
Recomposing An Irregular
Algorithm Using A Novel Algorithm Using A Novel

Low-Level PGAS Algorithm

Presented at the Fourth International Workshop on Parallel Programming Models and
Systems Software for High-End Computing, Taipei, Taiwan, 13 September 2011

19/15/2011

Megan Cason (presenter)
U.S. Army Engineer Research and Development Center

Scientific Computing Research Center
email: megan.l.cason@us.army.mil

Peter Kogge
University of Notre Dame

email: kogge@nd.edu

Outline

�PGAS Scalability Model
�Minimum Spanning Forest Search
�Analysis of Traditional Parallelization�Analysis of Traditional Parallelization
�MoS Active Edge Toolkit
�MoS Active Edge Min Spanning Forest
�Conclusion

2

Motivation for PGAS Development

� Previous Generation HPC Architectures
• One core per chip, one chip per node, many nodes per system

� Current Parallel Code Development Options
• C/Fortran with OpenMP/MPI
• Goals: portability, performance on distributed memory systems
• Parallelism & communication supported in library calls & extensions

� Next Generation HPC Parallel Architectures
• Many Cores per Chip: Shared DRAM
• Many Chips per Node: Shared Address Space
• Many Nodes per System: Distributed Memory
• Heterogeneous System: Multiple execution models

� New Parallel Languages
• UPC, HPF, Titanium, X10, Chapel
• Goals: productivity, portability, performance on next gen systems
• Parallelism & communication supported in language constructs/extensions

3

Motivation for Low Level PGAS
Development & Analysis
� High Level PGAS Language Constructs

• Goals: Productivity, Performance, Transparency
• Implicit communication and parallelism

─ Predictable performance & load balance based on known data access patterns
• Examples:

─ Distributed dense matrices (blocked, cyclic, etc)
─ Parallel for loops over arrays─ Parallel for loops over arrays
─ Structured synchronization – global barriers, reductions

� Low Level PGAS Language Constructs
• Goals: Performance, Opacity
• Explicit communication and parallelism

─ Performance & load balance prediction depends on attributes of input data and runtime
task creation, synchronization

─ How to analyze scalability as an attribute of the algorithm?
• Examples:

─ Distributed graphs & sparse matrices
─ Recursive task creation
─ Unstructured synchronization – irregular data sharing

4

Related Work

�Low Level Constructs/Data Control
• HPF-2: Indirect data distributions
• Chapel: User defined domain maps
• UPC: Global pointers
�Analysis of PGAS Algorithms�Analysis of PGAS Algorithms

• Other work uses system specific measurements:
e.g. latency of get/put

�Graph Traversal Parallelization
• Largest parallelizations: 1000s of threads running

Breadth first search (Blue Gene)
• Largest MSF parallelization: 100s of threads

5

Outline

�Motivation & Goals

�Minimum Spanning Forest Search
�Analysis of Traditional Parallelization�Analysis of Traditional Parallelization
�MoS Active Edge Toolkit
�MoS Active Edge Min Spanning Forest
�Conclusion

6

Abstract PGAS System Model
� Define a set of P processes

• Notated: p0, p1, …
� Define a set of P memory partitions

• Notated: M0, M1, …
� Each process pj owns a unique partition of memory, Mj

• Mj is local to pj

• All Mk != Mj is remote to pj• All M != M is remote to p
� Time to algorithm completion measured in steps
� Each process executes at most one action per step, a process may

execute zero actions in a step if waiting for other processes.
� 4 Action types:

• Operate on local memory
• Synchronize with all processes
• Request another process to get/put data to its memory, i.e. request

remote data
• Respond to a request to get/put data from local memory, i.e . respond

to request for remote data

7

Scalability Definition
� Speed Efficiency (Es)

• T = execution time
• W = work completed
• P = # of processors
• Es = W / TP
• Algorithm-System Scalability of Heterogeneous Computing. Chen

et al, J. Parallel Distrib. Comput, 2008et al, J. Parallel Distrib. Comput, 2008
� Algorithm-System Scalability Condition

• Es remains constant for increased algorithm-system size
• W / TP = W’ / T’P’
• Execution time drops: T > T’
• Processor count increases: P < P’
• Workload must increase to the degree that time does not scale

perfectly: W <= W
─ Serialization
─ Communication overhead

8

Real System Features Captured

�Asynchronous execution: an overloaded
process slows down the whole system
�Shared memory contention: if one process

gets more requests than others, it takes
longer to completelonger to complete
�Weak Scaling pattern: allow problem size to

grow with system size
�Load Balancing requirement: scalability

definition fails if work/communication does
not scale evenly on all processes

9

Outline

�Motivation & Goals
�PGAS Scalability Model

�Analysis of Traditional Parallelization�Analysis of Traditional Parallelization
�MoS Active Edge Toolkit
�MoS Active Edge Min Spanning Forest
�Conclusion

10

Minimum Spanning Forest
� Given a graph, G=(V,E)

• |V| = # vertices in the graph
• |E| = # edges in the graph
• Semantic graph: no physical position of vertices
� Produce a subset of edges from E that

• Induces a set of trees (forest) over G

|V| = 4

|E| = 5

• Induces a set of trees (forest) over G
• The forest has the same connected components as the

original graph
• The forest has minimal edge weight
� Useful applications of MSF

• VLSI layout
• Wireless communication optimization
• Biology and medical data analysis
• Social network analysis

11

Minimum Spanning Forest

�Parallel algorithms derived from Boruvka’s
algorithm
• While there is more than one vertex

─ 1. Choose the lightest edge from each vertex─ 1. Choose the lightest edge from each vertex
─ 2. Find connected components defined by these edges
─ 3. Compact graph by collapsing all connected

components defined by these edges
─ 4. Cleanup by removing loop and duplicate edges

�Vertex set drops by at least half during each
iteration -> log(N) iterations

12

Outline

�Motivation & Goals
�PGAS Scalability Model
�Minimum Spanning Forest Search

�MoS Active Edge Toolkit
�MoS Active Edge Min Spanning Forest
�Conclusion

13

1.Choose

lightest

edge per

vertex

2. Create

Rooted

Stars

14

3. Collapse

Rooted

Stars

4.Cleanup

Loops

Searching Edge Lists in Parallel

�Vertices processing in parallel
• Distribution?
• Steps per Processor

�Is there a guaranteed scalable distribution?

1.Choose

lightest

edge per

vertex

�Is there a guaranteed scalable distribution?
• Depends on input graph
• Consider graph G, with |V| vertices, 2|V| edges

─ One vertex has |V| edges. All others have 1
─ Each vertex is stored on a processor with all its edges
─ One processor will end up with half the edges in the

entire graph….
15

Searching Edge Lists In Parallel
T = 7 T = 2 T = 2 T = 2

� Time Taken On Abstract System
• Case 1: All vertex lists searched in parallel by the process that

owns them
─ Slowest process takes T = |V|

• Case 2: Edge lists are copied out to be searched in parallel
─ One process must send |V| edges out, T = |V|

� Scalability Condition: W = 2|V|, T = |V|
• (2|V| / |V| P) = (2|V’| / |V’| P’) -> 2 / P = 2 / P’

16

Outline

�Motivation & Goals
�PGAS Scalability Model
�Minimum Spanning Forest Search
�Analysis of Traditional Parallelization�Analysis of Traditional Parallelization

�MoS Active Edge Min Spanning Forest
�Conclusion

17

Toolkit Goals & Approach

� Provide low level reformulation of graph data while
maintaining a view of high level “actual graph”
algorithm
• Actual graph: input data set, i.e. actual set of objects and

relations to be analyzed
• Reformulated graph: augmented data set, add objects and • Reformulated graph: augmented data set, add objects and

relations to represent overhead of parallelization
� Expose parallelization costs with Mobile Subjective

(MoS) execution mode
• Subjects: all state required to initiate parallel actions
• Subject types: animals and plants

─ Plants incur cost of state storage
─ Animals incur cost of state storage and movement

• Synchronizing data: stateful variables with blocking
operations

18

Transform Shared Data

19

Actual Graph
Reformulated Graph

At most k(=3) edges per pvertex

Each vertex is a m-way of pvertices

Toolkit Operation by Edges on
Vertices
� Barrier

• An edge (v1, v2) joins a barrier with all other edges
connected to v1 (or v2). No edge leaves the barrier until all
edges enter the barrier

� Leave Vertex
• An edge disconnects from a given vertex, effective after • An edge disconnects from a given vertex, effective after

the next barrier
� Merge Into

• An edge (v1, v2) causes v1 and v2 to merge and join all
edges from both vertices into a single super vertex

� Reduce Operation
• An edge (v1, v2) contributes to a given reduction operation

(add, multiply, max, min, etc) on a given vertex. Results
available after next barrier

20

Showing Scalability
T = 4 T = 4 T = 3 T = 3

� Assume each process holds an equal portion of shared data
• Possible because vertices have become a distributed interface

� Each piece of shared data is accessed by no more than a
fixed number of parallel tasks
• Programmer specifies task per edge
• Each edge shares data with few other edges

21

Showing Scalability
� After transforming shared data

• W = # edges = |E|
• Gets/puts per process

─ Depends on how many shared data
─ At most m|E| / kP = O(|E| / P)
─ Where m = order of pvertex trees, k = max edges per pvertex

• Computation time per process• Computation time per process
─ Includes structured synchronization time
─ At most c (|E| log |E| / P)
─ Where c is constant

• Scalability Condition is satisfiable for all toolkit operations:
─ W / TP = W’ / T’P’

─ |E| / P (|E| log |E| / P) = |E’| / P’ (|E’| log |E’| / P’)

─ 1 / (log |E|) = 1 / (log |E’|)

22

Outline

�Motivation & Goals
�PGAS Scalability Model
�Minimum Spanning Forest Search
�Analysis of Traditional Parallelization�Analysis of Traditional Parallelization
�MoS Active Edge Toolkit

�Conclusion

23

Scalable MSF

�For all edges (V1, V2) in parallel
• Repeat

─ In parallel enter a reduction at V1 & V2
─ In parallel barrier with V1 & V2

V1 V2

─ In parallel barrier with V1 & V2
─ Check if this is the lightest edge connected to V1

or V2 (result of reduction available after barrier)
─ If this is a lightest edge, merge V1 with V2
─ In parallel barrier with V1 & V2
─ If V1 merged with V2, remove this edge

24

Target System: Massively
Multithreaded
�MoS was designed alongside novel LWP-

mNUMA architecture
• Subjects are first class architectural entities
• No cache data duplication
• Hardware supported subject • Hardware supported subject

creation/destruction/movement
• Architectural PGAS support

�Simulation Results
• Goal: to create millions of subjects performing

useful computation in simulation

25

Simulated Runtimes

26

Ideal curve

Outline

�Motivation & Goals
�PGAS Scalability Model
�Minimum Spanning Forest Search
�Analysis of Traditional Parallelization�Analysis of Traditional Parallelization
�MoS Active Edge Toolkit
�MoS Active Edge Min Spanning Forest

27

Conclusion

�Using generalized PGAS scalability metric
• Exposes data “hotspots” by penalizing data sharing in

a partition
• Allows parallel algorithm design to include analysis of

low level reduction-type communication
• Avoids requiring system specific metrics• Avoids requiring system specific metrics
�Reformulation of graph traversal

• Exposes low level costs while maintaining higher level
algorithm structure

• Is applicable to other load imbalanced problems
─ Particle interaction neighbor lists
─ Sparse matrices with some dense rows
─ Unstructured meshes

28

Questions?Questions?

29

