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Sensitivity Coefficients Reveal the Relation
Between Nuclear Data and Applications
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S/U Methods Can Be Used to Assess
Impact of Data on Design of AFC Facilities

e REACTOR CORE

— Core performance and safety parameters
— Fuel cycle

o CRITICALLITY SAFETY AND SHIELDING

— Fuel fabrication

— Reprocessing/recycling facilities
— Transportation of spent fuel

— Rad-waste disposition facilities
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Applications of S/U Methods

e Determine sensitivity of calculated results to nuclear data used
In transport calculations

e Determine uncertainty in calculations due to data uncertainties
e |dentify relative contributions of nuclear data to uncertainty

e Perform similarity analysis of application vs. experiments to
select or design integral benchmark experiments

e Adjust differential and integral data to obtain greater
consistency

e Determine computational bias and uncertainty in response,
based on benchmark experiment analysis
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In 1970-80’s S/U Methods Were
Developed for (mainly) LMFBR Analysis

Limitations of Earlier S/U Methods

e Limited to homogenized transport models, often based
on 1D/2D discrete ordinates or 3D diffusion theory

e Could not address thermal systems with significant
resonance self-shielding sensitivities

e Lack of cross section covariance data

e Difficult to use— required setting up multiple calculations:
— radiation transport
— sensitivity coefficients
— uncertainty analysis

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

5




TSUNAMI
The Next Generation of S/U Methods at ORNL

e Entire computation sequence is automated

e Sensitivity calculation based on 3D Monte Carlo
or 1D SN

e Sensitivity coefficients include effects of
perturbations in resonance self-shielding

e A more complete covariance library is available,
based on integral approximation

o GUI's are available for displaying S/U information

e Modules available for similarity analysis and data
adjustment
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TSUNAMI-3D Computation Sequence
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Burnup Credit Cask Model
for S/U Analysis with Monte Carlo

« 32 PWR fuel assemblies
* 4 wt% Westinghouse 17x17 assemblies

e 18 axial burnup zones

e Burned to 40 GWd/MTU; Cooled for 5
years

« BORAL™ plates around each assembly
o« 23.76 cm (9.353”) cell pitch
« Cask filled with water

 Referred to as the GBC-32 (for details
see NUREG/CR-6747)
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TSUNAMI-3D Calculation for H Total
Sensitivity In Shipping Cask

gbc-32, 4 wt %, 40 GWd/MTU, h-1 total
Integral Value = 0.221408 + 0.02422717
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Complete Sensitivity Coefficient
Includes /mplicit and Explicit Effects

o “Explicit Effect’” =
sensitivity to changes in multigroup cross
sections appearing transport equation

o “Implicit Effect” =

sensitivity to cross section perturbations
caused by changes in self-shielding

Example:
A perturbation in o(?) changes self-shielded o(Y238);
— implicit perturbation in o(Y238) changes k_
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Sensitivity Coefficient for H Elastic
In Thermal Critical Experiment
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Approximate Covariance Library
for TSUNAMI Applications

e Covariance data for >50 nuclides were taken from
ENDF/B-VI, JENDL-3.3, or JEFF-3.1 if available

e Covariance data for >250 nuclides are approximated
by integral measurement uncertainties
— 0, (moderators) ~ potential cross section uncertainty
- 0,0,V [E<0.5eV] ~ thermal data uncertainty
— 0.,0; [0.5 < E <3E3 eV] ~ resonance integral uncertainty

NO UNCERTAINTIES INCLUDED FOR E > 5E3 eV
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Differential versus Integral Data
and Uncertainties

Resonance Integrals

Nuclide ENDF/B Inte_gral difference integral
Vi experiment (%) uncertainty (%)
Cd-113 | 3.92E+2 3.90E+2 0.5 10.3
Xe-135 7.65E+6 7.60E+3 0.7 6.6
Sm-149 | 4.02E+4 4.01E+4 0.2 5.9
Np-237 | 6.60E+2 6.40E+2 3.0 7.8
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Example Uncertainty Analysis:
coolant void reactivity in advanced Candu reactor

coolanti

Response Relative St. Dev. (%)
Eigenvalue, unvoided 0.80
Eigenvalue, voided 0.84
coolant void reactivity 49.8
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Example Uncertainty Analysis:
Space-Reactor Shielding

Shield Design

$S316

- B4C

Response ; Major Contributors
Uncertainty % to Uncertainty
0-16 n,n'
h-1 elastic
(p>1MeV 0-16 elastic
6.019% 0-16 n,alpha
li-6 elastic
fe-56 n,n'
fe-56 n,gamma
Si ’Y—Kerma cr-53 n,gamma
1.349% ni-58 n,gamma
mn-55 n,gamma
Peak Heating A,

0.28%

fe-56 elastic




Similarity Analysis
Similarity parameter c, IS system correlation coefficient

between a design system and a critical experiment

Cov[A,E] _ S, Cov[s,0] Si
[std(A)] [std(E)] [std(A)] [std(E)]

¢ (AE) =

Premise: Computational bias is caused largely by

uncertainties In cross section data

— Systems with similarly high sensitivities to same cross-section
uncertainty data will have similar computational biases

e Normalized: such that
— ¢, = 1.0 indicates systems are fully correlated ;
— ¢, = 0.0 indicates systems are completely uncorrelated
— ¢, = -1.0 indicates systems are fully anti-uncorrelated

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

16




EXAMPLE SIMILARITY ANALYSIS:

Selection of Benchmark Experiments for
Criticality Safety Validation

Sensitivity per unit Lethargy { dk/k [ dsigma/sigma / delta-u)
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EXAMPLE SIMILARITY ANALYSIS:
Integral experiment design for shipping cask
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Generalized Least-Squares Consolidation
of Differential and Integral Data

e Computes “best” data adjustments to minimize differences
in computed and measured integral experiments

e Propagates adjustments to application to estimate
computational bias and uncertainty

Modified Suite, Chi2=1.04 +/- 0.16
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Summary

e S/U methods can play important role in data assessment
for in-reactor as well as ex-reactor components of AFC

e TSUNAMI code system provides unified set of S/U tools
for ACF applications

— Computation of sensitivities with 3D Monte Carlo or 1D discrete
ordinates transport theory

—Determination of implicit sensitivity due to self-shielding

—Availability of approximate, extended covariance library

—Computation of uncertainties for in-core and ex-core responses

— Similarity analysis between proposed facility designs and
Integral experiments for validation

—Consolidation of integral /differential data for improved estimates
of facility design parameters
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