
P2S2-2010 Panel
Is Hybrid Programming

a Bad Idea Whose Time Has Come ?

Taisuke Boku
Center for Computational Sciences

University of Tsukuba

2010/09/13 1P2S2-2010 Panel

Definition

 Term of “Hybrid Programming” sometime means “Hybrid
Memory Programming” such as a combination of shared-
memory and distributed-memory:
ex) MPI + OpenMP

 Term of “Heterogeneous Programming” sometime means
“Hybrid Programming over Heterogeneous CPU Architecture”
such as a combination of general purpose CPU and special
purpose accelerator:
ex) C + CUDA

 In this panel, “Hybrid Programming” includes both meaning

2010/09/13 2P2S2-2010 Panel

Has the time of Hybrid Programming come ?

 Today’s most typical hybrid architecture is “multi-core general
CPU + (multiple) GPU”, and on this architecture, we are doing
hybrid programming such as C + CUDA, everyday

 Up to 10+ PFLOPS, it is OK to provide the performance with
general-purpose CPU only (ex. Japan’s “KEI” Computer,
Sequoia or Blue Water), but beyond, it will be quite harder

 To prepare the upcoming days of 100 PFLOPS to 1 EFLOPS, we
have to prepare because productive application programming
requires a couple of years at least

2010/09/13 3P2S2-2010 Panel

Is it a good or thing to be accepted ?
 We have not been released yet from the curse of hybrid

memory programming:
MPI + OpenMP is the most efficient way for current multi-core
+ multi-socket node architecture with interconnection network

 Regardless of the programmer’s pain, we are forced to do it,
and we need a strong model, language and tools to release
these pains

 Issues to be considered
 Memory hybridness (shared and distributed)
 CPU hybridness (general and accelerator)
 “flat” model is not a solution – we need to exploit the goodness of all

these architecture as well as hybrid programming does

2010/09/13 4P2S2-2010 Panel

Necessity of overcoming memory hybridness

 Many of today’s parallel applications are still not ready for
memory hybridness
- many of them are written only with MPI

 For really many cores such as 1M cores, it is impossible to
continue MP-only programming
 Increased cost for collective communication at lease with log(P) order
 Memory footprint cost to manage huge number of processes is not

negligible while memory capacity per core is reducing

 It is relatively easy to apply automatic parallelization on hybrid
memory architecture because such a huge parallelism must
include multiple level of nested loops
 Multi-level loop decomposition into memory hierarchy (and network

hierarchy perhaps)

2010/09/13 P2S2-2010 Panel 5

An example of effort

 Hybridness of CPU/GPU memory on a computation node
 GPU is currently attached to CPU as a peripheral device as an I/O device

with communication over PCI-E bus
 It causes distributed memory (different address space) structure even on

a single node
 “Message Passing” in a node must be performed additionally to that

among multiple nodes

 XcalableMP (XMP) programming language
 Programming of large and multiple data array distributed over multiple

computation node to be translated as local index access and message
passing (similar to HPF)

 Both “global view” (for easy access to a unified data image) and “local
view” (for performance tuning) are provided and unified

 Data movement in global view makes the data transfer among nodes as
like as simple data assignment

2010/09/13 6P2S2-2010 Panel

gmove directive
 The "gmove" construct copies data of distributed arrays in

global-view.
 When no option is specified, the copy operation is performed collectively

by all nodes in the executing node set.
 If an "in" or "out" clause is specified, the copy operation should be done

by one-side communication ("get" and "put") for remote memory access.

!$xmp nodes p(*)
!$xmp template t(N)
!$xmp distributed t(block) to p
real A(N,N),B(N,N),C(N,N)
!$xmp align A(i,*), B(i,*),C(*,i) with t(i)

A(1) = B(20) // it may cause error
!$xmp gmove

A(1:N-2,:) = B(2:N-1,:) // shift operation
!$xmp gmove

C(:,:) = A(:,:) // all-to-all
!$xmp gmove out

X(1:10) = B(1:10,1) // done by put operaiton

n
o
d
e
1

n
o
d
e
2

n
o
d
e
3

n
o
d
e
4

n
o
d
e
1

n
o
d
e
2

n
o
d
e
3

n
o
d
e
4

node1

node2
node3

node4

A B

C

Easy data movement
among CPU/GPU
address space

2010/09/13 7P2S2-2010 Panel

CPU/GPU coordination data management

2010/09/06 FP3C Kickoff
Meeting (Paris)

8

CPU cores

GPU cores

CPU
memory

GPU
memory

PCI-E
driver
(CUDA
data copy)

Loop execution
process assignment

Array data
distribution

Computation Node

CPU cores

GPU cores

CPU
memory

GPU
memoryMessage Passing

(MPI)

• data distribution
• process assignment
• message passing
• CPU/GPU data copy

All in the directive based
sequential (-like) code
by XMP/GPU

XMP/GPU image (dispatch to GPU)
#pragma xmp nodes p(*) // node declaration
#pragma xmp nodes gpu g(*) // GPU node declaration
…
#pragma xmp distribute AP() onto p(*) // data distribution
#pragma xmp distribute AG() onto g(*)
#pragma xmp align G[i] with AG[i] // data alignment
#pragma amp align P[i] with AP[i]
int main(void) {
…
#pragma xmp gmove // data movement by gmove (CPU⇒GPU)

AG[:] = AP[:];
#pragma xmp loop on AG(i)

for(i=0; …) // computatio on GPU (passed to CUDA compiler)
AG[i] = ...

#pragma xmp gmove // data movement by gmove (GPU⇒CPU)
AP[:] = AG[:];

2010/09/06 FP3C Kickoff
Meeting (Paris)

9

What we need ?

 Unified easy programming language and tools with additional
performance tuning feature is required

 At the first step of programming, easy import from sequential
or traditionally parallel code is important

 Directive-base additional feature is useful to keep the basic
construct of the language as well as the room of performance
tuning

 How to specify a reasonable and effective standard directive to
be applied for many of heterogeneous architectures ?

2010/09/13 P2S2-2010 Panel 10

