
Analyzing Checkpointing Trends
on Petascale Systems

Harish Naik
Rinku Gupta

Pete Beckman
Mathematics & Computer Science Division

Argonne National Laboratory

Agenda

 Introduction

The BG/P System

Study and Experiments
– Application Memory Trends
– Checkpoint Model

Conclusion

2

Introduction

3

10 PFlops
in 2011

100 PFlops
in 2015

 As systems increase in size, large-scale faults become unavoidable

Fault Tolerance and Checkpointing

 Wide variety of research has focused on Fault Tolerance
– Focus on hardware as well as software
– Focus on different levels of high-end computing software stack

 Checkpointing and Recovery
– Popular and widely accepted method

• Checkpointing: Involves periodically saving state to storage
• Recovery: Involves rolling back to a previously saved state

 Emerging machines pose new challenges for this popular method
– Limited network resources, limited I/O bandwidth

4

Checkpointing on Petascale supercomputers

 Important Questions

– How feasible is it to checkpoint applications on modern
machines?
• Challenges exposed for checkpointing by large leadership

machines are very different and on different scale

– How much time should user devote to checkpointing?
• What % of cost should be devoted for fault tolerance?

– Can the user intelligently decide when and where to
checkpoint?

5

Research Focus

 Focus of this research

– Understands memory trends of popular supercomputing
applications
• With Focus on the IBM BG/P supercomputer at Argonne

National Laboratory

– Presents an analytical model for computing checkpoint
frequencies and limitations to assist end-users

6

Agenda

 Introduction

The BG/P System

Study and Experiments
– Application Memory Trends
– Checkpoint Model

Conclusion

7

The Blue Gene/P ‘Intrepid’ System at Argonne National
Laboratory

 Brief Description
– Peak performance: 556 TF
– 40 rack machine
– Each rack has 1024 nodes (40,960 nodes)

• Each node has 4 cores (163,840 cores)
– 80 TB of Memory
– Compute Nodes run a light weight OS called

Compute Node Kernel (CNK)
– 640 I/O nodes to communicate with the file

system
– I/O nodes and Compute Nodes are in the

ratio 1:64
– Login nodes for front end tasks like compiling

etc.

8

 Supports 5 different networks
 Torus network available for application communication
 10-Gigabit Ethernet network connects I/O nodes, file servers and storage devices

9

‘Intrepid’ Architecture

10

BGP at Argonne - File system

 Backend Storage
– 16 DataDirect 9900 SAN storage arrays (8 PetaBytes raw storage)

• Each DDN connects to 8 file servers through 8 DDR InfiniBand links
• ‘Intrepid’ system consists of 128 such file servers

– Each file server connects to Myricom 10GbE switching network through a 10GbE link
 Each I/O node also connects to Myricom 10GbE network through a 10GbE link

– Peak bandwidth is only 6.8Gbps from each I/O port

Checkpointing Techniques

 Application level (or user-defined) checkpointing
– Checkpoints are intelligently placed
– More programmer effort
– Portable since the checkpoints defined in machine independent format inside

the application
– Library provided by IBM for BG/P; library exposes a small API that can be

used by end-users

 Operating-System level checkpointing
– User transparent way
– Entire application state is saved
– OS has no idea about the structure and data inside the application. Hence

total size of saved data is huge.
– On petascale systems, this can lead to tremendous I/O overhead with

increasing system size
– Not supported on IBM BG/P

11

Checkpointing Optimizations

 Full Memory checkpointing
– Entire memory context for the process is saved during each

checkpoint
– IBM BG/P Checkpoint library supports full checkpointing
– Focus of our current study

 Incremental checkpointing
– Saves only modified pages since last checkpoint
– Can reduce memory context; can be useful for large systems
– Not supported on IBM BG/P currently
– Focus of our future work

12

Agenda

 Introduction

The BG/P System

Study and Experiments
– Application Memory Trends
– Checkpoint Model

Conclusion

13

Applications on the BG/P

 Computational Fluid Dynamics Application
– NEK5000

• Developed at Argonne National Laboratory; Gordon Bell Prize winner
• Spectral element multigrid solver coupled to a highly scalable, parallel

coarse grid solver
• Highly scalable for over 100K cores; used by many research organizations

worldwide

 Molecular Dynamics Simulations
– MD Density Functional theory (DFT) applications chosen due to their stringent

computational demands and memory requirements
• Grid-based Projector-Augmented Wave (GPAW)
• Carr-Parrinello Molecular Dynamics (CPMD)

14

Methodology

 Step 1:
– Understand memory usage and

trends
• change over application

execution time
• change with system size

– Memory usage measured using
timers at regular intervals

• Timer uses the getrusage
function for memory usage
measurement

 Step 2:
– Plugging memory usage trends in

optimal checkpoint model
• Helps end-user estimate

checkpoint frequency
• And checkpointing interval

15

Insert instrumentation
code at startup

Application
Execution

Application Exits

Interrupt handler routine
(records memory usage)

Simple Optimum Checkpoint Model (1)

16

 Majority of scientific applications have
constant memory pattern over
majority of their execution lifetime

 T → Total time of application
execution including checkpoints (can
be approximated to reservation time
R)

 Ts → Time required to complete one
full checkpoint

 N → Optimum number of checkpoints
to be performed

 t → Optimum interval between
checkpoints

Simple Optimum Checkpoint Model (2)

 Checkpoint Model derives number of optimum checkpoints based on
1. Percentage of reservation time (or runtime) dedicated for checkpointing,
2. Bandwidth from the compute node to file servers and
3. The total amount of data to be checkpointed

Thus,
– B → Unidirectional bandwidth from compute nodes to storage disks
– X% → Percentage of time user is willing to spend performing checkpointing
– n → Number of cores that the application is run on
– M → Mean memory usage per core

..we can deduce that
N (i.e. number of checkpoints) = lower bound (XRB/nM)
t (time interval between two checkpoints) = M (n/X - 1)/B

Challenges
 Accurate prediction of ‘B’ is difficult due to resource sharing; however users can make

educated guesses
 Reservation time ‘R’ can be different from application run time; however assumptions can

be made based on historical data and past runs

17

GPAW Memory Consumption (1)

0

200

400

600

800

1000

1200

1400

1600

1800

120 240 360 480 600 720 1320 1920 2520

M
em

or
y

U
sa

ge
 (M

B
)

Time in seconds

32 Cores
64 Cores
128 Cores
256 Cores

18

GPAW Memory Consumption (2)

0
50

100
150
200
250
300
350
400
450

120 180 240 300 360 420 480 540 600 660 720 780

M
em

or
y

U
sa

ge
 (M

B
)

Time in seconds

512 cores
1024 cores

19

Computed Values for GPAW

n M TA X 30% Bandwidth 60% Bandwidth
B30 N30 t30 B60 N60 t60

32 1650 3168 0.3 127.5 2 1584 255 4 792
64 1000 1914 0.3 255 2 957 510 4 478.5
128 650 1386 0.3 510 2 693 1020 5 277.2
256 475 990 0.3 1020 2 495 2040 4 247.5
512 400 858 0.3 2040 2 429 4080 5 171.6
1024 350 726 0.3 4080 2 363 8160 4 181.5

20

• The GPAW application is executed in SMP mode with one thread, with only core being
used on each compute node

• The total bandwidth available to the GPAW application can be computed by: (n/64)*Bi/o)

CPMD Memory Consumption

40

42

44

46

48

50

52

54

100 200 300 400

M
em

or
y

U
sa

ge
 (M

B
)

Time in mseconds

2048 cores
4096 cores
8192 cores

21

Computed Values for CPMD

n M TA X 30% Bandwidth 60% Bandwidth
B30 N30 t30 B60 N60 t60

2048 51.82 220 0.4 2040 1 220 4080 3 73.33
4096 51.85 330 0.4 4080 2 165 8160 5 66
8192 51.87 440 0.4 8160 3 146.67 16320 6 73.33

22

• The NEK5000 application is executed in SMP mode with 4 threads

• The total bandwidth available to this application can be computed by: (n/(64*4))*Bi/o)

NEK5000 Memory Consumption

0

5

10

15

M
em

or
y

U
sa

ge
 (M

B
)

Time in seconds

8K Cores
16K Cores
32K Cores

23

Computed Values for NEK5000

n M TA X 30% Bandwidth 60% Bandwidth
B30 N30 t30 B60 N60 t60

4096 25.13 960 0.07 4080 2 480 8160 5 192
8192 25.13 960 0.07 8160 2 480 16320 5 192
16384 25.13 900 0.07 16320 2 450 32640 4 225
32768 23.57 900 0.07 32640 2 450 65280 5 180
65536 23.57 900 0.07 65280 2 450 130560 5 180

24

• The NEK5000 application is executed in virtual mode

• The total bandwidth available to this application can be computed by: (n/(64*4))*Bi/o)

Agenda

 Introduction

The BG/P System

Study and Experiments
– Application Memory Trends
– Checkpoint Model

Conclusion

25

Conclusions

 Study to show memory trends of popular applications on Blue Gene/P
supercomputer
– Memory trends allow end-users estimate amount of time needed for

checkpointing
– Considered full checkpointing where entire program state is saved

• This model was chosen since IBM checkpointing library supports
only full checkpointing at this point

 Presented an analytical model for computing checkpoint frequencies and
intervals
– Studied applications and computed values based on the model

 Showed how application scaling influences checkpoint-related decisions
 Future work consists of conducting similar study for incremental

checkpointing; studying larger-scale applications and measuring
checkpointing time

26

Questions?

27

	Analyzing Checkpointing Trends on Petascale Systems
	Agenda
	Introduction
	Fault Tolerance and Checkpointing
	Checkpointing on Petascale supercomputers
	Research Focus
	Agenda
	The Blue Gene/P ‘Intrepid’ System at Argonne National Laboratory
	‘Intrepid’ Architecture
	BGP at Argonne - File system
	Checkpointing Techniques
	Checkpointing Optimizations
	Agenda
	Applications on the BG/P
	Methodology
	Simple Optimum Checkpoint Model (1)
	Simple Optimum Checkpoint Model (2)
	GPAW Memory Consumption (1)
	GPAW Memory Consumption (2)
	Computed Values for GPAW
	CPMD Memory Consumption
	Computed Values for CPMD
	NEK5000 Memory Consumption
	Computed Values for NEK5000
	Agenda
	Conclusions
	Slide Number 27

