
IBM Research: Software Technology

© 2005 IBM Corporation

P
ro

gr
am

m
in

g
Te

ch
no

lo
gi

es

1

Is Hybrid Programming a Bad Idea who’s time
has come?

Vijay Saraswat, IBM TJ Watson

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

2

Does God exist?

It doesn’t really matter!
There are fortunes, reputations to be made!
Great technical work to be done!
Lets get going!

The Great Buddha was asked

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

3

What is Asynchronous PGAS?

Two basic ideas: Places and Asynchrony

Fine grained concurrency
• async S

Place-shifting operations
• at (P) S

Atomicity
• atomic S
• when (c) S
Ordering
• finish S
• clocks

Global data-structures
• points, regions,
distributions, arrays

Supports
clocked final variables
(clocked) acc

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

4 9/13/2010

Why Program GPUs with X10?

Why program the GPU at all?
Many times faster for certain classes of applications
Hardware is cheap and widely available
Take load off of CPU

Why X10 (instead of CUDA/OpenCL)?
For the GPU parts:
Easier to program for systems with several GPUs
Higher-level abstractions result in fewer lines of kernel code.
Same code will also run on a CPU with reasonable performance.
Can choose at runtime whether code runs on CPU of GPU.

For the CPU parts: the usual reasons for using X10:
Simpler programs
Easier to write parallel programs
Much easier to write distributed programs
Greater static safety (true for GPU code too)

Above argument applies for other accelerators like Cell SPEs too!

X10/CUDA Slides courtesy of David Cunningham, X10 group

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

5 9/13/2010

Concepts of Heterogeneous X10

Host

SPE

Host Host Host

SPE

CUDA CUDACUDA CUDA CUDA

High Perf. Network

8  Goals
 Re-use existing language concepts wherever possible
 Separate memory space ⇒ separate place
 Represent accelerators: Introduce new places under

hosts
 Place count and topology unknown until run-time
 Same X10 code works on different configurations
 Support CUDA now, Cell/OpenCL/etc future work

PCI bus

EIB

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

6 9/13/2010

The Programmer Experience
GPU programming will never be trivial. We try to make it as easy as possible.

Getting correctness
Can debug X10 kernel code on CPU first, using standard techniques
Static errors avoid certain classes of faults.
Goal: Eliminate all GPU segfaults with no performance limitations.

Currently detect all dereferences of non-local data
TODO: Static array bounds checking (general X10 goal)
TODO: Static null-pointer checking (general X10 goal)

Stock 'cudagdb' should work but of limited use on desktop machines.
TODO: throwing exceptions on GPU
TODO: limited printf debugging on GPU (challenges with string concatenation)

Getting performance: Need understanding of the CUDA performance model
Must know advantages+limitations of [registers, SHM, global memory]
Avoid warp divergence
Avoid irregular memory access
Avoid misaligned memory access
Use CUDA profiling tool to debug kernel performance (very easy and usable)
Can inspect and disassemble generated cubin file
Easier to tune blocks/threads using auto-configuration

TODO: high-level language features to abstract
from such architectural details

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

7 9/13/2010

X10/CUDA code (mass sqrt example)
for (host in Place.places) at (host) {

val init = ValRail.make(1000, (i:Int)=>i as Float);
val recv = Rail.make(1000, (i:Int)=>0.0 as Float);
for (p in here.children()) if (p.isCUDA()) {

val remote = Rail.makeRemote(p, 1000, (Int)=>0.0 as Float);
val blocks = 8, threads = 64;
finish async (p) @CUDA {

for ((block) in 0..blocks-1) {
for ((thread) in 0..threads-1) async {

val tid = block*threads + thread;
val tids = blocks*threads;
for (var i:Int=tid ; i<1000 ; i+=tids) {

remote(i) = Math.sqrt(init(i));
} } } }
// Console.OUT.println(remote(42));
finish recv.copyFrom(0, remote, 0, len);

}
}

K
ernel

Alloc on GPU

Discover GPUs

Copy results back to host

Would be static type error

Implicit capture
and transfer of

immutable state

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

8 9/13/2010

Kernel Structure
finish async (p) @CUDA {

for ((block) in 0..blocks-1) {

for ((thread) in 0..threads-1) async {

val tid = block*threads + thread;
val tids = blocks*threads;

for (var i:Int=tid ; i<len ; i+=tids) {
remote(i) = Math.sqrt(init(i));

}

}

}

}

R
eal K

ernel

Enforces extra restrictions on block

Define kernel shape

Only sequential code

Only primitive types / rails

No allocation, no dynamic dispatch

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

9

The future is in new (commercial) applications

And high level programming models for masses
of programmers…
…Map Reduce
…Matlab
… R
That transparently exploit underlying hardware

Analytics slides courtesy of Shiva Vaithyanathan, IBM Research

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

10

Trend: New “Big Data” becoming commonplace

Transactions: 46 Terabytes per year
7 Terabytes per day

10 Terabytes per day

100 Terabytes per year

Call Records: 3 Terabytes per day

New Video Uploads:
4.5 Terabytes per day

Genomes: Petabytes per year

Blogs: 10 Terabytes per year

P2S2 2010 Panel

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

11

It is really “Big Data” AND “New Analytics”

Text

Logs &
Transactions

Clickstream Data

Statistical Model Building

Text Analytics

Biological Sequences

