
Designing and Evaluating MPI-2 Dynamic
Process Management Support for

InfiniBand

Tejus Gangadharappa, Matthew Koop and
Dhabaleswar. K. (DK) Panda

Computer Science & Engineering Department
The Ohio State University

Outline

•  Motivation and Problem Statement
•  Dynamic Process Interface design
•  Designing the Benchmark-suite
•  Experimental results
•  Future Work and Conclusions �

Introduction
•  Large scale multi-core clusters are becoming

increasingly common
•  MPI is the de-facto programming model for HPC
•  The MPI-1 specification required the number of

processes in a job to be fixed at job launch
•  Dynamic Process Management (DPM) feature

was introduced in MPI-2 to address this
limitation

Dynamic Process Management
Interface

•  Applications can use the DPM interface to
spawn new processes at run-time depending on
compute node availability

•  Beneficial for
– Multi-scale modeling applications
– Applications based on master/slave paradigm

•  MPI offers two types of communicator objects
–  intra-communicator and inter-communicator

•  The DPM interface uses an inter-communicator
object for communication between the original
process set and the spawned process set

Dynamic Process Interface
 Inter-Communicator Creation

 0

1 2 3

 4

Initial Process
group

 *0

*1 *2 *3

 *4

Spawned Process
 group

Parent root Child root

InfiniBand

•  Almost 30% of the TOP500 Supercomputers use
InfiniBand as the high-speed interconnect

•  Provides
– Low latency (~1.0 microsec)
– High bandwidth (~3.0 Gigabytes/sec unidirectional

with QDR)
•  Necessary to have MPI implementations that

offer efficient dynamic process support over
InfiniBand

InfiniBand (Cont’d)
•  Remote DMA (RDMA) Operations
•  Supports atomic operations
•  Offers four transport modes

– Reliable Connection (RC)
– Unreliable Datagram (UD)
– Reliable Datagram (RD)
– Unreliable Connection (UC)

•  Trade-off between network reliability, memory
footprint and processing overheads

Problem Statement
•  What are the challenges involved in designing

dynamic process support over InfiniBand
networks?

•  What is the overhead of having a dynamic
process interface?

•  How do the InfiniBand transport modes (RC and
UD) impact the performance of the dynamic
process interface?

•  Can we design a benchmark-suite to evaluate
the performance of the dynamic process
interface over InfiniBand?

Outline

• Motivation and Problem Statement
• Dynamic Process Interface design
• Designing the Benchmark-suite
•  Experimental results
•  Future Work and Conclusions �

Dynamic Process Interface Design

 MPI Application

 Dynamic Process Interface

 Startup

 Spawn Scheduling

 Communication

 MPI Communication

Point-to-Point One-Sided

 Collectives

Startup Component – Spawn and
Scheduling

•  Applications interact with the job launcher tool
over the management network during the spawn
phase

•  Two job launchers considered
– Multi-Purpose Daemon (MPD)
– Mpirun_rsh (a scalable job launching framework)

•  Scheduling and mapping the dynamically
spawned processes is critical to the performance
of the application

•  Two allocations (block and cyclic) considered

Startup Component –
Communication

 Parent Process group Spawned Process group

MPI_Init

MPI_Comm_spawn

MPI_Comm_accept

MPI_Init

MPI_Comm_get_parent

MPI_Comm_connect

 Process group information exchange

 Inter-Communicator Creation

Startup Component –
Communication

•  Connection establishment overhead for each
spawn

•  Design choices for inter-communicator setup
– RC and UD transport modes

•  UD mode has less overhead
– Reliability needs to be added
– Desirable for applications spawning small process

groups and frequently
•  RC mode has little higher overhead

– Provides reliability
– Desirable for large and infrequent spawns

Outline

• Motivation and Problem Statement
• Dynamic Process Interface design
• Designing the Benchmark-suite
•  Experimental results
•  Future Work and Conclusions �

Spawn Latency Benchmark
•  Measures the average time spent in the

MPI_Comm_Spawn routine at the parent-root
process

•  Necessary to minimize the overhead of
spawning new jobs as it has a significant impact
on the overall application performance

•  Benchmark has provision to change
– size of the parent communicator
– size of the spawned child communicator

Spawn Rate Benchmark
•  Measures the rate at which an MPI

implementation can perform the
MPI_Comm_Spawn operation

•  The spawn rate metric gives insights into how
frequently MPI processes can spawn

Inter-Communicator Point-to-Point
Latency Benchmark

•  Average time required to exchange data
between processes over an inter-communicator

•  Inter-communicator message delivery involves
mapping from local process group to the remote
process group

•  If connections are setup on-demand, this
benchmark captures both the connection
establishment and the message exchange steps

•  Inter-Communicator point-to-point exchanges
are critical to the performance of the applications

Implementation
•  Proposed designs have been implemented in

MVAPICH2 1.4
•  MVAPICH/MVAPICH2

–  Open-source MPI project for InfiniBand and 10GigE/iWARP
–  Empowers many TOP500 systems
–  Used by more than 975 organizations in 51 countries
–  Available as a part of OFED and from many vendors and Linux

Distributions (RedHat, SuSE, etc.)
–  http://mvapich.cse.ohio-state.edu

•  Micro-benchmarks were implemented as a part of the
OSU MPI micro-benchmarks (OMB)
–  http://mvapich/cse.ohio-state.edu/benchmarks/

Outline

• Motivation and Problem Statement
• Dynamic Process Interface design
• Designing the Benchmark-suite
•  Experimental results
•  Future Work and Conclusions �

Experimental Setup

•  64-node Intel Clovertown cluster
•  Each node has

– 8 cores and 6GB RAM
•  Evaluations up to 512 cores
•  InfiniBand Double Data Rate (DDR)
•  MVAPICH2 1.4RC1 and OpenMPI 1.3

Spawn Latency Benchmark

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 4 8 16 32 64 128 256 512

La
te

nc
y

(u
se

c)

Number of Processes

MV2-MPD-RC

MV2-MPD-UD

MV2-mpirun_rsh-RC

MV2-mpirun_rsh-UD

OpenMPI

Cyclic Rank Allocation

• UD design shows benefit beyond job size of 32
• MPD startup mechanism is faster than mpirun_rsh for small job size,

however mpirun_rsh performs better as job size increases
• Up to 128 processes, MV2-mpirun_rsh-RC and OpenMPI perform similarly
• For > 128 processes, MV2-mpirun_rsh-UD performs the best

Spawn Latency Benchmark

Block Rank Allocation

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 4 8 16 32 64 128 256 512

La
te

nc
y

(u
se

c)

Number of Processes

MV2-MPD-RC

MV2-MPD-UD

MV2-mpirun_rsh-RC

MV2-mpirun_rsh-UD

OpenMPI

• Block allocation of ranks shows the effect of HCA contention on spawn
time

• The UD-based design performs better due to lesser overhead
• MV2-mpirun_rsh-UD design performs the best

Spawn Rate Benchmark

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128 256 512

Sp
aw

n
R

at
e

Number of Processes

MV2-MPD-RC
MV2-MPD-UD
MV2-mpirun_rsh-RC
MV2-mpirun_rsh-UD
OpenMPI

• UD designs provide better spawn rates than RC ones because of
the higher cost of creating and destroying RC queue pairs

• MPD designs provide higher spawn rates than mpirun_rsh for small
jobs due to the higher initial overhead in the later case

• Mpirun_rsh scales very well and maintains a steady spawn rate
with increasing job size.

Inter-Communicator Point-to-
Point Latency Benchmark

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

La
te

nc
y

(u
se

c)

Number of Processes

MV2-Intra
MV2-Inter
OpenMPI-Intra
OpenMPI-Inter

•  Performance is very similar for small messages
•  Performance differs in the medium message length (depends on
 rendezvous threshold values)
•  For large messages (64K), MV2 delivers better performance

Parallel POV-Ray Evaluation

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

2 4 8 16 32 64

A
pp

lic
at

io
n

R
un

-ti
m

e
(s

)

Number of Processes

MV2-MPD-RC

MV2-MPD-UD

MV2-mpirun_rsh-RC2

MV2-mpirun_rsh-UD

Traditional(MV2)

• Re-designed a dynamic process version of the POV-Ray application
• Render a 3000x3000 glass chess board with global illumination
• The dynamic process framework adds very little overhead

Software Distribution
•  The new DPM support is available with MVAPICH2 1.4

–  Latest version is MVAPICH2 1.4RC2
–  Downloadable from http://mvapich.cse.ohio-state.edu

•  Micro-benchmarks will be available as a part of OSU MPI
Micro-benchmarks (OMB) in the near future

Conclusions & Future Work
•  Presented alternative designs for DPM interface on InfiniBand
•  Proposed new benchmarks to evaluate DPM designs
•  MPD based framework is suitable for frequent small spawns
•  Mpirun_rsh based startup is recommended for large infrequent spawns
•  DPM interface has very little overhead on the application performance

Future Work:
•  Explore a hybrid model that switches between UD and RC modes

based on job size
•  Evaluate the performance of collectives and one-sided routines for the

dynamic process interface

Thank you !

{gangadha, koop, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://mvapich.cse.ohio-state.edu

