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Sensitivity Coefficients Reveal the Relation 
Between Nuclear Data and Applications
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S/U Methods Can Be Used to Assess 
Impact of Data on Design of AFC Facilities

• REACTOR CORE
− Core performance and safety parameters 
− Fuel cycle

• CRITICALLITY SAFETY AND SHIELDING
− Fuel fabrication
− Reprocessing/recycling facilities
− Transportation of spent fuel
− Rad-waste disposition facilities
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Applications of S/U Methods
• Determine sensitivity of calculated results to nuclear data used

in transport calculations

• Determine uncertainty in calculations due to data uncertainties

• Identify relative contributions of nuclear data to uncertainty

• Perform similarity analysis of application vs. experiments to 
select or design integral benchmark experiments

• Adjust differential and integral data to obtain greater 
consistency

• Determine computational bias and uncertainty in response, 
based on benchmark experiment analysis
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Limitations of Earlier S/U Methods

• Limited to homogenized transport models, often based 
on 1D/2D discrete ordinates or 3D diffusion theory

• Could not address thermal systems with significant 
resonance self-shielding sensitivities

• Lack of cross section covariance data
• Difficult to use– required setting up multiple calculations: 

− radiation transport
− sensitivity coefficients
− uncertainty analysis 

In 1970-80’s S/U Methods Were 
Developed for (mainly) LMFBR Analysis
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TSUNAMITSUNAMI

• Entire computation sequence is automated 
• Sensitivity calculation based on 3D Monte Carlo

or 1D SN
• Sensitivity coefficients include effects of 

perturbations in resonance self-shielding
• A more complete covariance library is available, 

based on integral approximation 
• GUI’s are available for displaying S/U information
• Modules available for similarity analysis and data

adjustment

The Next Generation of S/U Methods at ORNL
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Burnup Credit Cask Model
for S/U Analysis with Monte Carlo

• 32 PWR fuel assemblies

• 4 wt% Westinghouse 17x17 assemblies 

• 18 axial burnup zones

• Burned to 40 GWd/MTU; Cooled for 5 
years

• BORAL™ plates around each assembly

• 23.76 cm (9.353”) cell pitch

• Cask filled with water

• Referred to as the GBC-32 (for details 
see NUREG/CR-6747)
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TSUNAMI-3D Calculation for H Total 
Sensitivity in Shipping Cask
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• “ExplicitExplicit EffectEffect” = 
sensitivity to changes in multigroup cross 
sections appearing transport equation

• “Implicit Implicit EffectEffect” = 
sensitivity to cross section perturbations 
caused by changes in self-shielding

Complete Sensitivity Coefficient 
Includes Implicit and Explicit Effects

Example:
A perturbation in σ(H) changes self-shielded σ(U238); 
→ implicit perturbation in σ(U238) changes keff
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Sensitivity Coefficient for H Elastic
in Thermal Critical Experiment
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Approximate Covariance Library 
for TSUNAMI Applications

• Covariance data for >50 nuclides were taken from  
ENDF/B-VI, JENDL-3.3, or JEFF-3.1 if available

• Covariance data for >250 nuclides are approximated 
by integral measurement uncertainties
− σs (moderators)        ~ potential cross section uncertainty
− σc,σf,υ [ E < 0.5 eV] ~  thermal data uncertainty
− σc,σf [0.5 < E < 5E3 eV] ~ resonance integral uncertainty

NO UNCERTAINTIES INCLUDED FOR E > 5E3 eV
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Differential versus Integral Data 
and Uncertainties

Nuclide ENDF/B 
VI

Integral 
experiment

difference 
(%)

integral 
uncertainty (%)

Cd-113 3.92E+2 3.90E+2 0.5

0.7

0.2

3.0

10.3

Xe-135 7.65E+6 7.60E+3 6.6

Sm-149 4.02E+4 4.01E+4 5.9

Np-237 6.60E+2 6.40E+2 7.8

Resonance Integrals
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Response Relative St. Dev. (%)
Eigenvalue, unvoided 0.80
Eigenvalue,  voided 0.84

coolant void reactivity 49.8

Example Uncertainty Analysis:
coolant void reactivity in advanced Candu reactor

DD22OO
HH220 0 

coolantcoolant

ZrZr

Fuel Fuel 
PinsPins



Example Uncertainty Analysis:
Space-Reactor Shielding

Shield Design Response ;
Uncertainty %

Major Contributors 
to Uncertainty
o-16   n,n'

h-1    elastic

o-16   elastic

o-16   n,alpha

li-6   elastic

fe-56  n,n'

fe-56  n,gamma

cr-53  n,gamma

ni-58  n,gamma

mn-55  n,gamma

b-10   n,alphaPeak Heating
0.28% fe-56  elastic

Si γ-Kerma
1.34%

φ>1MeV
6.01%

____________
SS316

--------------------
B4C  

--------------------
Be + B4C

-------------------
SS316    

-------------------
Water+LiOH

-------------------
SS316  

____________     
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Similarity Analysis
Similarity parameter ck is system correlation coefficient

between a design system and a critical experiment

Premise: Computational bias is caused largely by 
uncertainties in cross section data

− Systems with similarly high sensitivities to same cross-section 
uncertainty data will have similar computational biases

• Normalized: such that
− ck =  1.0 indicates systems are fully correlated ; 
− ck =  0.0 indicates systems are completely uncorrelated
− ck = -1.0 indicates systems are fully anti-uncorrelated

†
A E

k
Cov[A,E] S Cov[σ,σ] Sc (A,E) = =[std(A)] [std(E)] [std(A)] [std(E)]



EXAMPLE SIMILARITY ANALYSIS:
Selection of Benchmark Experiments for 

Criticality Safety Validation

ck=0.93

ck=0.66

239Pu Fission Sensitivities
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EXAMPLE SIMILARITY ANALYSIS:
integral experiment design for shipping cask

original SNL 
experiments modified experiment

cask sensitivity

revised experiment

cask sensitivity

cask sensitivity

original experiments



Generalized Least-Squares Consolidation 
of Differential and Integral Data

• Computes “best” data adjustments to minimize differences
in computed and measured integral experiments 

• Propagates adjustments to application to estimate
computational bias and uncertainty

Modified Suite, Chi2=1.04 +/- 0.16
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Summary
•S/U methods can play important role in data assessment 

for in-reactor as well as ex-reactor components of AFC

•TSUNAMI code system provides unified set of S/U tools 
for ACF applications 
−Computation of sensitivities with 3D Monte Carlo or 1D discrete

ordinates transport theory
−Determination of implicit sensitivity due to self-shielding 
−Availability of approximate, extended covariance library
−Computation of uncertainties for in-core and ex-core responses
−Similarity analysis between proposed facility designs and 

integral experiments for validation
−Consolidation of integral /differential data for improved estimates 

of facility design parameters
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