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Motivation for PGAS Development

� Previous Generation HPC Architectures
• One core per chip, one chip per node, many nodes per system

� Current Parallel Code Development Options
• C/Fortran with OpenMP/MPI
• Goals: portability, performance on distributed memory systems
• Parallelism & communication supported in library calls & extensions

� Next Generation HPC Parallel Architectures
• Many Cores per Chip: Shared DRAM
• Many Chips per Node: Shared Address Space
• Many Nodes per System: Distributed Memory
• Heterogeneous System: Multiple execution models

� New Parallel Languages
• UPC, HPF, Titanium, X10, Chapel
• Goals: productivity, portability, performance on next gen systems
• Parallelism & communication supported in language constructs/extensions
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Motivation for Low Level PGAS 
Development & Analysis
� High Level PGAS Language Constructs

• Goals: Productivity, Performance, Transparency
• Implicit communication and parallelism

─ Predictable performance & load balance based on known data access patterns
• Examples: 

─ Distributed dense matrices (blocked, cyclic, etc)
─ Parallel for loops over arrays─ Parallel for loops over arrays
─ Structured synchronization – global barriers, reductions

� Low Level PGAS Language Constructs
• Goals: Performance, Opacity
• Explicit communication and parallelism

─ Performance & load balance prediction depends on attributes of input data and runtime 
task creation, synchronization

─ How to analyze scalability as an attribute of the algorithm?
• Examples:

─ Distributed graphs & sparse matrices
─ Recursive task creation
─ Unstructured synchronization – irregular data sharing
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Related Work

�Low Level Constructs/Data Control
• HPF-2: Indirect data distributions
• Chapel: User defined domain maps
• UPC: Global pointers
�Analysis of PGAS Algorithms�Analysis of PGAS Algorithms

• Other work uses system specific measurements: 
e.g. latency of get/put

�Graph Traversal Parallelization
• Largest parallelizations: 1000s of threads running 

Breadth first search (Blue Gene)
• Largest MSF parallelization: 100s of threads
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Abstract PGAS System Model
� Define a set of P processes 

• Notated: p0, p1, …
� Define a set of P memory partitions

• Notated: M0, M1, …
� Each process pj owns a unique partition of memory, Mj

• Mj is local to pj

• All Mk != Mj is remote to pj• All M != M is remote to p
� Time to algorithm completion measured in steps
� Each process executes at most one action per step, a process may 

execute zero actions in a step if waiting for other processes.
� 4 Action types:

• Operate on local memory
• Synchronize with all processes
• Request another process to get/put data to its memory, i.e.  request 

remote data
• Respond to a request to get/put data from local memory, i.e . respond 

to request for remote data
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Scalability Definition
� Speed Efficiency (Es)

• T = execution time
• W = work completed
• P = # of processors
• Es = W / TP
• Algorithm-System Scalability of Heterogeneous Computing. Chen 

et al, J. Parallel Distrib. Comput, 2008et al, J. Parallel Distrib. Comput, 2008
� Algorithm-System Scalability Condition

• Es remains constant for increased algorithm-system size
• W / TP = W’ / T’P’
• Execution time drops: T > T’ 
• Processor count increases: P < P’
• Workload must increase to the degree that time does not scale 

perfectly: W <= W
─ Serialization
─ Communication overhead
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Real System Features Captured

�Asynchronous execution: an overloaded 
process slows down the whole system
�Shared memory contention: if one process 

gets more requests than others, it takes 
longer to completelonger to complete
�Weak Scaling pattern: allow problem size to 

grow with system size
�Load Balancing requirement: scalability 

definition fails if work/communication does 
not scale evenly on all processes
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Minimum Spanning Forest
� Given a graph, G=(V,E)

• |V| = # vertices in the graph
• |E| = # edges in the graph
• Semantic graph: no physical position of vertices
� Produce a subset of edges from E that

• Induces a set of trees (forest) over G

|V| = 4

|E| = 5

• Induces a set of trees (forest) over G
• The forest has the same connected components as the 

original graph
• The forest has minimal edge weight
� Useful applications of MSF

• VLSI layout
• Wireless communication optimization
• Biology and medical data analysis
• Social network analysis
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Minimum Spanning Forest

�Parallel algorithms derived from Boruvka’s
algorithm
• While there is more than one vertex

─ 1. Choose the lightest edge from each vertex─ 1. Choose the lightest edge from each vertex
─ 2. Find connected components defined by these edges
─ 3. Compact graph by collapsing all connected 

components defined by these edges
─ 4. Cleanup by removing loop and duplicate edges

�Vertex set drops by at least half during each 
iteration -> log(N) iterations
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Searching Edge Lists in Parallel

�Vertices processing in parallel
• Distribution?
• Steps per Processor

�Is there a guaranteed scalable distribution?

1.Choose  

lightest

edge per

vertex

�Is there a guaranteed scalable distribution?
• Depends on input graph
• Consider graph G, with |V| vertices, 2|V| edges

─ One vertex has |V| edges. All others have 1
─ Each vertex is stored on a processor with all its edges
─ One processor will end up with half the edges in the 

entire graph….
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Searching Edge Lists In Parallel
T = 7 T = 2 T = 2 T = 2

� Time Taken On Abstract System
• Case 1: All vertex lists searched in parallel by the process that 

owns them
─ Slowest process takes T = |V|

• Case 2: Edge lists are copied out to be searched in parallel
─ One process must send |V| edges out, T = |V|

� Scalability Condition: W = 2|V|, T = |V|
• (2|V| / |V| P) = (2|V’| / |V’| P’) -> 2 / P = 2 / P’
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Toolkit Goals & Approach

� Provide low level reformulation of graph data while 
maintaining a view of high level “actual graph” 
algorithm
• Actual graph: input data set, i.e. actual set of objects and 

relations to be analyzed
• Reformulated graph: augmented data set, add objects and • Reformulated graph: augmented data set, add objects and 

relations to represent overhead of parallelization
� Expose parallelization costs with Mobile Subjective 

(MoS) execution mode
• Subjects: all state required to initiate parallel actions
• Subject types: animals and plants

─ Plants incur cost of state storage
─ Animals incur cost of state storage and movement

• Synchronizing data: stateful variables with blocking 
operations
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Transform Shared Data
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Actual Graph
Reformulated Graph

At most k(=3) edges per pvertex

Each vertex is a m-way of pvertices



Toolkit Operation by Edges on 
Vertices
� Barrier

• An edge (v1, v2) joins a barrier with all other edges 
connected to v1 (or v2). No edge leaves the barrier until all 
edges enter the barrier

� Leave Vertex
• An edge disconnects from a given vertex, effective after • An edge disconnects from a given vertex, effective after 

the next barrier
� Merge Into

• An edge (v1, v2) causes v1 and v2 to merge and join all 
edges from both vertices into a single super vertex

� Reduce Operation
• An edge (v1, v2) contributes to a given reduction operation 

(add, multiply, max, min, etc) on a given vertex. Results 
available after next barrier
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Showing Scalability
T = 4 T = 4 T = 3 T = 3

� Assume each process holds an equal portion of shared data
• Possible because vertices have become a distributed interface

� Each piece of shared data is accessed by no more than a 
fixed number of parallel tasks
• Programmer specifies task per edge
• Each edge shares data with few other edges
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Showing Scalability
� After transforming shared data

• W = # edges = |E|
• Gets/puts per process

─ Depends on how many shared data
─ At most m|E| / kP = O( |E| / P )
─ Where m = order of pvertex trees, k = max edges per pvertex

• Computation time per process• Computation time per process
─ Includes structured synchronization time
─ At most  c (|E| log |E| / P )
─ Where c is constant

• Scalability Condition is satisfiable for all toolkit operations:
─ W / TP = W’ / T’P’

─ |E| / P (|E| log |E| / P) = |E’| / P’ (|E’| log |E’| / P’)

─ 1 / ( log |E| ) = 1 / ( log |E’| )
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Scalable MSF

�For all edges (V1, V2) in parallel
• Repeat

─ In parallel enter a reduction at V1 & V2
─ In parallel barrier with V1 & V2

V1 V2

─ In parallel barrier with V1 & V2
─ Check if this is the lightest edge connected to V1 

or V2 (result of reduction available after barrier)
─ If this is a lightest edge, merge V1 with V2
─ In parallel barrier with V1 & V2
─ If V1 merged with V2, remove this edge

24



Target System: Massively 
Multithreaded
�MoS was designed alongside novel LWP-

mNUMA architecture
• Subjects are first class architectural entities
• No cache data duplication
• Hardware supported subject • Hardware supported subject 

creation/destruction/movement
• Architectural PGAS support

�Simulation Results
• Goal: to create millions of subjects performing 

useful computation in simulation
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Simulated Runtimes
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Ideal curve
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Conclusion

�Using generalized PGAS scalability metric
• Exposes data “hotspots” by penalizing data sharing in 

a partition
• Allows parallel algorithm design to include analysis of 

low level reduction-type communication
• Avoids requiring system specific metrics• Avoids requiring system specific metrics
�Reformulation of graph traversal

• Exposes low level costs while maintaining higher level 
algorithm structure

• Is applicable to other load imbalanced problems
─ Particle interaction neighbor lists
─ Sparse matrices with some dense rows
─ Unstructured meshes
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Questions?Questions?
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