relative Standard 
Deviation (%) 

Multiplication factor for state 1 0.80 
Multiplication factor for state 2 0.84 
Coolant void reactivity (CVR) 49.8 
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Shielding

payload

adjoint source forward source

vacuum 
B.C.

(void)

adjoint source

payload

Space Reactor Spherical Model

Shielding

DB2 leakage

[GCR core]



Response Uncertainty Analysis
for Space-Shielding

Shield Design Response ;
Uncertainty %

Identified Major Contributors to 
Uncertainty

o-16   n,n'

h-1    elastic

o-16   elastic

o-16   n,alpha

li-6   elastic

fe-56  n,n'

fe-56  n,gamma

cr-53  n,gamma

ni-58  n,gamma

mn-55  n,gamma

b-10   n,alphaPeak Heating
0.28% fe-56  elastic

Si γ-Kerma
1.34%

φ>1MeV
6.01%
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--------------------
B4C  

--------------------
Be + B4C

-------------------
SS316    
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Water+LiOH

-------------------
SS316  

____________     
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Overview of ORNL Lab-Directed R&D
Projects on the Strategic Use of High 

Performance Computing for
Modeling Complex Phenomena

Kevin Clarno
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Global Nuclear Energy Simulator
for Reactors - GNES-R

• Explore scientific phenomena
− Complex interaction of nuclear, mechanical, 

chemical, & structural processes in fission 
reactors 

• Simulate severe accidents
− Multi-physics transients with advanced materials 

at high temperature and pressure in a changing 
radiation spectrum 

• Optimize nuclear designs
− Nuclear facilities are expensive: cost & time
− Radiation activation prevents retrofits

ORNL INL
Nuclear analysis and simulation

Computer science and mathematics

2 year, 5 people

Thermal-fluid simulation for reactors

Nuclear reactor accident modeling

Two 3 year, 5 people

• Leverage both ORNL & INL resources
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Working together we can utilize 
intellectual and financial resources 
across institutions

• Computer Science and Math ORNL
− Integrate interoperability and scientific              ANL, U-Tenn

tools from the SciDAC program
• Radiation Transport                           ORNL - GA Tech

− Develop a high-fidelity neutral-particle                        U-Tenn
radiation transport code

• Fluid Dynamics & Heat Transfer INL
− Develop a multi-phase, non-isothermal CFD code          ANL
− Multi-material, non-isothermal, chemically-reactive

• Structural-dynamics (TBD)
− Fluid-structure, elasto-plastic mechanics
− Impact dynamics

• Multi-scale materials modeling (TBD)

LDRDs

Future
Work
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Proposed ORNL/LANL R&D 
Under DOE SciDAC

• Integrate advanced TSUNAMI eigenvalue
S/U techniques into CE-KENO and MCNP

• Develop production-level sensitivity 
version of ORIGEN

• End goal:  Production level depletion-
perturbation-theory code sequence for 
advanced reactor design

• Propagate and accumulate uncertainties 
throughout calculation
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